ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文等

T1-weighted and T2-weighted MRI image synthesis with convolutional generative adversarial networks

https://hiroshima.repo.nii.ac.jp/records/2008747
https://hiroshima.repo.nii.ac.jp/records/2008747
691a369c-fe0e-44fa-a2bc-2de4c39e399e
名前 / ファイル ライセンス アクション
RepPractOncolRadiother_26_35.pdf RepPractOncolRadiother_26_35.pdf (1.7 MB)
Item type デフォルトアイテムタイプ_(フル)(1)
公開日 2023-03-18
タイトル
タイトル T1-weighted and T2-weighted MRI image synthesis with convolutional generative adversarial networks
言語 en
作成者 Kawahara, Daisuke

× Kawahara, Daisuke

en Kawahara, Daisuke

Search repository
Nagata, Yasushi

× Nagata, Yasushi

en Nagata, Yasushi

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利情報
権利情報 © 2021 Greater Poland Cancer Centre. Published by Via Medica. All rights reserved. This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
主題
主題Scheme Other
主題 convolutional generative adversarial networks
主題
主題Scheme Other
主題 image synthesis
主題
主題Scheme Other
主題 MRI
内容記述
内容記述 Background: The objective of this study was to propose an optimal input image quality for a conditional generative adversarial network (GAN) in T1-weighted and T2-weighted magnetic resonance imaging (MRI) images. Materials and methods: A total of 2,024 images scanned from 2017 to 2018 in 104 patients were used. The prediction framework of T1-weighted to T2-weighted MRI images and T2-weighted to T1-weighted MRI images were created with GAN. Two image sizes (512 × 512 and 256 × 256) and two grayscale level conversion method (simple and adaptive) were used for the input images. The images were converted from 16-bit to 8-bit by dividing with 256 levels in a simple conversion method. For the adaptive conversion method, the unused levels were eliminated in 16-bit images, which were converted to 8-bit images by dividing with the value obtained after dividing the maximum pixel value with 256. Results: The relative mean absolute error (rMAE ) was 0.15 for T1-weighted to T2-weighted MRI images and 0.17 for T2-weighted to T1-weighted MRI images with an adaptive conversion method, which was the smallest. Moreover, the adaptive conversion method has a smallest mean square error (rMSE) and root mean square error (rRMSE), and the largest peak signal-to-noise ratio (PSNR) and mutual information (MI). The computation time depended on the image size. Conclusions: Input resolution and image size affect the accuracy of prediction. The proposed model and approach of prediction framework can help improve the versatility and quality of multi-contrast MRI tests without the need for prolonged examinations.
言語 en
出版者
出版者 Via Medica
出版者
出版者 Greater Poland Cancer Centre
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
関連情報
識別子タイプ DOI
関連識別子 10.5603/RPOR.a2021.0005
関連情報
識別子タイプ DOI
関連識別子 https://doi.org/10.5603/RPOR.a2021.0005
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 1507–1367
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 2083–4640
開始ページ
開始ページ 35
書誌情報 Reports of Practical Oncology and Radiotherapy
Reports of Practical Oncology and Radiotherapy

巻 26, 号 1, p. 35-42, 発行日 2021-01-22
旧ID 50460
戻る
0
views
See details
Views

Versions

Ver.1 2025-02-21 04:33:44.603125
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3