ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文等

Neural Network Learning of Robot Arm Impedance in Operational Space

https://hiroshima.repo.nii.ac.jp/records/2007031
https://hiroshima.repo.nii.ac.jp/records/2007031
381d7c8f-3b93-488c-95db-0d975dbb99cf
名前 / ファイル ライセンス アクション
IEEE_TSMC_B_26_2_290-298_1996.pdf IEEE_TSMC_B_26_2_290-298_1996.pdf (949.4 KB)
Item type デフォルトアイテムタイプ_(フル)(1)
公開日 2023-03-18
タイトル
タイトル Neural Network Learning of Robot Arm Impedance in Operational Space
言語 en
作成者 Tsuji, Toshio

× Tsuji, Toshio

en Tsuji, Toshio

Search repository
Ito, Koji

× Ito, Koji

en Ito, Koji

Search repository
Morasso, Pietro

× Morasso, Pietro

en Morasso, Pietro

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利情報
権利情報 Copyright (c) 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
主題
主題Scheme NDC
主題 530
内容記述
内容記述 lmpedance control is one of the most effective controlmethods for the manipulators in contact with their environments.The characteristics of force and motion control, however, isdetermined by a desired impedance parameter of a manipulator'send-effector that should be carefully designed according to agiven task and an environment. The present paper proposesa new method to regulate the impedance parameter of theend-effector through learning of neural networks. Three kindsof the feed-forward networks are prepared corresponding toposition, velocity and force control loops of the end-effector beforelearning. First, the neural networks for position and velocitycontrol are trained using iterative learning of the manipulatorduring free movements. Then, the neural network for forcecontrol is trained for contact movements. During learning ofcontact movements, a virtual trajectory is also modified to reducecontrol error. The method can regulate not only stiffness andviscosity but also inertia and virtual trajectory of the end-effector.Computer simulations show that a smooth transition from freeto contact movements can be realized by regulating impedanceparameters before a contact.
言語 en
出版者
出版者 IEEE
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
関連情報
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 http://dx.doi.org/10.1109/3477.485879
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 1083-4419
開始ページ
開始ページ 290
書誌情報 IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,
IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,

巻 26, 号 2, p. 290-298, 発行日 1996
旧ID 14177
戻る
0
views
See details
Views

Versions

Ver.1 2025-02-21 03:39:16.324156
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3