{"created":"2025-02-21T03:41:00.503765+00:00","id":2007090,"links":{},"metadata":{"_buckets":{"deposit":"3104ecdf-f7e1-4ed8-aef4-1850d4e5f399"},"_deposit":{"created_by":41,"id":"2007090","owners":[41],"pid":{"revision_id":0,"type":"depid","value":"2007090"},"status":"published"},"_oai":{"id":"oai:hiroshima.repo.nii.ac.jp:02007090","sets":["1730444907710"]},"author_link":[],"item_1617186331708":{"attribute_name":"Title","attribute_value_mlt":[{"subitem_title":"NONLINEAR THIN-PLATE BENDING ANALYSES USING THE HERMITE REPRODUCING KERNEL APPROXIMATION","subitem_title_language":"en"}]},"item_1617186419668":{"attribute_name":"Creator","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"TANAKA, SATOYUKI","creatorNameLang":"en"}],"familyNames":[{"familyName":"TANAKA","familyNameLang":"en"}],"givenNames":[{"givenName":"SATOYUKI","givenNameLang":"en"}]},{"creatorNames":[{"creatorName":"SADAMOTO, SHOTA","creatorNameLang":"en"}],"familyNames":[{"familyName":"SADAMOTO","familyNameLang":"en"}],"givenNames":[{"givenName":"SHOTA","givenNameLang":"en"}]},{"creatorNames":[{"creatorName":"岡澤, 重信","creatorNameLang":"ja"},{"creatorName":"OKAZAWA, SHIGENOBU","creatorNameLang":"en"}],"familyNames":[{"familyName":"岡澤","familyNameLang":"ja"},{"familyName":"OKAZAWA","familyNameLang":"en"}],"givenNames":[{"givenName":"重信","givenNameLang":"ja"},{"givenName":"SHIGENOBU","givenNameLang":"en"}]}]},"item_1617186476635":{"attribute_name":"Access Rights","attribute_value_mlt":[{"subitem_access_right":"open access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_abf2"}]},"item_1617186499011":{"attribute_name":"Rights","attribute_value_mlt":[{"subitem_rights":"Electronic version of an article published as International Journal of Computational Methods, 2012 09:01, https://doi.org/10.1142/S0219876212400129, © copyright World Scientific Publishing Company","subitem_rights_language":"en"},{"subitem_rights":"This is not the published version. Please cite only the published version.","subitem_rights_language":"en"},{"subitem_rights":"この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。","subitem_rights_language":"ja"}]},"item_1617186609386":{"attribute_name":"Subject","attribute_value_mlt":[{"subitem_subject":"Hermite reproducing kernel approximation","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"thin-plate bending problem","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Kirchhoff–Love hypothesis","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"geometrical nonlinearity","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"total Lagrangian method","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_1617186626617":{"attribute_name":"Description","attribute_value_mlt":[{"subitem_description":"This study analyzed thin-plate bending problems with a geometrical nonlinearity using the Hermite reproducing kernel approximation and sub-domain-stabilized conforming integration. In thin-plate bending analyses, the deflections and rotations satisfy so-called Kirchhoff mode reproducing conditions. It is then possible to solve large deflection analyses of thin plates, such as elastic bucking problems, with high accuracy and efficiency. Total Lagrangian method is applied to solve the geometrical nonlinearity of the thin plates' deflections and rotations. The Green–Lagrange strain and second Piola–Kirchhoff stress forms are adopted to represent the strains and stresses in the thin plates. Mathematical formulation and some numerical examples are also demonstrated.","subitem_description_language":"en"}]},"item_1617186643794":{"attribute_name":"Publisher","attribute_value_mlt":[{"subitem_publisher":"World Scientific Publishing","subitem_publisher_language":"en"}]},"item_1617186702042":{"attribute_name":"Language","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_1617187024783":{"attribute_name":"Page Start","attribute_value_mlt":[{"subitem_start_page":"1240012"}]},"item_1617187056579":{"attribute_name":"Bibliographic Information","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2012-03","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageStart":"1240012","bibliographicVolumeNumber":"9","bibliographic_titles":[{"bibliographic_title":"International Journal of Computational Methods","bibliographic_titleLang":"en"}]}]},"item_1617258105262":{"attribute_name":"Resource Type","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_1617265215918":{"attribute_name":"Version Type","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_ab4af688f83e57aa","subitem_version_type":"AM"}]},"item_1617353299429":{"attribute_name":"Relation","attribute_value_mlt":[{"subitem_relation_type":"isVersionOf","subitem_relation_type_id":{"subitem_relation_type_id_text":"https://doi.org/10.1142/S0219876212400129","subitem_relation_type_select":"DOI"}}]},"item_1617605131499":{"attribute_name":"File","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2025-01-28"}],"displaytype":"simple","filename":"IJCM_9_1240012.pdf","filesize":[{"value":"1.0 MB"}],"mimetype":"application/pdf","url":{"url":"https://hiroshima.repo.nii.ac.jp/record/2007090/files/IJCM_9_1240012.pdf"},"version_id":"5fa957e6-e0bc-4a72-bae8-c43094577d92"}]},"item_1732771732025":{"attribute_name":"旧ID","attribute_value":"56170"},"item_title":"NONLINEAR THIN-PLATE BENDING ANALYSES USING THE HERMITE REPRODUCING KERNEL APPROXIMATION","item_type_id":"40003","owner":"41","path":["1730444907710"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2025-01-28"},"publish_date":"2025-01-28","publish_status":"0","recid":"2007090","relation_version_is_last":true,"title":["NONLINEAR THIN-PLATE BENDING ANALYSES USING THE HERMITE REPRODUCING KERNEL APPROXIMATION"],"weko_creator_id":"41","weko_shared_id":-1},"updated":"2025-02-21T09:06:18.753295+00:00"}