ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文等

Image synthesis with deep convolutional generative adversarial networks for material decomposition in dual-energy CT from a kilovoltage CT

https://hiroshima.repo.nii.ac.jp/records/2006704
https://hiroshima.repo.nii.ac.jp/records/2006704
cec5dc5e-8e54-4bb2-9b36-2a8a8f04826d
名前 / ファイル ライセンス アクション
ComputBiolMed_128_104111.pdf ComputBiolMed_128_104111.pdf (962.8 KB)
Item type デフォルトアイテムタイプ_(フル)(1)
公開日 2023-03-18
タイトル
タイトル Image synthesis with deep convolutional generative adversarial networks for material decomposition in dual-energy CT from a kilovoltage CT
言語 en
作成者 Kawahara, Daisuke

× Kawahara, Daisuke

en Kawahara, Daisuke

Search repository
Saito, Akito

× Saito, Akito

en Saito, Akito

Search repository
Ozawa, Shuichi

× Ozawa, Shuichi

en Ozawa, Shuichi

Search repository
Nagata, Yasushi

× Nagata, Yasushi

en Nagata, Yasushi

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利情報
権利情報 © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
権利情報
権利情報 This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。
主題
主題Scheme Other
主題 Deep learning
主題
主題Scheme Other
主題 Medical imaging
主題
主題Scheme Other
主題 Artificial intelligence
主題
主題Scheme Other
主題 Dual-energy CT
主題
主題Scheme Other
主題 Material decomposition
内容記述
内容記述 Generative Adversarial Networks (GANs) have been widely used and it is expected to use for the clinical examination and image. The objective of the current study was to synthesize material decomposition images of bone-water (bone(water)) and fat-water (fat(water)) reconstructed from dual-energy computed tomography (DECT) using an equivalent kilovoltage-CT (kV-CT) image and a deep conditional GAN. The effective atomic number images were reconstructed using DECT. We used 18,084 images of 28 patients divided into two datasets: the training data for the model included 16,146 images (20 patients) and the test data for evaluation included 1938 images (8 patients). Image prediction frameworks of the equivalent single energy CT images at 120 kVp to the effective atomic number images were created. The image-synthesis framework was based on a CNN with a generator and discriminator. The mean absolute error (MAE), relative mean square error (MSE), relative root mean square error (RMSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and mutual information (MI) were evaluated. The Hounsfield unit (HU) difference between the synthesized and reference material decomposition images of bone(water) and fat(water) were within 5.3 HU and 20.3 HU, respectively. The average MAE, MSE, RMSE, SSIM, and MI of the synthesized and reference material decomposition of the bone(water) images were 0.8, 1.3, 0.9, 0.9, 55.3, and 0.8, respectively. The average MAE, MSE, RMSE, SSIM, and MI of the synthesized and reference material decomposition of the fat(water) images were 0.0, 0.0, 0.1, 0.9, 72.1, and 1.4, respectively. The proposed model can act as a suitable alternative to the existing methods for the reconstruction of material decomposition images of bone(water) and fat(water) reconstructed via DECT from kV-CT.
言語 en
出版者
出版者 Elsevier
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
出版タイプ
出版タイプ AO
出版タイプResource http://purl.org/coar/version/c_b1a7d7d4d402bcce
関連情報
識別子タイプ DOI
関連識別子 10.1016/j.compbiomed.2020.104111
関連情報
識別子タイプ PMID
関連識別子 33279790
関連情報
識別子タイプ DOI
関連識別子 https://doi.org/10.1016/j.compbiomed.2020.104111
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 0010-4825
開始ページ
開始ページ 104111
書誌情報 Computers in Biology and Medicine
Computers in Biology and Medicine

巻 128, p. 104111, 発行日 2021-01
旧ID 50458
備考 Post-print version/PDF may be used in an institutional repository after an embargo period of 12 months.
戻る
0
views
See details
Views

Versions

Ver.1 2025-02-21 03:29:34.188954
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3