| Item type |
デフォルトアイテムタイプ_(フル)(1) |
| 公開日 |
2025-01-29 |
| タイトル |
|
|
タイトル |
Fracture mechanics analysis using the wavelet Galerkin method and extended finite element method |
|
言語 |
en |
| 作成者 |
Tanaka, Satoyuki
Okada, Hiroshi
Okazawa, Shigenobu
Fujikubo, Masahiko
|
| アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
| 権利情報 |
|
|
言語 |
en |
|
権利情報 |
This is the peer reviewed version of the following article: Tanaka, S., Okada, H., Okazawa, S. and Fujikubo, M. (2013), Fracture mechanics analysis using the wavelet Galerkin method and extended finite element method. Int. J. Numer. Meth. Engng, 93: 1082-1108, which has been published in final form at https://doi.org/10.1002/nme.4433. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited. |
| 権利情報 |
|
|
言語 |
en |
|
権利情報 |
This is not the published version. Please cite only the published version. |
| 権利情報 |
|
|
言語 |
ja |
|
権利情報 |
この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。 |
| 主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
finite element method |
| 主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
wavelet Galerkin method |
| 主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
extended finite element method |
| 主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
stress intensity factors |
| 内容記述 |
|
|
内容記述 |
This paper presents fracture mechanics analysis using the wavelet Galerkin method and extended finite element method. The wavelet Galerkin method is a new methodology to solve partial differential equations where scaling/wavelet functions are used as basis functions. In solid/structural analyses, the analysis domain is divided into equally spaced structured cells and scaling functions are periodically placed throughout the domain. To improve accuracy, wavelet functions are superposed on the scaling functions within a region having a high stress concentration, such as near a hole or notch. Thus, the method can be considered a refinement technique in fixed-grid approaches. However, because the basis functions are assumed to be continuous in applications of the wavelet Galerkin method, there are difficulties in treating displacement discontinuities across the crack surface. In the present research, we introduce enrichment functions in the wavelet Galerkin formulation to take into account the discontinuous displacements and high stress concentration around the crack tip by applying the concept of the extended finite element method. This paper presents the mathematical formulation and numerical implementation of the proposed technique. As numerical examples, stress intensity factor evaluations and crack propagation analyses for two-dimensional cracks are presented. Copyright © 2012 John Wiley & Sons, Ltd. |
|
言語 |
en |
| 内容記述 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
A part of the present research conducted by Satoyuki Tanaka was financially supported by The Research Council of Norway (RCN) through the Yggdrasil mobility programme. |
|
言語 |
en |
| 出版者 |
|
|
出版者 |
Wiley |
|
言語 |
en |
| 言語 |
|
|
言語 |
eng |
| 資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
| 出版タイプ |
|
|
出版タイプ |
AM |
|
出版タイプResource |
http://purl.org/coar/version/c_ab4af688f83e57aa |
| 関連情報 |
|
|
関連タイプ |
isVersionOf |
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
https://doi.org/10.1002/nme.4433 |
| 開始ページ |
|
|
開始ページ |
1082 |
| 書誌情報 |
en : Numerical Methods in Engineering
巻 93,
号 10,
p. 1082-1108,
発行日 2013-02-21
|
| 旧ID |
56171 |