Item type |
デフォルトアイテムタイプ_(フル)(1) |
公開日 |
2025-01-08 |
タイトル |
|
|
タイトル |
A wavelet Galerkin method employing B-spline bases for solid mechanics problems without the use of a fictitious domain |
|
言語 |
en |
作成者 |
Tanaka, Satoyuki
Hiroshi , Okada
Okazawa, Shigenobu
|
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
権利情報 |
|
|
言語 |
en |
|
権利情報 |
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00466-011-0671-9 |
権利情報 |
|
|
言語 |
en |
|
権利情報 |
This is not the published version. Please cite only the published version. |
権利情報 |
|
|
言語 |
ja |
|
権利情報 |
この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。 |
主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Finite element method |
主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Wavelet Galerkin method |
主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
B-spline scaling/wavelet functions |
主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Adaptive analysis |
主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Stress concentration problem |
内容記述 |
|
|
内容記述 |
This study develops a wavelet Galerkin method (WGM) that uses B-spline wavelet bases for application to solid mechanics problems. A fictitious domain is often adopted to treat general boundaries in WGMs. In the analysis, the body is extended to its exterior but very low stiffness is applied to the exterior region. The stiffness matrix in the WGM becomes singular without the use of a fictitious domain. The problem arises from the lack of linear independence of the basis functions. A technique to remove basis functions that can be represented by the superposition of the other basis functions is proposed. The basis functions are automatically eliminated in the pre conditioning step. An adaptive strategy is developed using the proposed technique. The solution is refined by superposing finer wavelet functions. Numerical examples of solid mechanics problems are presented to demonstrate the multiresolution properties of the WGM. |
|
言語 |
en |
出版者 |
|
|
出版者 |
Springer Nature |
|
言語 |
en |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
出版タイプ |
|
|
出版タイプ |
AM |
|
出版タイプResource |
http://purl.org/coar/version/c_ab4af688f83e57aa |
関連情報 |
|
|
関連タイプ |
isVersionOf |
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
http://dx.doi.org/10.1007/s00466-011-0671-9 |
開始ページ |
|
|
開始ページ |
35 |
書誌情報 |
en : Computational Mechanics
巻 50,
p. 35-48,
発行日 2011-12-13
|
旧ID |
55940 |