ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 広島大学の刊行物
  2. Hiroshima Journal of Medical Sciences
  3. 57巻1号

Inference on Biological Mechanisms Using an Integrated Phenotype Prediction Model

https://hiroshima.repo.nii.ac.jp/records/2013597
https://hiroshima.repo.nii.ac.jp/records/2013597
c339dea1-a438-4095-a62a-7ac92e474a4d
名前 / ファイル ライセンス アクション
HiroshimaJMedSci_57_7.pdf HiroshimaJMedSci_57_7.pdf (7.2 MB)
Item type デフォルトアイテムタイプ_(フル)(1)
公開日 2023-03-18
タイトル
タイトル Inference on Biological Mechanisms Using an Integrated Phenotype Prediction Model
言語 en
作成者 Enomoto, Yumi

× Enomoto, Yumi

en Enomoto, Yumi

Search repository
Ushijima, Masaru

× Ushijima, Masaru

en Ushijima, Masaru

Search repository
Miyata, Satoshi

× Miyata, Satoshi

en Miyata, Satoshi

Search repository
Matsuura, Masaaki

× Matsuura, Masaaki

en Matsuura, Masaaki

Search repository
Ohtaki, Megu

× Ohtaki, Megu

en Ohtaki, Megu

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利情報
権利情報 (c) Hiroshima University Medical Press.
主題
主題Scheme Other
主題 Biological mechanism
主題
主題Scheme Other
主題 Gene-to-gene interrelationships
主題
主題Scheme Other
主題 Epistasis
主題
主題Scheme Other
主題 Multiple pathways
主題
主題Scheme NDC
主題 490
内容記述
内容記述 We propose a methodology for constructing an integrated phenotype prediction model that accounts for multiple pathways regulating a targeted phenotype. The method uses multiple prediction models, each expressing a particular pattern of gene-to-gene interrelationship, such as epistasis. We also propose a methodology using Gene Ontology annotations to infer a biological mechanism from the integrated phenotype prediction model. To construct the integrated models, we employed multiple logistic regression models using a two-step learning approach to examine a number of patterns of gene-to-gene interrelationships. We first selected individual prediction models with acceptable goodness of fit, and then combined the models. The resulting integrated model predicts phenotype as a logical sum of predicted results from the individual models. We used published microarray data on neuroblastoma from Ohira et al (2005) for illustration, constructing an integrated model to predict prognosis and infer the biological mechanisms controlling prognosis. Although the resulting integrated model comprised a small number of genes compared to a previously reported analysis of these data, the model demonstrated excellent performance, with an error rate of 0.12 in a validation analysis. Gene Ontology analysis suggested that prognosis of patients with neuroblastoma may be influenced by biological processes such as cell growth, G-protein signaling, phosphoinositide-mediated signaling, alcohol metabolism, glycolysis, neurophysiological processes, and catecholamine catabolism.
言語 en
出版者
出版者 Hiroshima University Medical Press
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 0018-2052
収録物識別子
収録物識別子タイプ NCID
収録物識別子 AA00664312
開始ページ
開始ページ 7
書誌情報 Hiroshima Journal of Medical Sciences
Hiroshima Journal of Medical Sciences

巻 57, 号 1, p. 7-15, 発行日 2008-03
旧ID 34947
戻る
0
views
See details
Views

Versions

Ver.1 2025-02-23 06:37:57.767013
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3