Item type |
デフォルトアイテムタイプ_(フル)(1) |
公開日 |
2023-03-18 |
タイトル |
|
|
タイトル |
Picosecond IR-UV pump-probe spectroscopic study on the intramolecular vibrational energy redistribution of NH2 and CH stretching vibrations of jet-cooled aniline |
|
言語 |
en |
作成者 |
Yamada, Yuji
Okano, Jun-ichi
Mikami, Naohiko
Ebata, Takayuki
|
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
権利情報 |
|
|
権利情報 |
Copyright (c) 2005 American Institute of Physics. |
内容記述 |
|
|
内容記述 |
Intramolecular vibrational energy redistribution (IVR) of the N H2 symmetric and asymmetric stretching vibrations of jet-cooled aniline has been investigated by picosecond time-resolved IR-UV pump-probe spectroscopy. A picosecond IR laser pulse excited the N H2 symmetric or asymmetric stretching vibration of aniline in the electronic ground state and the subsequent time evolutions of the excited level as well as redistributed levels were observed by a picosecond UV pulse. The IVR lifetimes for symmetric and asymmetric stretches were obtained to be 18 and 34 ps, respectively. In addition, we obtained the direct evidence that IVR proceeds via two-step bath states; that is, the N H2 stretch energy first flows into the doorway state and the energy is further dissipated into dense bath states. The rate constants of the second step were estimated to be comparable to or slower than those of the first step IVR. The relaxation behavior was compared with that of IVR of the OH stretching vibration of phenol [Y. Yamada, T. Ebata, M. Kayano, and M. Mikami J. Chem. Phys. 120, 7400 (2004)]. We found that the second step IVR process of aniline is much slower than that of phenol, suggesting a large difference of the "doorway state↔the dense bath states" anharmonic coupling strength between the two molecules. We also observed IVR of the CH stretching vibrations, which showed much faster IVR behavior than that of the N H2 stretches. The fast relaxation is described by the interference effect, which is caused by the coherent excitation of the quasistationary states. |
|
言語 |
en |
出版者 |
|
|
出版者 |
American Institute of Physics |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
出版タイプ |
|
|
出版タイプ |
VoR |
|
出版タイプResource |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
関連情報 |
|
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
10.1063/1.2039087 |
関連情報 |
|
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
http://dx.doi.org/10.1063/1.2039087 |
収録物識別子 |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
0021-9606 |
収録物識別子 |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA00694991 |
書誌情報 |
Journal of Chemical Physics
Journal of Chemical Physics
巻 123,
号 12,
発行日 2005-09-22
|
旧ID |
18621 |