{"created":"2025-02-21T01:25:25.644300+00:00","id":2005861,"links":{},"metadata":{"_buckets":{"deposit":"d08fd9de-941c-4a75-96a3-60a0702531b6"},"_deposit":{"created_by":41,"id":"2005861","owner":"41","owners":[41],"pid":{"revision_id":0,"type":"depid","value":"2005861"},"status":"published"},"_oai":{"id":"oai:hiroshima.repo.nii.ac.jp:02005861","sets":["1730444908512:1730444916333"]},"author_link":[],"item_1617186331708":{"attribute_name":"Title","attribute_value_mlt":[{"subitem_title":"Topological Aspects of Classical and Quantum(2+1)-dimensional Gravity","subitem_title_language":"en"},{"subitem_title":"古典及び量子(2+1)次元重力の位相的側面","subitem_title_language":"ja"}]},"item_1617186419668":{"attribute_name":"Creator","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"早田, 次郎","creatorNameLang":"ja"},{"creatorName":"Soda, Jiro","creatorNameLang":"en"}],"familyNames":[{"familyName":"早田","familyNameLang":"ja"},{"familyName":"Soda","familyNameLang":"en"}],"givenNames":[{"givenName":"次郎","givenNameLang":"ja"},{"givenName":"Jiro","givenNameLang":"en"}]}]},"item_1617186476635":{"attribute_name":"Access Rights","attribute_value_mlt":[{"subitem_access_right":"open access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_abf2"}]},"item_1617186499011":{"attribute_name":"Rights","attribute_value_mlt":[{"subitem_rights":"Copyright(c) by Author"}]},"item_1617186609386":{"attribute_name":"Subject","attribute_value_mlt":[{"subitem_subject":"420","subitem_subject_scheme":"NDC"}]},"item_1617186626617":{"attribute_name":"Description","attribute_value_mlt":[{"subitem_description":"In order to understand (3+1)-dimensional gravity, (2+1)-dimensional gravity is studied as a toy model. Our emphasis is on its topological aspects, because (2+1)-dimensional gravity without matter fields has no local dynamical degrees of freedom. Starting from a review of the canonical ADM formalism and York's formalism for the initial value problem, we will solve the evolution equations of (2+1)-dimensional gravity with a cosmological constant in the case of g = 0 and g = 1, where g is the genus of Riemann surface. The dynamics of it is understood as the geodesic motion in the moduli space. This remarkable fact is the same with the case of (2+1)-dimensional pure gravity and seen more apparently from the action level. Indeed we will show the phase space reduction of (2+1)-dimensional gravity in the case of g = 1. For g ≥ 2, unfortunately we are not able to explicitly perform the phase space reduction of (2+1)-dimensional gravity due to the complexity of the Hamiltonian constraint equation. Based on this result, we will attempt to incorporate matter fields into (2+1)-dimensional pure gravity. The linearization and mini-superspace methods are used for this purpose. By using the linearization method, we conclude that the transverse-traceless part of the energy-momentum tensor affects the geodesic motion. In the case of the Einstein-Maxwell theory, we observe that the Wilson lines interact with the geometry to bend the geodesic motion. We analyze the mini-superspace naoclel of (2+1)-dimensional gravity with the matter fields in the case of g = 0 and y = 1. For g = 0, a wormhole solution is found but for g = 1 we can not find an analogous solution. Quantum gravity is also considered and we succeed to perform the phase space reduction of (2+1)-dimensional gravity in the case of g = 1 at the quantum level. From this analysis we argue that the conformal rotation is not necessary in the sense that the Euclidean quantum gravity is inappropriate for the full gravity.","subitem_description_language":"en"},{"subitem_description":"ABSTRACT / p3 CONTENTS / p4 1 Introduction / p5 2 ADM Canonical Formalism / p9 3 York's Formalism / p13 4 Evolution of the Geometry / p17 5 Phase Space Reduction / p23 6 Linearized Gravity / p27 7 Mini-superspace / p31 8 Quantum Gravity / p35 9 Conclusion / p44 Appendix A / p46 Appendix B / p48 Appendix C / p54","subitem_description_type":"TableOfContents"}]},"item_1617186702042":{"attribute_name":"Language","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_1617186819068":{"attribute_name":"Identifier Registration","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.11501/2964193","subitem_identifier_reg_type":"JaLC"}]},"item_1617187024783":{"attribute_name":"Page Start","attribute_value_mlt":[{"subitem_start_page":"1"}]},"item_1617187056579":{"attribute_name":"Bibliographic Information","attribute_value_mlt":[{"bibliographicPageStart":"1"}]},"item_1617187087799":{"attribute_name":"Dissertation Number","attribute_value_mlt":[{"subitem_dissertationnumber":"甲第831号"}]},"item_1617187112279":{"attribute_name":"Degree Name","attribute_value_mlt":[{"subitem_degreename":"博士(理学)","subitem_degreename_language":"ja"},{"subitem_degreename":"Physical Science","subitem_degreename_language":"en"}]},"item_1617187136212":{"attribute_name":"Date Granted","attribute_value_mlt":[{"subitem_dategranted":"1990-03-26"}]},"item_1617258105262":{"attribute_name":"Resource Type","attribute_value_mlt":[{"resourcetype":"doctoral thesis","resourceuri":"http://purl.org/coar/resource_type/c_db06"}]},"item_1617265215918":{"attribute_name":"Version Type","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_be7fb7dd8ff6fe43","subitem_version_type":"NA"}]},"item_1617353299429":{"attribute_name":"Relation","attribute_value_mlt":[{"subitem_relation_name":[{"subitem_relation_name_text":"・A. Hosoya and J. Soda, Mod. Phys. Lett. A4 (1989) 2539,"}],"subitem_relation_type":"references"},{"subitem_relation_name":[{"subitem_relation_name_text":"・J. Soda, to be published in Prog. Theor. Phys. Vol.83 No.4 (April),"}],"subitem_relation_type":"references"},{"subitem_relation_name":[{"subitem_relation_name_text":"・Y. Fujiwara and J. Soda, to be published in Frog. Theor. Phys. Vol.83 No.4 (April)."}],"subitem_relation_type":"references"},{"subitem_relation_type":"references","subitem_relation_type_id":{"subitem_relation_type_id_text":"http://dx.doi.org/10.1142/S0217732389002847","subitem_relation_type_select":"DOI"}},{"subitem_relation_type":"references","subitem_relation_type_id":{"subitem_relation_type_id_text":"http://dx.doi.org/10.1143/PTP.83.805","subitem_relation_type_select":"DOI"}},{"subitem_relation_type":"references","subitem_relation_type_id":{"subitem_relation_type_id_text":"http://dx.doi.org/10.1143/PTP.83.733","subitem_relation_type_select":"DOI"}}]},"item_1617605131499":{"attribute_name":"File","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2023-03-18"}],"displaytype":"simple","filename":"diss_ko831.pdf","filesize":[{"value":"23.9 MB"}],"mimetype":"application/pdf","url":{"objectType":"fulltext","url":"https://hiroshima.repo.nii.ac.jp/record/2005861/files/diss_ko831.pdf"},"version_id":"83a69540-0950-4120-ad58-b96169413963"}]},"item_1617944105607":{"attribute_name":"Degree Grantor","attribute_value_mlt":[{"subitem_degreegrantor":[{"subitem_degreegrantor_language":"ja","subitem_degreegrantor_name":"広島大学"}],"subitem_degreegrantor_identifier":[{"subitem_degreegrantor_identifier_name":"15401","subitem_degreegrantor_identifier_scheme":"kakenhi"}]},{"subitem_degreegrantor":[{"subitem_degreegrantor_language":"en","subitem_degreegrantor_name":"Hiroshima University"}]}]},"item_1732771732025":{"attribute_name":"旧ID","attribute_value":"31751"},"item_title":"Topological Aspects of Classical and Quantum(2+1)-dimensional Gravity","item_type_id":"40003","owner":"41","path":["1730444916333"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2023-03-18"},"publish_date":"2023-03-18","publish_status":"0","recid":"2005861","relation_version_is_last":true,"title":["Topological Aspects of Classical and Quantum(2+1)-dimensional Gravity"],"weko_creator_id":"41","weko_shared_id":-1},"updated":"2025-02-21T01:25:40.953259+00:00"}