Item type |
デフォルトアイテムタイプ_(フル)(1) |
公開日 |
2023-03-18 |
タイトル |
|
|
タイトル |
Rules for Biologically Inspired Adaptive Network Design |
|
言語 |
en |
作成者 |
Tero, Atsushi
Takagi, Seiji
Saigusa, Tetsu
Ito, Kentaro
Bebber, Dan P
Fricker, Mark D
Yumiki, Kenji
Kobayashi, Ryo
Nakagaki, Toshiyuki
|
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
権利情報 |
|
|
権利情報 |
Copyright (c) 2010 American Association for the Advancement of Science |
主題 |
|
|
主題Scheme |
NDC |
|
主題 |
460 |
内容記述 |
|
|
内容記述 |
Transport networks are ubiquitous in both social and biological systems. Robust network performance involves a complex trade-off involving cost, transport efficiency, and fault tolerance. Biological networks have been honed by many cycles of evolutionary selection pressure and are likely to yield reasonable solutions to such combinatorial optimization problems. Furthermore, they develop without centralized control and may represent a readily scalable solution for growing networks in general. We show that the slime mold Physarum polycephalum forms networks with comparable efficiency, fault tolerance, and cost to those of real-world infrastructure networks-in this case, the Tokyo rail system. The core mechanisms needed for adaptive network formation can be captured in a biologically inspired mathematical model that may be useful to guide network construction in other domains. |
|
言語 |
en |
出版者 |
|
|
出版者 |
American Association for the Advancement of Science |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
出版タイプ |
|
|
出版タイプ |
AO |
|
出版タイプResource |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
関連情報 |
|
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
10.1126/science.1177894 |
関連情報 |
|
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
http://dx.doi.org/10.1126/science.1177894 |
収録物識別子 |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
0036-8075 |
収録物識別子 |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA00835277 |
開始ページ |
|
|
開始ページ |
439 |
書誌情報 |
Science
Science
巻 327,
号 5964,
p. 439-422,
発行日 2010-01-22
|
旧ID |
29243 |