Item type |
デフォルトアイテムタイプ_(フル)(1) |
公開日 |
2023-03-18 |
タイトル |
|
|
タイトル |
Feature extraction from images of endoscopic large intestine |
|
言語 |
en |
作成者 |
Hirota, Masashi
Tamaki, Toru
Kaneda, Kazufumi
Yoshida, Shigeto
Tanaka, Shinji
|
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
権利情報 |
|
|
権利情報 |
Copyright (c) 2008 Authors |
主題 |
|
|
主題Scheme |
NDC |
|
主題 |
540 |
主題 |
|
|
主題Scheme |
NDC |
|
主題 |
490 |
内容記述 |
|
|
内容記述 |
In this paper, we propose feature extraction methods from two types of images of endoscopic large intestine taken by a colonoscopy for diagnosis of colon cancer. Today, there are two observation methods. One is staining surface of large intestine. The other is colonoscopy using Narrow Band Imaging (NBI) system, a new feature of endoscope. We describe extraction methods of features for each observation method so that the features may be used to estimate colon cancer staging from an observed image. Pit pattern is a texture that appears on the surface of stained intestine and they are categorized and used for diagnosis. Thus, we extract pits from an endoscope image to analyze patterns. First, color edge of the image is extracted, then watershed segmentation is applied. In the result, pits are roughly extracted. NBI system can observe vasucular structure under the surface of large intestine. The vascular structure can be used to estimate cancer staging. A vascular area is roughly extracted by adaptive binarization, then the fine shape of vascular area is extracted by the level set method. |
|
言語 |
en |
出版者 |
|
|
出版者 |
Korea-Japan Joint Workshop on Frontiers of Computer Vision |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_5794 |
|
資源タイプ |
conference paper |
出版タイプ |
|
|
出版タイプ |
AO |
|
出版タイプResource |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
関連情報 |
|
|
|
識別子タイプ |
URI |
|
|
関連識別子 |
http://ir.lib.hiroshima-u.ac.jp/00021053 |
開始ページ |
|
|
開始ページ |
94 |
書誌情報 |
Proceedings of FCV2008
The 14th Korea-Japan Joint Workshop on Frontiers of Computer Vision
p. 94-99,
発行日 2008-01
|
旧ID |
21055 |