ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 会議発表論文等

Borderline Over-sampling for Imbalanced Data Classification

https://hiroshima.repo.nii.ac.jp/records/2000823
https://hiroshima.repo.nii.ac.jp/records/2000823
b6428e79-02b9-4b1d-ac38-4b5cfd745a76
名前 / ファイル ライセンス アクション
A1005.pdf A1005.pdf (390.6 KB)
Item type デフォルトアイテムタイプ_(フル)(1)
公開日 2023-03-18
タイトル
タイトル Borderline Over-sampling for Imbalanced Data Classification
言語 en
作成者 Nguyen, Hien M.

× Nguyen, Hien M.

en Nguyen, Hien M.

Search repository
Cooper, Eric W.

× Cooper, Eric W.

en Cooper, Eric W.

Search repository
Kamei, Katsuari

× Kamei, Katsuari

en Kamei, Katsuari

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利情報
権利情報 (c) Copyright by IEEE SMC Hiroshima Chapter.
主題
主題Scheme NDC
主題 500
内容記述
内容記述 Traditional classification algorithms, in many times, perform poorly on imbalanced data sets in which some classes are heavily outnumbered by the remaining classes. For this kind of data, minority class instances, which are usually much more of interest, are often misclassified. The paper proposes a method to deal with them by changing class distribution through oversampling at the borderline between the minority class and the majority class of the data set. A Support Vector Machines (SVMs) classifier then is trained to predict new unknown instances. Compared to other over-sampling methods, the proposed method focuses only on the minority class instances lying around the borderline due to the fact that this area is most crucial for establishing the decision boundary. Furthermore, new instances will be generated in such a manner that minority class area will be expanded further toward the side of the majority class at the places where there appear few majority class instances. Experimental results show that the proposed method can achieve better performance than some other over-sampling methods, especially with data sets having low degree of overlap due to its ability of expanding minority class area in such cases.
言語 en
出版者
出版者 IEEE SMC Hiroshima Chapter
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
関連情報
識別子タイプ URI
関連識別子 http://www.hil.hiroshima-u.ac.jp/iwcia/2009/
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 1883-3977
開始ページ
開始ページ 24
書誌情報 5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009
5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009

p. 24-29, 発行日 2009-11
旧ID 28413
戻る
0
views
See details
Views

Versions

Ver.1 2025-02-18 01:36:55.945541
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3