{"created":"2025-02-13T05:05:10.098444+00:00","id":2000288,"links":{},"metadata":{"_buckets":{"deposit":"7f58ac2c-d186-421c-a20a-c6e6d2342f95"},"_deposit":{"created_by":41,"id":"2000288","owners":[41],"pid":{"revision_id":0,"type":"depid","value":"2000288"},"status":"published"},"_oai":{"id":"oai:hiroshima.repo.nii.ac.jp:02000288","sets":["1730444918938"]},"author_link":[],"control_number":"2000288","item_1617186331708":{"attribute_name":"Title","attribute_value_mlt":[{"subitem_title":"Pauli原理とSlater行列式","subitem_title_language":"ja"}]},"item_1617186419668":{"attribute_name":"Creator","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"山崎, 勝義","creatorNameLang":"ja"},{"creatorName":"Yamasaki, Katsuyoshi","creatorNameLang":"en"}],"familyNames":[{"familyName":"山崎","familyNameLang":"ja"},{"familyName":"Yamasaki","familyNameLang":"en"}],"givenNames":[{"givenName":"勝義","givenNameLang":"ja"},{"givenName":"Katsuyoshi","givenNameLang":"en"}]}]},"item_1617186476635":{"attribute_name":"Access Rights","attribute_value_mlt":[{"subitem_access_right":"open access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_abf2"}]},"item_1617186499011":{"attribute_name":"Rights","attribute_value_mlt":[{"subitem_rights":"Copyright (c) 2024 by Author","subitem_rights_language":"en"}]},"item_1617186609386":{"attribute_name":"Subject","attribute_value_mlt":[{"subitem_subject":"Pauli原理","subitem_subject_language":"ja","subitem_subject_scheme":"Other"},{"subitem_subject":"Slater行列式","subitem_subject_language":"ja","subitem_subject_scheme":"Other"},{"subitem_subject":"反対称化波動関数","subitem_subject_language":"ja","subitem_subject_scheme":"Other"},{"subitem_subject":"射影演算子","subitem_subject_language":"ja","subitem_subject_scheme":"Other"},{"subitem_subject":"430","subitem_subject_scheme":"NDC"}]},"item_1617186626617":{"attribute_name":"Description","attribute_value_mlt":[{"subitem_description":"分子の電子状態の記述において,Pauliの原理を満足する固有関数(=反対称化波動関数)を表現するためにSlater行列式を用いるのは量子化学における常識である。しかし,多くの物理化学の教科書では,一般的なn電子系に対するSlater行列式が示されるのみで,具体的に行列式を組み上げたり,行列式を展開した結果を見る機会がないまま,単に\"便利がいい物\"という紹介で終わることが少なくない。このため,Slater行列式という言葉は知っていても道具として使えない状況に陥り,結果的に,量子化学の楽しみ方がわからなくなることが多いようである。本書は,Slater行列式が,軌道関数とスピン関数を同時に扱いながらPauli原理(=Fermi粒子の交換による反対称化)をきちんと満足する固有関数を与えるための素晴らしい武器であるということを理解するために書かれたmonographである。","subitem_description_language":"ja","subitem_description_type":"Abstract"},{"subitem_description":"第10版第1刷","subitem_description_language":"ja","subitem_description_type":"Other"}]},"item_1617186643794":{"attribute_name":"Publisher","attribute_value_mlt":[{"subitem_publisher":"漁火書店","subitem_publisher_language":"ja"}]},"item_1617186660861":{"attribute_name":"Date","attribute_value_mlt":[{"subitem_date_issued_datetime":"2024-08-25","subitem_date_issued_type":"Created"}]},"item_1617186702042":{"attribute_name":"Language","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_1617258105262":{"attribute_name":"Resource Type","attribute_value_mlt":[{"resourcetype":"book","resourceuri":"http://purl.org/coar/resource_type/c_2f33"}]},"item_1617265215918":{"attribute_name":"Version Type","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_1617353299429":{"attribute_name":"Relation","attribute_value_mlt":[{"subitem_relation_name":[{"subitem_relation_name_language":"ja","subitem_relation_name_text":"第2版第4刷(2004)"}]},{"subitem_relation_name":[{"subitem_relation_name_language":"ja","subitem_relation_name_text":"第6版第10刷(2008)"}]},{"subitem_relation_name":[{"subitem_relation_name_language":"ja","subitem_relation_name_text":"第6版第12刷(2014)"}]},{"subitem_relation_name":[{"subitem_relation_name_language":"ja","subitem_relation_name_text":"第6版第13刷(2016)"}]},{"subitem_relation_name":[{"subitem_relation_name_language":"ja","subitem_relation_name_text":"第6版第17刷(2018)"}]},{"subitem_relation_name":[{"subitem_relation_name_language":"ja","subitem_relation_name_text":"第6版第18刷(2019)"}]},{"subitem_relation_name":[{"subitem_relation_name_language":"ja","subitem_relation_name_text":"第7版第1刷(2021)"}]},{"subitem_relation_name":[{"subitem_relation_name_language":"ja","subitem_relation_name_text":"第7版第3刷(2022)"}]},{"subitem_relation_name":[{"subitem_relation_name_language":"ja","subitem_relation_name_text":"第8版第1刷(2023)"}]},{"subitem_relation_name":[{"subitem_relation_name_language":"ja","subitem_relation_name_text":"第9版第1刷(2024)"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"http://home.hiroshima-u.ac.jp/kyam/pages/results/monograph/","subitem_relation_type_select":"URI"}}]},"item_1617605131499":{"attribute_name":"File","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2025-05-09"}],"filename":"RefSlater_10(1).pdf","filesize":[{"value":"1003 KB"}],"format":"application/pdf","mimetype":"application/pdf","url":{"objectType":"fulltext","url":"https://hiroshima.repo.nii.ac.jp/record/2000288/files/RefSlater_10(1).pdf"},"version_id":"1542e4cd-b860-438e-a492-2e54ab484185"}]},"item_title":"Pauli原理とSlater行列式","item_type_id":"40003","owner":"41","path":["1730444918938"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2025-05-09"},"publish_date":"2025-05-09","publish_status":"0","recid":"2000288","relation_version_is_last":true,"title":["Pauli原理とSlater行列式"],"weko_creator_id":"41","weko_shared_id":-1},"updated":"2025-05-09T04:37:49.283732+00:00"}