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1 Introduction

Since Granger's (1969) definition on causality between economic time
series proposed, the so-called Granger causality test has been attracting
many researchers in both theoretical and empirical aspects. In 1970’s, the
causality test was established mainly in the framework of stationary?
autoregressive (VAR) processes, based on the approach of Box and Jenkins
(1976), and as a result, the standard asymptotic theory® based on
asymptotic normality was applied to usual test statistics known as Wald
tests. This approach which uses a stationary VAR was verified by the
empirical belief that many economic time series are not stationay in levels
of the original time series but can be transformed to stationary ones by
differencing or detrending.

The remarkble development of statistical inferences for nonstationary

time series from the late 1970’s suggested the possibility that even the

1) It may be appropriate that the term ‘stationarity’ we use here is refered as ‘weak
one’ than ‘strong one’.

2) The most essential requirement to make this theory hold is not ‘stationarity’ but
‘regurality’. See Grenander and Rosenblatt (1957) etc. for example.
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Granger causality may be tested using level series under VAR modeling in
which some unit toots are postulated to exist. On the other hand, the
concept of cointegration formulated by Engle and Granger (1987) etc.
revealed the situations in which individual time series considered are
integrated of an order (i.e. have nonstationarity caused by one unit root)
but some linear combinations of those are stationay. The so-called the
Granger Representation Theorem (GRT) of Engle and Granger (1987)
states that modelling under such a situation should be done based on either
a VAR representation in levels of the orginal series or the error correction
model (ECM) derived equivalently from it. In other words, any cointegrated
system of time series cannot be transformed to a stationary VAR by
differencing. The ECM consists of stationay series only; that is, such linear
combinations called cointegarating relations and first differences.
Numerous literatures have studied the inferences on cointegration
theoretically and empirically, and as a result those on the VAR or ECM
framework have got the reputation of being most general and desirable:
Sims et al. (1990)’s OLS in the VAR (often referred as the unrestricred VAR)
and Johansen (1988)’s ML in the ECM.

Those developments based on the inference theory for nonstationary
time series and the concept of cointegration or error correction suggested
the possibility that the Granger causality may be tested using level seies
under VAR modeling in which some unit roots are postulated to exist, and
the consideration of this matter drives us into a new testing procedure for
Granger causality. Toda and Phillips (1993) tried to discuss Granger
causality tests in the general framework of VAR's in which the presence of
unit roots and cointegration is considered. More concretely, they replaced
stationay VAR'’s used in 1970’s by VAR’s with a unit root (the unrestricted
levels VAR’s in terms of Sims et al. (1990)) and ECM’s, and investigated
statistical properties of the Wald statistics to test null hypotheses of the



absence of Granger causality under both models. In the paper, the vector
time sries system which are the target of the analysis is panitioned‘into
three subsystems and Granger causality between two subsystems of them
is dealt with. In levels VAR’s whose individual series are supposed to be
stationary after differencing once and are thought to be models for level
series themselves, the Wald test are simply constructed based on OLS
estimation for coefficient parameters. On the other hand, in ECM’s the
Wald tests are more complex in structure because the null hypothesis is
not expressed simply by linear restrictions of the coefficients and it may be
redundant in some cases. Estimation for coefficients are made by not OLS
but Johansen's (1988) style of ML method, as stated already.

The main purpose of Toda and Phillips (1993) was to evaluate their Wald
tests asymptotically. They conclude that under cointegrated VAR system,
the Wald tests asymptotically follow y? distribution under the nuil of the
absence of Granger causality if some conditions on the parameters are
imposed. That is, their results are restrictive in the sense that there exist
many situations which are not valid to use those tests based on %2 critical
values. Particularly, in the unrestricted levels VAR, the deviation from %2
was more serious.

The purpose of the present paper is to establish a valid Granger causality
test under the same framework of Toda and Phillips (1993) without
imposing any condition on the parameters. Qur argurnents are developed in
ECM’s, taking account of that VAR’s are redundant on the parameters
concerning to the cointegration. Therefore, our testing method will be
constructed based on Johansen’s (1988) ML estimation. Unlike Toda and
Phillips (1993), the system considered is always to be cointegrated since
the cases which are not cointegrated corresponds not to ECM's but to
stationary VAR’s for differenced series and the analysis for such a series is

conventional within the framework of Box and Jenkins (1976). The ECM’s
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parameter we must noticeably pay attention to in both Johansen’s (1988)
ML estimation and our testing method is the cointegrating matrix which
consists of all linearly independent cointegrating vectors. Before we get to
estimating the cointegrating matrix, the rank of the cointegrating matrix,
named the coitegrating rank, need to be first decided via some statistical
procedure or pretested usually by Johansen’s (1988) likelihood ratio test.
As some elaboration to actualize our purpose, we introduce another form
of the cointegrating matrix derived by an orthogonal transformation of its
original one, so that the null hypothesis is expressed by some linear
restrictions on the parameters. Along that line, as the estimator of the
cointegrating matrix we use not Johansen’s (1988) one but an orthogonal
transformation of it. One of the characteristics of our testing method is that
in order to decide the rank of a submatrix of the matrix transformed from
the Johansen's (1988) estimator of the cointegrating matrix, another pretest
need to be executed. Given an estimator of the rank, our testing method
can be constructed using it as a usual Wald test for a linear hypothesis. We
prove that both the pretest to decide the rank and our Granger causality
test following it are asymptotically valid as %2 criterion. An emphasized

matter is that those resuits are established without imposing any condition
» on the ECM’s parameters.

The remained part of the present paper is as follows. Sections 2 and 3
play the role of some preliminaries, in which the models, notations and
assumptions for the paper are introduced to formulate our hypothesis and
some fundamental statistics and asymptotic results are also presented.
Section 4 discusses the above-mentioned pretests. Qur Granger causality
test, based on the pretests, is provided in section 5. Asymptotic properties
of those are presented in each of sections 4 and 5. }n section 6 we give
some remarks and implications on the testing method proposed in this

paper. Featuring different special cases explains why the asymptotic



validity of our method holds unconditionally unlike Toda and Phillips’
(1993) one. Section 7 concludes the paper. Some of the proofs for theorems

and lemmas presented in this paper are placed in the appendix.
2 The model and formulation of Granger noncausality

In what follows, we shall consider the k-dimensional vector time series
{y:) generated by the p-th order VAR model, which is supposed to be the
same one as that of Toda and Phillips (1993) except for some differences in
notation, i. e. '

yt=£1Ajyt_j+€t vt>1, (1)

j=

where {&} is an iid sequence of k-dimensional random vectors with mean
zero and nonsingular covariance matrix A, such that E [ €; [**9 < o for
some 0 > 0 with the i-th element of g, €, 7 = 1, ..., k. It is also assumed that
Ay is stationary (in weak sense) for any 1 = 1, ..., k, where ¥y is the ith
element of ; and A denotes the first differenced operator, i. e. Ayi = Y.
Defining

AW =L-X 4,

i1

with the notation I, denoting the n X n identity matrix for any positive
integer n and a complex number A, this implies that the robt ofdet A () =
0 is confined to one such that either | A 1> 1 or A = 1, and requires some
initial condition on y,. We shall impose an assumption on the intial values
Yo, ¥, ---, Yp1} SO that those do not affect asymptotic results; for example,
those initial values are supposed to be constant vectors. Furthermore, the
present paper assumes that y, is cointegrated in the sense of Engle and
Granger’s (1987) formulation. (1) is the data-generating process for this
paper.

As shown in Engle and Granger (1987) or Johansen (1988), from the VAR
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representation as the data-generating process (1), we can derive the

equivalent ECM
1 .
Ay, = ZI‘HJ(AZIH)—A(I)M.H&, vt>1, (2)
7

where [;=-%} 1 An,d=1,...,p-1,and A (1) = I, - X%, A;. With (2), we
make other assumptions embodying that ¥, is cointegrated, which are also
put in Toda and Phillips (1993):

AD=-af (3)
where ocand 8% are k X r matrices of full column rank r, with 1 <r<k-1.
rank ST (D) y=s = k-, (4)

where 7 is given as the rank of a or § in (3) and § and yare k¥ X s matrix of

full column rank s such that
1
8’a=0='y’, ﬂ, H(l) =1 - > Hj.
I

(3) and (4) just imply that the cointegrating rank and the cointegrating
matrix are r and f8 respeciively. Throughout the paper, » (or s) is assumed
to known. Notice that a statistical method ‘to estimate’ r is a consecutive
application of Johansen’s (1988) likelihood ratio tests we mentioned
already.

Now, consider how Granger noncausality can be expressed by the
parameters in (2). Suppose that our interest is in Granger causality from
the first k; elements of y, to the last k3 elements of y,, with positive integers
ki, ks and a nonnegative integer k: such that k, + k2 + ks = k. For

convenience, we introduce some notations to partition the system; that is,

3) The decomposition of A (1) into a@ and # is not unique. The expression of fi
can be freely chosen in later discussion as long as it satisfies the conditions stated
in (3).



letting ke=k +keand k,. = ks + ka, write

yo(1) & (1)
Y (%)
=l ©.2) |= &= &(2) |,
. (3)
y:(3) _ £(3)

with k; X 1vectorsy, (i) and & (2),1 =1, 2, 3, and a k- X 1 vector y, (*¥),
B =[B=Bs), a=loi oC.]; ¥ =[y=, 3,

where B4} is 7 X ke, Biis 7 X ks, 0qisky X 7, O iS ki X 7, yaiS 7 X fou

andysisr X ks,

I;A, =) 15;(1,3)
H.i = ’ j= 1; oeey p'ls
I (++, #4) I (++, 3)

where IT; (1) is k; X ke, TL; (1, 3) is ky X ks, I1; (++,%%) is kv X k= and IT;
(++, 3) is k.. X k3. We must note here that the partition of y; into two
subsystems, i. e. the case in which y« = y1, (therefore k« = ki), is also
included in the above partition of y, into three systems. Using parts of the
above notations, the first k; equations of (2) are written as

1
By (D) =% T, #0), Ay () + 0 B ya ()

Jj=
1
+’§_1 (L, 3) Ay (3) + o B (3 + £ (1),
p:

for all ¢ 2 1. Moreover, this is rewritten as

Ay =GCx(+Fx@)+&(), Vi1, (5)
where
G’ = [L(L, #), ..., (L, #%), a1 Ba], 2(+%) = [Aya(),
weey DYipn(¥) Yia(9)],

F'= [nl(ly 3)1 R n}*‘(L 3)1‘11 ﬂsly xl(3) = [Ay;.1(3), ey Ayl’-ﬂ+1(3)y;-1(3)]'
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Following the notion proposed by Grangér (1969), the null hypothesis of
the absence of causality from y; (1) to : (3) is formulated as

Hy:F=0. (6)

Notice that F' = 0 is a nonlinear hypothesis on parameters because it
contains a; 3 = 0 and such ‘nonlinearity’ causes difficulty for Granger
causelity test which Toda and Phillips (1993) has just faced.

Now, we shall discuss another form of the cointegrating matrix and
another formulation for the null based on it. Hereafter, let the notation diag
{vi, -.., v».) denote a m X m diagonal matrix which possesses v; as the i-th
diagonal element. LetLand A;, 7 = 1, ..., v, be an orthogonal matrix of » X r

and real numbers such that
L’ﬁéﬂaf.:diag {}»1, cery Xr}, 0S7\,1_<.}\,2$"‘S)\¢. (7)

1t is ensured that there exist such Land A;, © = |, ..., 7, because A; j = 1, ..., i,
are the 1 smallest eigenvalues of 8585, 1 < i <7, and the columns of L are
the corresponding eigenvectors. Let us write the rank of §; as 7:. Then it is

confirmed that 0 2 73 2 m4, with m, = min {r, ks}. Also, let

Ya=r-13 B=pL, fu=p=L,
Bs=PBsL, a=aL,on=aolL.

Furthermore, note that r = 7« > m,, with ms = max {0, ks - r}. Note that the
cointegrating rank r is not only the rank of 8but also that of B, i. e. rank =
r. For the case in which0 <73 <7, notethat A;=0,4=1,...r«and ;> 0, ¢ =
7w +1, ..., 7w + 73 = 7. Therefore, for this case, we can partition B«, B and &,

as

,

Bo = [Ber, w, Besa), Ba=1[0,Bs3], @1 =1[ay»), @), (8)

- with rank, Ba 3 = 73, where Bew iS ke X 7o, Bz is ke X 13, Ba3is Ka X 73,81,



isk; X reanddizis ki X 73 rank Bss = 13 requires 73 < k.

Some careful c/onsideration for 7« need be done. Since rank B = rank B =
7, all the column vectors are linearly independent of B, the first 7= column
vectors of B for the case in which 0 < 73 < 7 are also linearly independent. In
other words, the k X 7w matrix [fi s, 0]” constructed by those column
vectors is the column-full rank. This requires that rank Bws = r«, therefore
7+ < kw. The thing noted in this case is that for any k= X 1 vector b which is
linearly independent from all the column vectors in Bus, by (*+) is not

stationary, since all the cointegrating relations are expressed as

o Berse O:I ':y,(**):l.
1 =P+ 3] t= - -
Polbmfily [ﬁ*':s Paal Lu(3)

It is obvious that the case in which 73 = 0 corresponds to the case in which
Bs = 0. Under this case, let us define y, = ¥ (*¥) and B = Bw«. This case
confines the cointegrating relations to one spanned by Bis« y: (++). From
the above notices, we can assert that r« is the cointegrating rank of the
subsystem {y; (++)} and therefore 7= < k« — 1. Hereafter, let us define B3,
Bss and @3 for the case in which 73 = r (in other words, 7+ = 0) as Brg = P,
Bz =psand &5 = &,

It is easy to check that

oaBi=onLL Bi= (71[-33 = 0u3Bsa,

which in turn says that a, 83 = 0 is equivalent to &3 = 0 unless 3 = 0,

recalling that rank B33 = 13 > ks. Now define A and B as

A= (1,3), .., a (A, 3), mal ifrs>0,
A"=[(1, 3), ..., Tpa (1,3) ifr3=0,
B'=[IL(1,), ..., (1), &),
Ti () = [Ayis (49, oy DYipar (+4), Yia () B,



A TESTING METHOD FOR GRANGER CAUSALITY IN COINTEGRATED
— 58 — TIME SERIES SYSTEMS

Z0(3) = [AY1 (D), vy AYipa1 (), Y1 (B) Basl,

using IT; (1, 3), IT; (1,%%), yu; (**) and y.; (3) given already. Then (5) is

rewritten as
Ap (D) =BT ++ A" Z(3) +&(1), Vi 1. (9)

Under (9) the formulation for the null of Granger noncausality is naturally

expressed as
Hy:A=0. (10)

Notice that the hopothesis A = 0 is ‘linear’ unlike F = 0. It should be also
noticed that in the case in which 3 = 0, we do not need to care
cointegration or more concretely the error correction terms to
formulate/test Granger noncausality. Thus we see that to check whether 73

=0 holds or nbt before testing Granger causlity is particularly important.
3 Some statistics and fundamental asymptotic results

This section discusses some statistics and related asymptotic properties
needed for both the pretest and Granger causality proposed in this paper.
First, suppose that the symbols —, and —,; denote convergence in
probability and convergence in distribution respectively as the sample size
T goes to <. Also, letB drenote the Johansen’s (1988) type of ML
estimator? of the cointegrating matrix. That is, suppose that [yj, ..., ¥7] is
given as the observations of y, with the sample size T. Using the notations

on observable matrices expressed as

)

4) The ECM in this paper (2) is slightly different from that of Johansen (1988) and
therefore B is also so. However, the difference can be negligible and we can

consider that our estimator is essentially the same as that in Johansen (1988).



Aypn Y% Ayp - Ays
AY= : , Ya= : , Wa=| ,
Ayr Y1 Ayri... Ayrpa

My =Irp - Wa (Wi W' Wi, Su=YaMyYa/T, Su=(AY)Y My Y,
Sw=(AY)Y My(AY), Siw="Su,

Bis defined as a k X 7 matrix minimizing
det (B (Su - S1S#%Su}) B} subject to fSup =1,

with respect to any k X » matrix . Let us denote eigenvalues of
Si%S1,SthSu Sit%as A, J = 1, ..., A, and the eigenvector associated with A; as

SY2B. Then it can be shown that 3= [, ..., B]. Also, put

B=1p B3
with 3% of 7 X ke and f35 of 7 X ks In our pretest, not Bitself but its linear
transfoemation is used in order to infer the structure of B From the

eigenvectors and eigenvalues of B;} ﬁa, we can find an 7 X r orthogonal

_matrix L and real numbers 5»,-, 2 =1,..., rsuch that
L Bs B L =diag (A, ..., M}, (11)
with the supposition of 0< A, < *+ £ A,. Write
B=BL, Be=pL, ~ps=bs L.
Also, for the case in whichr > 73> 0, let
B3 = [B?«“y Bz.:;],

with 4 of 7 X ke and 5 of 7 X ks. Furthermore, define fs = Pz if 7 = 7.
We shall first state some asymptotic properties on Sy, %, j = 0, 1, with
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respect to 3, vand d.
Let us turn to some fundamental asymptotic properties. First, we give a
fundamental esult onB and y.
Lemma 1
For 0 24y, 13, i3 2 p, define
2y (i, 2) = b BYes, + b3 Ay,
22 (i5) = b3 Byus, + b3y Ay,
where by, b = 1, 2, 3, 4, are fixed vectors of r X L,k X 1, r X lands X 1

respectively such that by ¥ 00r by ¥ 0 and by # 0. Then
T . 3 .
leu (31, 12) 20 (i) /T = O, (1).
yiad

We can see that this lemma is a direct application of well-krnlown results
established in such a paper as Phillips (1987) etc. By this, the proof of this
lemma is omitted. Next, we shall present a series of lemmas needed to
establish some asymptotic justification of our pretest and Granger
causality test. The following lemma states some asymptotic properties on
Sy, 1,7 =0, 1, with respect to , yand § given above.

Lemma 2
@) Sw—pZw.
(1) Sw—SuSiiSu—* 5 A.

(i) BSw— B .

@) BSuf—,BIuf

(iv) Y Suy/T— 4Bi=[iUs (t) Us () dt.
where Ly are k X k matrices gitven in Johansen (1988) such that rank e
=k, rank B Z1 = r and rank B’ Su B = r and U; () is a s-dimensional
motion with a covariance matriz Q4 =y y1 8" A3 1"y vy, with a stimess
matrix Tt of full rank.

Essentially, this lemma is the same as Lemma 3 of Johansen (1988)

except (ii), and only (ii) of this lemma will be proved in the Appendix.



Recalling that B = [i Land [i =p L, the asymptotic results of B presented in
Lemmas 5 and 8 of Johansen (1988), a part of which is refered to Lemma 5
(i) in Toda and Phillips (1988), can be easily rewritten as those of B That
is,
Lemma 8 Letting
=B PIB B y=rr B
we have:
@ B=pr+yy.
(i) z=0,(), x1=0,(1).
(iti) Tyx'— 4 BiB:®

where B, is given in Lemma 2,
©=(B I ZuB) B Eup, B= JF U.()d V,(b),

Us (t) is given in Lemma 2, V, () is an r-dimensional Brownian motion
with a covariance matrix Qs = LioZeh A Zab Za B and Us () and Vi (©)
are independent.

Using the notations S, B and 1 which come from the partitioning of j,

and vy, the lower 73 relations in Lemma 3 (i) is written as
Bs = Bsxx + vsy. : (12)

For the case in which r > 3 > 0, partition x and y into submatrices as

T X2
xr= y Y= [y"*v y~311

X1 X2

with 21, of 7w X 7, 12 Of 7 X 73, 221 Of 73 X 7=, T2 Of 13 X713, yr Of § X 1w

and y.3 of s X 73. Also, recalling that

Bs = [Bss, Baal,

with[i;ofrx k»and[iéofrx ks, under the case in which r > 73 > 0, by
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the form of [33, (12) can be rewritten as
Bs,** = Bs,a X1+ Y3 Y.re,y (13)
Bs,:s = Bs,s X2 + V3Y-3, (14)

where y = [y, 75]” with ¥:» of k« X s and v; of k3 X s. Notice that
partitioning y into = and 7 is very closely done to that of j into B and Bs.
Our next lemma presents other asymptotic results for this case.
Lemma 4
Suppose that r > r3 > 0. Then:
@) 2i=0,(1), i} =0,(1), i=1,2, 221=0,(1),
with x; introduced with respect to (12).
(i8) TP = My Yo Tyom + Op (T,
where Ms = Iz~ B3 (B33 B)! Bas, with Bas, s andPss given already.
What Lemma 4 (ii) indicates is that ﬁg converges in probability to a k3 X
r matrix which has the same structure as B; with respect to zero
restrictions. Hereafter, let A @ D and vec A denote the Kronecker product
of matrices A and D and the m; m; X 1 vector formed by the column

vectors of an m; X mg matrix A = [a,, as,..., @m,] a8
vec A = [ai, as, ..., a'm,),

respectively. Now, we conclude this section by stating an important result
on two independent Brownian motions:
Lemma 5

Let Cy and C; be matrices of mi1 X s and mz X r such that rank C, = nu
and rank Cy = my, where m, and my are tnlegers such that my 2 s and mz >

7, with r and s given already. Also, define the mims X 1 vector b as

b= [(Cz Qz Cé)l/Z ® (ClBil Cl’)l vee ClBile Cé,



where By is given in Lemma 2 and Q: and B: are given in Lemma 3.
Then, b is distributed as m; me-dimensional multivariate normal with
mean zero and the ;ovaﬁance matriz Iy, m, t.€. N (0, I mym,).

Noting that the conditional distribution of vec B; given {Us ()} is N (0, I n, m,),
this lemma can be proved by the same arguments as those used to prove
Lemma 5.1 of Park and Phillips (1988), as suggested in page 1984 of Toda
and Phillips (1993). It should be also noted that the distribution of vec B; is

named as mixed normal.
4 The pretest procedure

As a quite natural thing, the formulation (10) in section 2 is not available
as the null hypothesis to test Granger causality unless the number of
elements of A is given a priori. It is impossible unless the rank of 8; or Bs (i.
e. r3) is known. However, this may be improbable since it is unnatural to
suppose that r3 is known. Thus, we need a valid estimaor of r; or
equivalently 7« (recall that » = r= + 73 and 7 is supposed to be known.) in
order to proceed to some test for Granger causality based on (10). In this
section we shall discuss a method® to infer the value of 73 or 7= as a pretest
which precedes a Granger causality test.

In order to construct the pretest statistic, several estimtes on y given in
(4) and a particular form of y are dispensable, though the construction is
mainly based on f3; introduced in the previous section. Let N = 5 (3" By’
Based on the eigenvectors and eigenvalues of N,wecanfindak X k

orthogonal matrix L and 1, é = 1, ..., k such that

N=Ldiag (L, .., u), hi=1fori=1,..,7,
Li=0 fori=r+1l,..,k (15)

5) One method is the well-known Johansen’s (1988) likelihood ratio test. In this
paper, we will propose another one as an information criterion like AIC or BIC
rather than a hypothesis test
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Letting L = [L (1), L (2)] with matrices L (1) of k X rand L (2) of k X r
and recalling that li=0fori=r+ 1, ..., k, it is easily checked that

Ldiag {4y, .., X)=L )L .

Define = L®.
Now, consider the form of ¥ we can get under several situations. For 73

and 7+ defined in section 2, put s3 = k3 — 73 and s+ = k= — 7=. Recalling
k=1=ka-1+ki2r=ra+1, 0<r3<ks

we see that s« + s3 = kK — 7 = s. Also, recall that under the case in which 0 <

T3 < T, either r3 < k3 — 1 and 7« < kw or 73 S k3 and 7+ < k= — 1 must hold since

5 [B;.,. 0 }
Bres Bosl’
Bexss iS 7 X Ko, Bagis 13 X kg and rank B’ = re + 13 = v under this case, as
explained already in section 2. It implies that for the case in which 73 = ks,

7+ < k= — 1, therefore s« > 1 and that for the case in which r3 < k3, s3 2 1. If

7w < ko, it is easy to find a ke X s» matrix y=+ such that
Yirss Beage = 0, 1aANK Yorpn = Sem.

Similarly, if rs < ks, we canfind a ks X 73 métrix ¥33 such that
YsaBas=0, rankysz=ss

For the case in which 0 < 7« < k= and 0 < 73 < ks, define the k X s matrix ¥

’Yu'n 0
V=3 V33

with y=3 and ys3 given above and

as



— 65 —
Y3 = —Ba,a (ﬁf;,a Bas)? B;‘B Yornr

Also, for the case in which 0 < 73 = k3 (therefore s3 = 0 and 0 < 7 < kw),

define s» = s and the £ X s matrixy as
¥= [Y;’,“: Y‘;‘,3] 5

with y&» and v« given above. Furthermore, for the case in which 0 < 7= =

k- (therefore s- = 0 and 0 < 73 < k), define 53 = s and the k X s; matrixy as
’-Y = [07 Yé,3] ,;

with Y33 given above. Recalling that y given in (4) can be freely defined as
long as it satisfies the conditions defined by (4), ¥ defined above can be
regarded as one particular form of y. Therefore, without being generality
we can suppose hereafter that y appeared in the above lemmas is one

which has the form¥. Then, note that

SN
Y=Y=

Y3 1=LY=3 7Ys3
and

Yo = [Y”,“r Olv s = [Y".3y 'Y3,3]

Let us turn to the construction of a pretest statistic. Extend the definition
of x introduced with respect to (14) for the case in which 0 < r3 < r to the
case in which 73 = r by putting x», = x, where x is introduced in Lemma 3
(i). Then, with positive integers n; and n; such that n, + n; = r, we partition

[—33, x and xx» regardless of the value of 3 as follows:

Bs =B (1), B (@), (16)

where B (1) is ks X n, and B3(2) is ks X ns,
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xz[x(l, i) x(1,2):|, an
2@ 1) 222

wherex (1, isn, X my,x (1,2)isn X ng,x (2, 1)isn: X myand z (2, 2)

ismz X mp, and
Xz = [222 (1), 222(2)), (18)

where x» (1) is 13 X (13— n2) and 22 (2) is 13 X n,. Also, lettingﬁ = [.33 2)
(B3(2) B3 (2))! B3 (2) for n; and 12 chosen such that k3 > n, is satisfied, by
the eigenvectors and eigenvalues of 1\73, we find a k3 X k; orthogonal matrix

Lzand ¥y, i = 1, ..., ks, such that
Ns =Ly diag {9y, ..., V&) L3 = Ls(1) Ls(1), (19)

where L3 = [L3(1), Ls(2)] with Ls (1) of ks X nz and L3(2) of k3 X fiz, where
i = k3 — n2. Note that ~V,, ¢ = 1, ..., k3 are chosen such that bV; = 1 fori = 1,
woMzand V;=0fori=ns + 1, ..., ka.

Now, define Y3 = Ls (2). The pretest statistics proposed are constructed
based on the asymptotic behaviors of T Ba and T¥3s [33 (1) for several n,.
Those are stated by the following lemma:

Lemma 6
(&) T Bsx? =4 Bl B:® ifr3=0,
where y; is given with respect to (13) and (14) and x, B, B: and ®
are defined in Lemmas 2 and 3, .
(i5) W T ¥ P (1) #is 4 S5, BB ® S if 1< 15 = na 2 my,
where my = min [r, ks}, w = (FasB2)?, Yas T3 with a3 defined above

and the matrices S; of s3 X s and Sw of r= X r are defined as
S = [0,7%,3%,3]’ S = [Ir”; 0]

PuttmgFl =@’ Qz (D, Fz = ’Y3Bi1'Y:,3, G1 = Squ S& and Gz = SsBI S:’; WithBl,



@ and Q; given in Lemmas 2 and 3 and S; and S« given in Lemma 6, Lemma
6 suggests that the limiting distributions in this lemma can be transformed
into N (0, I=.n) if several statistics which converge to F; and G;, © = 1, 2, are
provided and combined with T Bs2! and w™ T 53 B3 (1) aii. Forthe k X s
matrix ¥ = L (2) defined in the early part of this section as an estimator of

7, let

~ ~-

¥=17= 73l
with ¥= of k= X sand ¥s of k3 X s. Introducing the statistics defined as

F] = é’ﬁz &’, ﬁz =F12 = ‘73(7,6'11’?)‘1 ?ér
Gl = SﬂF'xS:*, éz = 75,3 Fz '73,3,

where ® = (B S10.5% SuB)* B’ Su B,Q: = B Sio Sit (Sxo = Sor S S1o) Sib St B,
S« is given in Lemma 6 and Sy, ¢, 7 = 0, 1, and [3 are given in section 3, we
have:
Lemma 7
@) @RL)F'Q FY (@ ® L)« Fi ® F#ifr<ke
(@) @u ® w) (G G @i @ w) =, G QG ifl<r=nzm -1,
where x, x1; and w are the same as those in Lemma 6.

Now, define
C (1) = T2tr Fi* Bs F? B, (20)
C(na+ 1) = T2tr G B (1) 123G ¥as B3 (1), m2=1, ..., my =1, (21)

under the case in which r > k«, recalling m, = min {r, ks).

The pretest procedure proposed is composed by several hypothesis tests
which are numbered from m, + 1 to m, conveniently, with m, = max {ks - s,
0). Forj = my+ 1, ..., m,, the null and alternative hypotheses in the j-th test

are stated as follows:
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Hy:13=j -1, equivalently,rm=r~j+ lorss=ks—j+1, (22)
Hy:r3>j-1, equivalently, re <r~j+ 1,0rsa=ks—j + 1. (23)

Also, the C (J) defined by (20) and (21) in which n; is replaced by j + 1, §
=my+ 1, ..., my, are the test statistics numbered correspondingly. Recall m,

=max {0, r — ks} and ms = max {ks — r, 0} and noting that

r3=ks—5S3Sk3—S, re=ka—-S==k—-k3—S5+S3

=r—13<r—ks, Sa=ks-1r3<ks~,

it is obvious that the theoretical values of 73, - and s; are subject to the

restrictions such that
m4ST3Sm1, 7?’L5.>_Tu2m2, me 2332m3,

with ms = min {k+, r} and me = min (s, k3}. However, through the
procedure, the hypothesized values of 73, 7« and s; are confined to those

such that
m4Sr35m1—l, M52Tu21n2+1, m52332m3+1.

We should pay attention to that this procedure is not necessarily started
from the 1st test for which the null hypothesis is formulated as 1.'3 = 0. The
values of &« (or k3) and r (or s) must be considred carefully as some useful
information to shorten the procedure before executing the pretests. Letting
h =7 =kw, by 7= ke = k3 — S = 13— S= We see the information s = h + s« 2 h
without entering any pretest. As a result, the case in which » > k« (or
equivalently ks > s) drives us to the start of the i)rocedure by the (2 + 1) th
test (such that a > 1) for which the null hypothesis is r; = 2. However, if r <
k« (or equivalently k3 < s), we start the st test to decide whether r3 is zero

or not.



The pretest procedure is carried out as follows. If the null hypothesis in
the j th test is accepted, our procedure is terminated at this stage and then
‘ the decisionis madeas 3 =j-1,r»=7r- j+ 1l and s3 = ks — 7 + 1, provided
that j = m4 + 1, ..., m,. For the case of rejection of the null hypothesis in the
J th test, we proceed to the (5 + 1) th test based on the decision that r; > 7,
7+ < 71— jand s3 < k3 ~ 7, provided that j = m4+ 1, ..., m; — 1. The procedure
is continued up to the m;th test as long as the null hypothesis is rejected.
The m;th test always terminates the procedure. In other words, the
maximum number of tests executed must be m,. The rejection in the m1th
test leads to the decision that 73 = m,, 7 = m; and s3 = m3 since 73 < My, T
2m; and $3 2 ma.

The results in Lemma 6 and Lemma 7 (ii) are used to justify our pretests
under the null hypotheses. For the alternative hypotheses, we need other
results as presented in the following two lemmas.

Lemma 8
Let n, and nz be positive intergers such that n, + nz2 = r. For the case in

which 1< Na< T3 (S ml), let

E(1) = 22 (1) - 22(2) {€5(2)Bis Pos@z (2)F 222(2) Bos Boa 2 (1),
Yu =2 (1) Bis Pas T=(1)

with 12 (1) and 2 (2) defined by (18). Notice that ¥1, and (1) are (rs -
n2) X (r3—ny). Also, recalling thatks —nz=s3+ (r3—nz), ks 2m, mi=r—-n
= Te + (13 —n2) and r 2 13 (or r= 2 0), define the matrices & of ks X (ks - n2)

and ‘¥ of (ks — n2) X n as follows:

. 8 = Bs,s Ii‘zz (1) 'l:f’l'a = k3,
= [1s3, BosZe (V)] U 13 < ks,

00
¥ =l: :‘ if rs <my (= min {r, ks)),
0 ¥
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= [0, q’u] ifT3 = k3 <7

L Jmere
= Y 1r3=r<~Ks
Yu

=Yifrs=r=ks.

Then, for B;; (1) defined by (16) and ¥s3 defined with respect to (19), we
have

Fo3Bs(1) =" ¥ + O, (T,

with
W= (8, 8)'1 8' ’73,3],
of (ks —n2) X (ks—mn2), and

w=0,(1), w'=0,(1), ¥u=0,(1), Yii= 0, (1).

Lemma 9
For positive integers n, and n. such that n, + ns = 7, define the ny X r

matriz S= and (ks — n2) X s matriz S; as

S“" = [In17 0])
- 0 Y33 Ys!
g = l: ’ ' 3 Y33
~Z (D) Pages= 0
=25 (1) Boagpore if 13 = ks,

} ’t:f’f'3<k3,

Also, let
Gi1=8-F 84, G.=S;BS;

where F, is already defined as F, = & Q; O, with ® and Q; given in

Lemma 2. Then, for the same case as in Lemma 7,

GI'® Gi= (21 (1, 1) @ @) (GI'® G7) (z™1 (1, VA W™} + 0, (T,



where Gi, together with F,, are introduced in the text, x 1, 1) is given in
(17) and w is defined in Lemma 8.

Note that 7y — 7« = 13— M2 = k3 — N2 — s3 and s — 1 2 k3 — m; for the case in
which nz > my = max {ks - s, 0). Now, through the above lemmas, we attain
to a theorem for justifying the pretest procedure proposed:

Theorem 1

c (N, J=my + 1, ..., my, which are defined by (20) and (21), are
asymptotically distributed as chi-square with (ks —-j+ 1) (r-j + 1)
degreees of freedom under the null hypothesis (21), i. e.

C () =4 Xio-iry -iony YT3=G -1,

and are expressed as C () = T?C (§) with random variaqbles C (§) such
that C () = O, (1) and C* () = 0, (1) under the alternative hypothesis
22),1. e.

T2C (j) = 0, (1), {T2 C (D' =0, (1) if s 24.

This theorem states that the pretests to determine the value of r; are
asymptotically valid as 2 criteria are used. The results for the alternative
hypotheses assert that the pretests are consistent with the advantage that
those divergences are remarkably faster as compared with the rate of T in
the usual consistent tests. It should be also noted that this theorem holds
without imposing such a condition as that in Theorem 3 of Toda and

Phillips (1993).
5 The Granger causality test

Suppose that the value of 73 is known or is correctly infered through the
pretests in the previous section. Conveniently, let us introduce the

following matrices constructed by the notations in section 2:
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[ DAY . Aya(eo) Ay @3 - Ayd)
Xi= oo Xe=| P w1,
L Ayra() - Ayrpa (+4) Ayra@) = Ayrpa(3)
i Ay{»u(lﬂ [ &7 (D)
AYi = : y =)} ,
L Ayr 4 L‘:’T
[ wen ][O
Yo = : , Vo=| ,
L yra () Ly

X=[X), Yo B=), Z =Xz, Ya Bzl if13>0, Z=X; ifr3=0.
Using those matrix notations, (9) is written as
AYi=XB+ZA + &, . (24)

with B and A defined with respect to (9). For the construction of a statistic

to test the null hypothesis formulated by (10), define Xand Z as
X= [Xls Y“B**L Z~ = [XZ, Y3B3,3] 'I;f’l'3 > 0, Z =X, ’I;f”‘a = 0,

with B~ and B defined in section 3. Note that both X and Z are available as
some observation. Also, notice that Z is just Z as 75 = 0. Based on X and Z,

we shall construct the following statistic:
A=(Z MxZy'Z Mx AT, (25)

where Mz = Ir, - X (X” X)' X". Letting Ay = E {& (1) £/(1)}, we need an

estimator for Aj;. Note that

Ikl
A =[Iy, 0] A o |’

recalling A = E (g, €/}. In view of Lemma 2 (ii),



— 73 —
- I,
At = [Ik, 0] (Soo = So1 St Sio) 0

is provided as such an estimator. Now, our test statistic is constructed as
C=Twr MA@ MZIDA (26)

With respect to (24), A may be interpreted as the OLS estimator for A if B**
and B3,3 are dealt with as [3:* and [33,3 respectively. Also, we can say that Cis
the usual Wald statistic to test (10) if fw and B3 are replaced with B« and
[_33,3 respectively. The next theorem states some asymptotic validity of the
test based on C.
Theorem 2

C defined by (26) is asymptotically distributed as chi-square with ki {ks
(»-1) + 13} degrees of freedom when the null hypothesis (10) holds, 1. e.

C—aXpn A=0,

with m = ks (p-1) + 3. Also, if (10) does not hold, there exists a random
variable C such that

C=TC, C=0,(), C*'=0, (D).

This theorem also concludes, like Theorem 1, that the Granger causality
test based on € is aymptotically valid in the sense that the use of chi?
critical values is ensured with the consistency of the test. We note again
that such a condition as that in Theorem 3 of Toda and Phillips (1993) is
not required for the results stated in this theorem.

6 Some remarks and implications

As discussed in sections 4 and 5, our Granger causality test strongly

depends upon the formulation (10) for the null hypothesis of Granger



A TESTING METHOD FOR GRANGER CAUSALITY IN COINTEGRATED
— 74 — TIME SERIES SYSTEMS

noncausality and such statitical inferences as the pretests in section 4 to
make (10) be available. The purpose of this section is to state some
remarks and implications on the methods proposed from the practical
viewpoint, comparing with one proposed in Toda and Phillips (1993) and
featuring different special cases.

The results in Toda and Phillips (1993) are derived based on the
formulation (6) for the null hypothesis. What should be noted is that (6)
may contain some ‘nonlinear’ relations o; §5 = 0. Also, note that (6) may
possess some redundancy according to the rank of ¢ #3. The difficulty /
complexity in their testing method comes from those. This is the reason
why Toda and Phillips (1993) imposed several conditions, such as rank oy
= k; or rank B3 = ks, to avoid such redundancy and derive clear results. Our
method, which uses (10) after executing the pretests in section 4 instead of
the direct use of (6), is proposed to overcome such a limitation. Any
condition, such as in Toda and Phillips (1993), is not imposed in Theorem 2
of ours.

In the pretest procedure in section 4, consider the situation to make the
statistic for the 1st test construct and its asymptotic property hold. As seen
in (20) and Lemma 7 (i), r 2 k« is supposed to ensure the inverse matrices
of Fy and P However, the supposition never be restrictive since the 1st test
is not needed unless r < k«. The procedure starts from the 2nd test if 7 = k.
The cases in which r = k= + 1 and r = k= + 2 set the starting points to the
3rd test and 4th test respectively. The case in which 7 = 1 confines the
possible value of 7; to either 0 or 1. Then only the 1st test is required to
attain to a conclusion. Generally, if & is not so large, the procedure often
becomes simple and requires a few tests to attain to a conclusion since r is
not also so large. The case in which ki = k2 = 1, k3 = 2 and r = 3 may
possibly need only the 3rd test after starting from the 2nd test since h = r -

k« = 1. Also, we can sometimes find the value of r; without executing any



pretest. For example, let us take up the case in which k; = k; =1, k» = 0 and
r = 2. As seen already, the facth=7r-ku=7r-k; =1givesusrs2h =1. On
the other time, recall that ks = 1 = 5. Those information drives us to the
conclusion 73 = 1 without entering the pretest procedure.

Now, let us turn to the issue of testing for Granger causality. If p = 1 and
we attained to the conclusion r; = 0 after executing the pretests, further
test to decide to decide whether Granger causality from . (1) to y: (3)
exists or not is not required since Granger noncausality is implies by 73 = 0
as p = 1. In other words, the pretest for 73 = 0 is interpreted as a test for
Granger causality under this case. On the other hand, if we make the
decision that {y, (+¥)} is not cointegrated, i. e. r« =0 (or equivalently 7; = 1),
the relation & = 0 must be tested for the null hypothesis of Granger
noncausality.

The condition imposed by Theorem 3 in Toda and Phillips (1993), i. e.
either rank a, = k, or rank fs = k;, requires either k; < r or ks = r3 since o is
ki X rand Bsis ks X 73 with the fact rank f; = r3. Under the situation such
that either k) = 1 or k3 = 1, it may be easy for this condition to be satisfied.
However, even if it is so, this condition rules out many situations. The case
in which kw = k; = 73 = v = 1 and ks = 2, together with the suppostion of

Granger noncausality, implies that
rank oy =rank & =0<ki =1, rank By=rank B=1<ky =2,

since 73 = r implies that &; = 0 is contained in the formulation (10) for
Granger noncausality, as stated already. Then it is obvious that the
condition in Toda and Phillips (1993) is not satisfied. Also, if k= = k; = 2, ks

=7r=1and r; =0, the condition is not satisfied because of
rank oy =rank a<r=1<k; =2 f3= B3=0.

These two cases explicitly illustrates that Toda and Phillips’ (1993)
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condition is not practical.
Finally, recalling the matrix polynomial A (X) defined with respect to the

VAR representation as the data-generating process, i.e.
P
AN =L~ .EIAJ}%
]:

we embody the special cases in which the conclusion in Toda and Phillips
(1993) is not satisfied under the null hypothesis of Granger noncausality by
showing the following two examples of A (A).

Example l:p=1,ke=ki=r3=r=1,k3 =2 and

1-A 0 0
AN =| -24 1-054 A
2 05 1

Then, it is obvious that det A (A) = (1 - A)? (1 + 0.5)). Also, since
A=} -2 0.5 1],

we can let

o= [0, 1) 1]') ﬂ’ = [27 -0'51 —I]y

which in turn make us deine

0 1 -1 0 -2 1
&= , Y= .
1 0 0 1 2 0

Furthermore, by A (A) = (1 - &) I + A (1) A, [T (1) = 5. Therefore,

-3 2
8'1'1(1)7=|: . 1]



Thus, all the requirements in the present paper are satisfied. On the other

hand, & =0 and B’ = [-0.5, -1].

Example2:p=1,ka=ki =2, k3=7r=1,7r3=0and
1-050 A 0
A= 05, 1-050 Oa
- 21 1-A

Therefore, we can let
a=[1,1,-2], B’ =[-05,-1,0),
1 -1 0| 0 01
6= , Y = .
1 2 1 -2 10
It is also easy to see that det A (A) = (1 -A)2 (1 + 0.5A)andA (M) =(1-A) I

+ A (1) A. Thus, we derive all the requirements imposed. On the other hand,
@ =1{1,1]"and B =0.

7 Conclusion

In this paper, we have discussed how a valid test for Granger causality in
cointegrated systems can be constructed, and proposed a conclusive
procedure summarized as follows:

At the first stage, several pretests to make a decision on the rank of a
submatrix of the cointegrating matrix (or the cointegrating rank of a
subsystem) are executed. Next, based on the rank value determined by
those pretests, a test for the null hypothesis of the absense of Granger
causality is constructed. All these tests proposed are asymptotically
distributed % under the null hypotheses and consistent as indicated by the
results under the alternative hypotheses.

The basic idea of the testing procedure proposed is formalize the null

hypothesis of Granger noncausality without any redundancy and
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nonlinearity with respect to parametrization of the cointegrating matrix. As
a result, all the asymptotic results hold even if such a oondition as those in
Toda and Phillips (1993) is not imposed. In all the tests proposed, the
cointegrating matrix need to be estimated. We adopt not the ML estimator
provided by Johansen (1988) but its orthogonal transformation. The pretest
procedure proposed may bge seemingly observed as complicated one.
However, it is rather simple practically as seen in section 6 and requires
only a few number of tests as long as the dimension of the subsystem is not
so large. Even no test is required under some cases. For the test for the nuil
hypothesis of Granger noncausality, we can consider it to be a Wald test,
provided that the replacement of the cointegrating matrix with its estimate
is tolerated.

As mentioned in many literatures (see Phillips and Toda (1993, p. 1369),
e. g.), the existence of constant terms in the VAR'’s drives us into the
consideration of some deterministic trends. Intentionally, we have avoided
to include a constant term in our VAR based on the reason below:

(i) The concept of cointegration defined by Ehgle and Granger (1987)
does not cope’ with such deterministic trends sufficiently; therefore, the
ECM’s may have different implication and require another interpretation as
threr exist deterministic trends.

(ii) If we start our method for the cointegrated system from a
multivariate moving average representation with drift based on the Wold
decomposion and such a specification as that in Engle and Yoo (1987), any
constant term does not appear in the VAR derived from it under the
suitable initial condition.

As empabhsized already, the validity of our testing procedure for Granger
causality is described as y? criteria asymptotically and unconditionally.
Both the procedure and its validity may be rdbust under several extension

of the model such as the inclusion of a constant term. However, apart from



technical derivations, the implications of those extensions must be

carefully considered.
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Appendix

Proof of Lemma 2 (ii): Defining Br = [#, YT-?] and by Lemma 1 and other
parts of Lemma 2, we have

Soo — So1 S11 St = S — Sor Br (Br Su Br)! Bt Si
=Sw-SuB B SuB)' B’ Sw+ 0, (TD),

that is,

Soo — So1 S11 Sto = Sw — Sux B (B'Suﬁ_ )'IB’SIO +0, (T, @7
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and
Solﬁ(B’SllB)_lﬂ_’Sw —p 20— ZOIB(B’ leﬂ—)'lﬁ_’ hIET (28)

Combining these results, the conclusion follows.
Proof of Lemma 4: (i) It is obvious from Lemma 3 (ii) that x;; = O, (1), i =
1, 2. Since y = O, (T"!) by Lemma 3 (iii), (13) and (14) are collected into

B3 Bs = (a1, 222" B3z Bas [, 2] + Op (T7). (29)
Recalling that

B Bs = diag A1y ooy A}
and

& Bis Baawm = 0, (T, (30)
in view of (29). Since Lemma 3 (ii) ensures that

rank Ba,g [221, X22] = rank [? 3x = rank [?3 =13

with probability one, the definition 4; <%, < -+ <4, together with (29) and
(30), yields

(x5 f 33 Baz wee)? = O, (1), (31)

which in turn implies 2% = O, (1). In view of (30), the assertion 22, = O, (T")
follows immediately from this result. Also, xi} = 0, (1) is derived by Lemma
3 (ii). Thus, we complete the proof for (i).

(ii) Inserting the relations (13) and (14) into [3&_3 [33,» = 0 and using that
Yo = Op (T) and 221 = O, (T),

a2 Bé,s 33,3 o1 + X2 35,3 Yoy + Oy (T2) = 0, (32)

which gives
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X1 = — (BiaBas) BoaYs yo + 05 (T3, (33)

noting that 23 = O, (1) by (i). Inserting (33) into (13), we have the desired
result for (ii).

Proof of Lemma 6: (i) The desired result follows immediately from
‘Lemma 3 (iii) and (12) as fi5 = 0.

(ii) The supposition

Bs(1) = Bas, Bs(@) = Paa (39)
and the definition of ys3 gives

Y33 Mz = Y33, (35)

Yaa= B 33V + Y33 W, (36)

where v = (8”B)! B35 133 and recall w = (Y33Ys3)" ¥53¥33. Since y.3 = 0, (T
by Lemma 3 (iii), from (14), (34), (36) and the definition of ys3, we have

Y53 B3(2) (B3(2) B! = 5 Bas (Bis Baz) % + Op (T)

=v X%+ 0, (T,

which implies that v = O, (") since 23 = O, (1) by Lemma 4 (i) and 33 [33
(2) = 0 by the definition. Also, it follows that w = O, (1) and w! = 0, (1)
since Y33 Y23 = L. Therefore, by Lemma 4 (ii), (34) and (35),

W T Yis Bs(1) = Y3aYs T yx & See + O, (T). (37
Recalling that s = [Y=3, ¥33] with y=3 defined in (16),

Y53 Ys = Sa. (38)
Noting that

xSaxti =84+ 0,(TH
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by Lemma 4 (i), (837) and (28), together with Lemma 3 (iii), lead to the
conclusion.

Proof of Lemma 7: (i) Letting

WO=@B/EY W=Dy Y

by the same argument as used for ¥s3 in the proof of Lemma 6,
T=YW@)+0, (T,

therefore,
=W +0, (T,

and
W(2)=0, (1), W! (2) =0, ().

Using the results in Lemma 2, together with the results for  and the above

results, we have
x f‘x'l - Fl, Fz >4 Fz. (39)

Since k; < s by supposition, the existences of F#and F# are ensured. Hence,
(39) completes the proof of (i). Notice that (39) hilds even if 7 > ke.

(i) Since x S& x7) = S% + O, (T as noted in the proof of Lemma 6,

ZnGi12 = 20 Se 2 2 Fy 2t 2 8"

= Sn x’.l Fl .’L"l S;‘ + Op (T-I)!
that is,
o Gyt = Sw ™ Fi ! S5 + 0, (TH). 40

On the other hand, the structure of y gives



Gz =33 F2 Ya3. (41)
Also, by the result for ys3 in the proof of Lemma 6 (ii),

Gz =w" Y3z Fafaaw + Op (T (42)
(39), together with (40), (41) and (42), leads to

zi G iy =5 Gi, W Gaw' =4 Ga. (43)

The desired result for (ii) follows immediately from (43).

Proof of Lemma 8: Define the k3 X n; matrix R as

R=1[0,Bssan ()] Yrs<r,
= 53,3 X2 (l) ’t:f’rs =T

By supposition, (12) is expressed as
Bs(D) =R + 0y (T), B3 (2) = Baz 2 (2) + O, (T, (44)
since y = O, (T*) by Lemma 3 (iii). Also, letting
o= {25 (2) B35 Bas T2 @)} 25(2) BisTas
and noting
x5 (2) BsaBis Bas 22 (1) = 0
in view of (44), the same argument as used in the proof of Lemma 6 yields
a3 = 0w + Bz 22 (2) B, (45)
withw = 0, (1), = 0, (1) and ¥ = O, (T). Since it is easy to check that
Y= 2 (1) B33 Bas 22(1)= 0, (1), 8 R=¥,

the first relation in (44), together with (45), the desired result for the
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lemma.
Proof of Lemma 9: First, note thatx (1, 1) = 0, (1) and 2! (1, 1) = G, (1)
by either Lemma 3 (ii) or Lemma 4 (i). It is also obvious that

x84 211, 1) = 8% + 0, (TY).
Recalling that

Yoz ==b (1) [b" (1) b (D} Zr2 (1) Boog Yoo
b (@) (b (2) b @) %32 (2) Bz yer,

where b (1) = fs3 22 (1), b (2) =fs3 22 (1), and b’ (1) b (2) = 0, for & defined

in Lemma 8 and s in either (16) or (17), we have
& Y3 = S;;.

Noting these results and using the same argument as used in the proof of
Lemma 7 (ii) and (45) instead of (36), this lemma can be easily shown.

Proof of Theorem 1: For the case in which 1 Sr;=n,<m,; - 1, let
b, = (G @ Gy vec w™ T Y33 fs (1) ik
Then we have

C(nz+1)={vec T Y53 Bs (L)) (Gi! ®G3") {wee T 53 s (1))
=b7, (G ® G32) (1 ® w) Gi' ®GS) (@i ® w)
(GI*® GF*) by, -

Letting
b = (G ® G5**) vec S; B B; @ S«

and applying Lemma 5 to b,,, we see that b is ditributed as N (0, Is,..). Also,

Lemma 6 (ii) and Lemma 7 (ii) assert



bnz —d b)

G2 ® G¥») (zn ® w) (Gi' ®G:H) (x1: @ w) (G ® G¥)—, I, .,

which implies

é(’ﬂ2+ 1) —: b 5

It is obvious that the distribution of 5" b is %2, .. On the other hand, for the

case in which 1 £ n; < 13 < m,, define
C (2 + 1) = vec Y33 Bs (VI (Gi* G5 (vee 33 fa (1))

Then C (nz + 1) = 0, (1) and C! (n: + 1) = O, (1) are ensured by Lemmas 8
and 9. Thus, we derive the desired result for either j =22 as ks <sorj=>k; -
s+2asks>s.

The remaining case, i. e. the result for j = 1 as k; < s, is also established in
a similar manner, using Lemma 6 (i) under the null hypothesis and the
result rank B:} > 1 with probability one, which is obvious by Lemma 2 and
(12), as well as Lemma 7 (i) under the alternative hypothesis.

Proof of Theorem 2: First, define the (ke p — ke +7) X (kD — ke + 1)

matrix D, and (ksp — ks + r3) X (ksp — ks + r5) matrix D; as

D= ,
0 x

I}.;,(p.l) 0
ifrs>0,

0 T2

D,

ij(p—l) ’ifTa =0.
Then, in view of Lemma 1, Lemma 3 or 4, together with (14), yields

Z’XIT =D;Z XD,/ T+ 0, (TY,
Z'ZIT =D;Z° Z D,/ T+ 0, (T,
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Z°X/T =D;Z’ XD,/ T+0,(TY,
X' X/T =DiX'XDy/T+0,(TY,
ZXIT =Ds2° XD,/ T+ 0, (T,
Z AW T =D Z° AY,/ T+ 0, (TY,
ZANW/T =Di X AY1/ T+ 0, (T,

with
D;=0,(1), D¥=0,(1), i=1,2,

which in turn leads to
A=D} (Z'MxZITY' (Z My AY\/T) + 0, (T), (46)

where Mx = I'r, - X (X" X)! X”. Substituting the right-hand side of (24) for
AYiin (47),

vec TV2 (A — D3 A) = (I ® D) (Z" Mx Z/ T)*)
vec Z' My &/TY + 0, (TR). 47

On the other hand, because of Lemma 2 (i), (iii) and (iv), we can find a

(oop — ks + ) X (kop — k= + 7) positive definite matrix Az such that
ZMyZ!T —, Az (48)
Also, by Lemma 2 (i),
Au—=pAu. (49)
Combining (46) with (49), we obtain

AR (Z MxZ/TY' D Z MxZ 1 T) _
DI(Z MxZ!TY' A2 =, Ly s . (50)

Noting



C = (vec T2 AY (A} ® (Z' Mz Z)}(vec T2 A)
and using (47), under the null hypothesis (10), we have

C=n" (AR ALAE @ 321+ 0, (T3, (51)
where

M = (AY? @AY?) vec Z° My &1/ T,
Y= AP (Z My Z/T)! DiNZ'MyZ/TYDX(Z MxZ/T)' AY.

Since both Z and X are constructed by stationary series which possess
some valid Wold representations using &;, by the assumptions on g;, (48)
and (49), the Liapounov’s central limit theorem (see Loeve (1977, p. 287), €.
g.) is applicable to 1, that is,

N =2 N 0, I, Goup - k- + 1)- (52)

Note that Lemma 1 of Toda and Phillips (1993) éan also derive (52). Thus,
through the equations from (49) to (52), we establish that the asymptotic
distribution of C is %2 under (10), where 7 = k; (ke — kes + 7).

Note that the results from (46) to (50) still hold under the alternative

hypothesis. Define
C = (vec DoAY {Ah ® D5 (Z'Mg Z / T) D3} (vec D2 A).
If (10) does not hold,
D:A=A+0,(T™®), A+ 0 (53)

must be satisfied by (47). (63) immediately gives the desired result for the
alternative hypothesis.





