WEKO3
アイテム
T1-weighted and T2-weighted MRI image synthesis with convolutional generative adversarial networks
https://hiroshima.repo.nii.ac.jp/records/2008747
https://hiroshima.repo.nii.ac.jp/records/2008747691a369c-fe0e-44fa-a2bc-2de4c39e399e
| 名前 / ファイル | ライセンス | アクション |
|---|---|---|
|
|
| Item type | デフォルトアイテムタイプ_(フル)(1) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 公開日 | 2023-03-18 | |||||||||
| タイトル | ||||||||||
| タイトル | T1-weighted and T2-weighted MRI image synthesis with convolutional generative adversarial networks | |||||||||
| 言語 | en | |||||||||
| 作成者 |
Kawahara, Daisuke
× Kawahara, Daisuke
× Nagata, Yasushi
|
|||||||||
| アクセス権 | ||||||||||
| アクセス権 | open access | |||||||||
| アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||||||
| 権利情報 | ||||||||||
| 権利情報 | © 2021 Greater Poland Cancer Centre. Published by Via Medica. All rights reserved. This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially. | |||||||||
| 主題 | ||||||||||
| 主題Scheme | Other | |||||||||
| 主題 | convolutional generative adversarial networks | |||||||||
| 主題 | ||||||||||
| 主題Scheme | Other | |||||||||
| 主題 | image synthesis | |||||||||
| 主題 | ||||||||||
| 主題Scheme | Other | |||||||||
| 主題 | MRI | |||||||||
| 内容記述 | ||||||||||
| 内容記述 | Background: The objective of this study was to propose an optimal input image quality for a conditional generative adversarial network (GAN) in T1-weighted and T2-weighted magnetic resonance imaging (MRI) images. Materials and methods: A total of 2,024 images scanned from 2017 to 2018 in 104 patients were used. The prediction framework of T1-weighted to T2-weighted MRI images and T2-weighted to T1-weighted MRI images were created with GAN. Two image sizes (512 × 512 and 256 × 256) and two grayscale level conversion method (simple and adaptive) were used for the input images. The images were converted from 16-bit to 8-bit by dividing with 256 levels in a simple conversion method. For the adaptive conversion method, the unused levels were eliminated in 16-bit images, which were converted to 8-bit images by dividing with the value obtained after dividing the maximum pixel value with 256. Results: The relative mean absolute error (rMAE ) was 0.15 for T1-weighted to T2-weighted MRI images and 0.17 for T2-weighted to T1-weighted MRI images with an adaptive conversion method, which was the smallest. Moreover, the adaptive conversion method has a smallest mean square error (rMSE) and root mean square error (rRMSE), and the largest peak signal-to-noise ratio (PSNR) and mutual information (MI). The computation time depended on the image size. Conclusions: Input resolution and image size affect the accuracy of prediction. The proposed model and approach of prediction framework can help improve the versatility and quality of multi-contrast MRI tests without the need for prolonged examinations. | |||||||||
| 言語 | en | |||||||||
| 出版者 | ||||||||||
| 出版者 | Via Medica | |||||||||
| 出版者 | ||||||||||
| 出版者 | Greater Poland Cancer Centre | |||||||||
| 言語 | ||||||||||
| 言語 | eng | |||||||||
| 資源タイプ | ||||||||||
| 資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||
| 資源タイプ | journal article | |||||||||
| 出版タイプ | ||||||||||
| 出版タイプ | VoR | |||||||||
| 出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||
| 関連情報 | ||||||||||
| 識別子タイプ | DOI | |||||||||
| 関連識別子 | 10.5603/RPOR.a2021.0005 | |||||||||
| 関連情報 | ||||||||||
| 識別子タイプ | DOI | |||||||||
| 関連識別子 | https://doi.org/10.5603/RPOR.a2021.0005 | |||||||||
| 収録物識別子 | ||||||||||
| 収録物識別子タイプ | ISSN | |||||||||
| 収録物識別子 | 1507–1367 | |||||||||
| 収録物識別子 | ||||||||||
| 収録物識別子タイプ | ISSN | |||||||||
| 収録物識別子 | 2083–4640 | |||||||||
| 開始ページ | ||||||||||
| 開始ページ | 35 | |||||||||
| 書誌情報 |
Reports of Practical Oncology and Radiotherapy Reports of Practical Oncology and Radiotherapy 巻 26, 号 1, p. 35-42, 発行日 2021-01-22 |
|||||||||
| 旧ID | 50460 | |||||||||