Item type |
デフォルトアイテムタイプ_(フル)(1) |
公開日 |
2023-03-18 |
タイトル |
|
|
タイトル |
Reliability Investigation of Automatic Assessment of Learner-Build Concept Map with Kit-Build Method by Comparing with Manual Methods |
|
言語 |
en |
作成者 |
Wunnasri, Warunya
Pailai, Jaruwat
Hayashi, Yusuke
Hirashima, Tsukasa
|
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
権利情報 |
|
|
権利情報 |
The final authenticated version is available online at https://doi.org/10.1007/978-3-319-61425-0_35. |
権利情報 |
|
|
権利情報 |
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
主題 |
|
|
主題Scheme |
Other |
|
主題 |
Concept map assessment method |
主題 |
|
|
主題Scheme |
Other |
|
主題 |
Kit-Build concept map |
主題 |
|
|
主題Scheme |
Other |
|
主題 |
Reliability |
主題 |
|
|
主題Scheme |
NDC |
|
主題 |
370 |
内容記述 |
|
|
内容記述 |
This paper describes an investigation into the reliability of an automatic assessment method of the learner-build concept map by comparing it with two well-known manual methods. We have previously proposed the Kit-Build (KB) concept map framework where a learner builds a concept map by using only a provided set of components, known as the set "kit". In this framework, instant and automatic assessment of a learner-build concept map has been realized. We call this assessment method the "Kit-Build method" (KB method). The framework and assessment method have already been practically used in classrooms in various schools. As an investigation of the reliability of this method, we have conducted an experiment to compare the assessment results of the method with the assessment results of two other manual assessment methods. In this experiment, 22 university students attended as subjects and four as raters. It was found that the scores of the KB method had a very strong correlation with the scores of the other manual methods. The results suggest that automatic assessment of the Kit-Build concept map can attain almost the same level of reliability as well-known manual assessment methods. |
|
言語 |
en |
内容記述 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
'Artificial Intelligence in Education' 18th International Conference, AIED 2017, Wuhan, China, June 28 – July 1, 2017, Proceedings |
出版者 |
|
|
出版者 |
Springer, Cham |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_5794 |
|
資源タイプ |
conference paper |
出版タイプ |
|
|
出版タイプ |
AO |
|
出版タイプResource |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
関連情報 |
|
|
|
識別子タイプ |
ISBN |
|
|
関連識別子 |
978-3-319-61424-3 |
関連情報 |
|
|
|
識別子タイプ |
ISBN |
|
|
関連識別子 |
978-3-319-61425-0 |
関連情報 |
|
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
10.1007/978-3-319-61425-0_35 |
収録物識別子 |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
0302-9743 |
収録物識別子 |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
1611-3349 |
開始ページ |
|
|
開始ページ |
418 |
書誌情報 |
Lecture Notes in Computer Science
Lecture Notes in Computer Science
巻 10331,
p. 418-429,
発行日 2017
|
旧ID |
46326 |