ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文等

Predicting the Local Response of Metastatic Brain Tumor to Gamma Knife Radiosurgery by Radiomics With a Machine Learning Method

https://hiroshima.repo.nii.ac.jp/records/2006903
https://hiroshima.repo.nii.ac.jp/records/2006903
80cdce8e-ce8d-4b84-92dc-ff28f722b10c
名前 / ファイル ライセンス アクション
FrontOncol_10_569461.pdf FrontOncol_10_569461.pdf (977.2 KB)
Item type デフォルトアイテムタイプ_(フル)(1)
公開日 2023-03-18
タイトル
タイトル Predicting the Local Response of Metastatic Brain Tumor to Gamma Knife Radiosurgery by Radiomics With a Machine Learning Method
言語 en
作成者 Kawahara, Daisuke

× Kawahara, Daisuke

en Kawahara, Daisuke

Search repository
Tang, Xueyan

× Tang, Xueyan

en Tang, Xueyan

Search repository
Lee, Chung K.

× Lee, Chung K.

en Lee, Chung K.

Search repository
Nagata, Yasushi

× Nagata, Yasushi

en Nagata, Yasushi

Search repository
Watanabe, Yoichi

× Watanabe, Yoichi

en Watanabe, Yoichi

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利情報
権利情報 Copyright © 2021 Kawahara, Tang, Lee, Nagata and Watanabe. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
主題
主題Scheme Other
主題 radiomics
主題
主題Scheme Other
主題 machine learning
主題
主題Scheme Other
主題 brain metastases
主題
主題Scheme Other
主題 gamma knife
主題
主題Scheme Other
主題 radiosurgery
主題
主題Scheme Other
主題 local control
内容記述
内容記述 Purpose: The current study proposed a model to predict the response of brain metastases (BMs) treated by Gamma knife radiosurgery (GKRS) using a machine learning (ML) method with radiomics features. The model can be used as a decision tool by clinicians for the most desirable treatment outcome. Methods and Material: Using MR image data taken by a FLASH (3D fast, low-angle shot) scanning protocol with gadolinium (Gd) contrast-enhanced T1-weighting, the local response (LR) of 157 metastatic brain tumors was categorized into two groups (Group I: responder and Group II: non-responder). We performed a radiomics analysis of those tumors, resulting in more than 700 features. To build a machine learning model, first, we used the least absolute shrinkage and selection operator (LASSO) regression to reduce the number of radiomics features to the minimum number of features useful for the prediction. Then, a prediction model was constructed by using a neural network (NN) classifier with 10 hidden layers and rectified linear unit activation. The training model was evaluated with five-fold cross-validation. For the final evaluation, the NN model was applied to a set of data not used for model creation. The accuracy and sensitivity and the area under the receiver operating characteristic curve (AUC) of the prediction model of LR were analyzed. The performance of the ML model was compared with a visual evaluation method, for which the LR of tumors was predicted by examining the image enhancement pattern of the tumor on MR images. Results: By the LASSO analysis of the training data, we found seven radiomics features useful for the classification. The accuracy and sensitivity of the visual evaluation method were 44 and 54%. On the other hand, the accuracy and sensitivity of the proposed NN model were 78 and 87%, and the AUC was 0.87. Conclusions: The proposed NN model using the radiomics features can help physicians to gain a more realistic expectation of the treatment outcome than the traditional method.
言語 en
内容記述
内容記述タイプ Other
内容記述 The portions of the current study were presented as an e-poster at the 19th Leksell Gamma Knife Society Meeting, Dubai, UAE, March 4–8, 2018, and as a short oral talk at the 2019 ASTRO Annual Meeting, Chicago, IL, September 15–18, 2019.
出版者
出版者 Frontiers Media
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
関連情報
識別子タイプ DOI
関連識別子 10.3389/fonc.2020.569461
関連情報
識別子タイプ PMID
関連識別子 33505904
関連情報
識別子タイプ DOI
関連識別子 https://doi.org/10.3389/fonc.2020.569461
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 2234-943X
開始ページ
開始ページ 569461
書誌情報 Frontiers in Oncology
Frontiers in Oncology

巻 10, p. 569461, 発行日 2021-01-11
旧ID 50459
戻る
0
views
See details
Views

Versions

Ver.1 2025-02-21 03:35:25.486801
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3