Item type |
デフォルトアイテムタイプ_(フル)(1) |
公開日 |
2024-12-17 |
タイトル |
|
|
タイトル |
Analysis of dynamic stress concentration problems employing spline-based wavelet Galerkin method |
|
言語 |
en |
作成者 |
Tanaka, Satoyuki
Sannomaru, Shogo
Imachi, Michiya
Hagihara, Seiya
Okazawa, Shigenobu
Okada, Hiroshi
|
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
権利情報 |
|
|
言語 |
en |
|
権利情報 |
© <2015>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ |
権利情報 |
|
|
言語 |
en |
|
権利情報 |
This is not the published version. Please cite only the published version. |
権利情報 |
|
|
言語 |
ja |
|
権利情報 |
この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。 |
主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Wavelet Galerkin method |
主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Meshfree method |
主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Dynamic analysis |
主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
X-FEM |
主題 |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Stress intensity factor |
内容記述 |
|
|
内容記述 |
Two-dimensional (2D) dynamic stress concentration problems are analyzed using the wavelet Galerkin method (WGM). Linear B-spline scaling/wavelet functions are employed. We introduce enrichment functions for the X-FEM to represent a crack geometry. In the WGM, low-resolution scaling functions are periodically located across the entire analysis domain to approximate deformations of a body. High-resolution wavelet functions and enrichment functions including crack tip singular fields are superposed on the scaling functions to represent the severe stress concentration around holes or crack tips. Heaviside functions are also enriched to treat the displacement discontinuity of the crack face. Multiresolution analysis of the wavelet basis functions plays an important role in the WGM. To simulate the transients, the wavelet Galerkin formulation is discretized using a Newmark-β time integration scheme. A path independent J-integral is adopted to evaluate the dynamic stress intensity factor (DSIF). We solve dynamic stress concentration problems and evaluate DSIF of 2D cracked solids. The accuracy and effectiveness of the proposed method are discussed through the numerical examples. |
|
言語 |
en |
内容記述 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
This research was partially supported by the Grant for Young Researchers from the JGC-S Scholarship Foundation. This work was performed under the Cooperative Research Program of Institute for Joining and Welding Research Institute, Osaka University. |
|
言語 |
en |
出版者 |
|
|
出版者 |
Elsevier |
|
言語 |
en |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
出版タイプ |
|
|
出版タイプ |
AM |
|
出版タイプResource |
http://purl.org/coar/version/c_ab4af688f83e57aa |
関連情報 |
|
|
関連タイプ |
isVersionOf |
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
https://doi.org/10.1016/j.enganabound.2015.04.003 |
開始ページ |
|
|
開始ページ |
129 |
書誌情報 |
en : Engineering Analysis with Boundary Elements
巻 58,
p. 129-139,
発行日 2015-04-30
|
旧ID |
55868 |