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ABSTRACT. For a hyperbolic knot in the 3-sphere, at most finitely many Dehn
surgeries yield non-hyperbolic manifolds. Such exceptional surgeries are clas-
sified into four types, lens space surgery, small Seifert fibered surgery, toroidal
surgery and reducing surgery, according to the resulting manifolds. For each
of the three types except reducing surgery, we give infinitely many hyperbolic
knots with integral exceptional Dehn surgeries of the given type, whose adja-
cent integral surgeries are not exceptional.

1. INTRODUCTION

Let K be a knot in the 3-sphere S® with knot exterior E(K) = S* —Int N(K). A
slope r on OE(K) is an isotopy class of an essential simple closed curve on 0E(K).
For a slope r, let K(r) be the closed orientable 3-manifold obtained by r-Dehn
surgery on K, that is, by attaching a solid torus V to E(K) along their boundaries
so that 7 bounds a disk in V. The slopes on JE(K) are parameterized by the set
QU {oo} in the usual way. By choosing a standard meridian-longitude basis {p, A}
of Hi(0E(K)), aslope r corresponds to m/n if [r] = mp +nA. The meridian slope
oo is called a trivial slope. A slope is said to be integral if it corresponds to an
integer. For two slopes r and s, their distance A(r,s) is the minimal geometric
intersection number between them.

Suppose that K is hyperbolic, that is, the complement S® — K admits a complete
hyperbolic metric of finite volume. By Thurston’s hyperbolic Dehn surgery theorem
[23], all but finitely many surgeries on K yield hyperbolic 3-manifolds. We call a
slope r exceptional if K (r) is not hyperbolic. In this article, we will focus on integral
exceptional slopes on hyperbolic knots. In fact, it is expected [14] that any non-
trivial exceptional slope is integral, except Eudave-Mufioz knots [9], which are now
known to be the only hyperbolic knots with non-integral toroidal surgeries [16].

Let us say that an exceptional slope r (and the corresponding surgery) is of type
R, L, S,or T if K(r) is reducible, a lens space, a Seifert fibered manifold over the 2-
sphere with exactly three exceptional fibers, denoted by S?(py,ps,p3), or toroidal.
Then it is known that if r is a non-trivial exceptional slope, then either r is of
type R, L, S, T', or K(r) gives a counterexample to the geometrization conjecture
(see [14]). Furthermore, the famous cabling conjecture [13] claims that r does not
happen to be of type R. Thus we can summarize that a non-trivial exceptional
slope is expected to be of type L, S, or T'.

An integral exceptional slope m is said to be isolated if both of m —1 and m +1
are not exceptional. In the literature, many examples of hyperbolic knots with
exceptional slopes have appeared [3, 5, 9, 10, 11, 18]. As we will see in the next
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FIGURE 1. The surgery description for the knot K

section, hyperbolic knots with isolated exceptional slopes of type T are common-
place. However, as far as we know, there was no example with an isolated (integral)
exceptional slope of type L or S. (We should remark that Eudave-Mufioz writes
that John Dean has found knots with only one exceptional surgery, for example,
the twisted torus knot K(9,2,5,1) [11, page 121]. Eudave-Mufoz says that it was
a private communication. In fact, 43-surgery on K (9,2,5,1) can be confirmed to
be of type S, and the computer program SnapPea written by Jeff Weeks suggests
that the slope is isolated.)

The purpose of this article is to give the examples of hyperbolic knots with
isolated exceptional slopes for each type of L, S, T.

Theorem 1.1. For X € {L,S,T}, there are infinitely many tunnel number one,
hyperbolic knots in S with an isolated integral exceptional slope of type X .

2. PrRooOF OF THEOREM 1.1

In this section, we give a proof of Theorem 1.1. The proof is divided into three
cases.

Case 2.1. X =T.

Let K be the 2-bridge knot corresponding to a continued fraction [by, b2], where
by and by are even and |b1],|b2] > 2. It is well known that K is of genus one,
tunnel number one, and hyperbolic. Furthermore, slope 0 is the only non-trivial
exceptional slope of K by [6]. In fact, it is of type 7. Thus K has an isolated
integral toroidal slope.

Case 2.2. X = L.

Let us consider the surgery description as shown in Figure 1, where r; is a non-
zero integer.

In addition to the indicated surgeries on the 6 components there, if we perform
0-surgery on Ky, then the resulting manifold is S3. (It can be easily seen by Kirby
calculus. See also [1].) Let K be the image of a meridian curve of Ky after this
surgery. Thus we can regard that the knot exterior E(K) is obtained from the solid
torus S® — N(Kjp) by performing those surgeries on the 6 components. Note that
the slope 0 for Ky corresponds to the trivial slope for K. Baker [1] shows that K
belongs to a family of doubly primitive knots defined by Berge [2], which lie on a
fiber surface of the left-handed trefoil. In particular, K has tunnel number one,
because of doubly-primitiveness.

On the other hand, if we perform co-surgery on Ky instead of 0-surgery, then
the resulting manifold is a lens space, corresponding to the continued fraction
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FIGURE 2. After 1-surgery on Ky
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Ficure 3. The tangle B,

[r1,72,73,—r3 — 1, —r9, —r1]. Since the minimal geometric intersection number be-
tween the slopes 0 and oo is one, the slope oo for Ky corresponds to some integral
slope m for K. Hence the adjacent integral slopes to m with respect to K corre-
spond to —1 and +1 for Kj.

If we perform 1-surgery on Ky, the surgery description can be changed to one
as shown in Figure 2, by eliminating K. This 6-component link is the chain link
C(6,—4) of [21], which is shown to be hyperbolic there. Similarly, if we perform
(—1)-surgery on Ky, then we obtain the chain link C'(6,—3), which is hyperbolic
again. Thus we can choose |ri],|r2], |rs| > 0 so that both l-surgery and (—1)-
surgery on Ky yield hyperbolic manifolds by Thurston’s hyperbolic Dehn surgery
theorem.

Thus we have shown that K has an isolated integral slope of type L. This implies
that K is hyperbolic as follows. For the torus knot of type (p, ¢), pg£1 are the only
integral slopes that yield lens spaces. However, slope pq yields a reducible manifold,
and slopes pg £ 2 yield Seifert fibered manifolds [20]. Hence K is not a torus knot.
If K is a satellite knot with a lens space surgery, then K is a (2, 2pg £ 1)-cable knot
of a torus knot of type (p, q), and the lens space surgery corresponds to the slope
4pq £ 1 [4, 24]. Thus the lens space surgery is adjacent to the slope 4pg £ 2 which
yields a reducible manifold.

Since a hyperbolic knot cannot admit two isolated exceptional surgeries of type
L by the cyclic surgery theorem [7], infinitely many choices for r;’s give infinitely
many hyperbolic knots.

Case 2.3. X = S.

Consider the tangle B, in the 3-ball S* — Int B as illustrated in Figure 3, where
the rectangle labeled by an integer p denotes p right-handed horizontal half twists.
Let B,(r) denote the knot or link obtained by inserting into the 3-ball B the
rational tangle parameterized by r € QU{oco}. (We adopt the convention of [11] for
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FIGURE 5. The tangles T and T'

the parameterization. See Figure 3.) Let M, and M,(r) be the double branched
coverings of B, and B, (r), respectively.

Since B,(00) is the unknot, M, (c0) is S3, so M, is the exterior of a knot, say K.
We can see that B,(0) is the Montesinos link consisting of three rational tangles
(1/p,2/5,—2/7). Hence M,(0) is the Seifert fibered manifold of type S?(p,5,7).

As in [9, 10], we can find an explicit description of the knot K,. The knot K,
is obtained from the torus knot of type (5,7) by adding p-full twists on parallel
two strings as shown in Figure 4. It is easy to see that K, has tunnel number one
by making use of an unknotting tunnel for the (5,7)-torus knot. In fact, K, is a
twisted torus knot in the sense of Dean [8].

By keeping track of a latitude of B through the process of simplifying the unknot
B,(o0), we can see that the tangle slope 0 on B lifts to the slope 4p + 35 on K,
with respect to its standard framing. Thus K, (4p + 35) = M,(0).

To show that the slope 4p+ 35 is isolated for K, we need to show that M, (1)
is hyperbolic. First, consider the tangle T in the 3-ball S — Int C' as illustrated in
Figure 5. As before, T'(r) denotes the knot or link obtained by inserting into the
3-ball C' the rational tangle parameterized by r. Note that T'(—p) = B,(1). Let
N and N(r) be the double branched coverings of T and T'(r), respectively. Then
N(=p) = M,(1).

Claim 2.4. The manifold N is hyperbolic.

Proof of Claim 2.4. We can see that N(co) is the connected sum L(2,1)4L(2,1),
N (0) is the lens space L(34,9), N(—1) is a Seifert fibered manifold of type S?(2,3,4),
and N(—1/2) is a non-Seifert fibered, irreducible toroidal manifold as shown in Fig-
ure 6.

Since N(—1) and N(0) are non-homeomorphic prime manifolds, N is irreducible.
If N is boundary-reducible, then N would be a solid torus. This is impossible,
because N(co) is not a lens space. If N is Seifert fibered, then N(r) is Seifert
fibered for all but at most one r, for which N(r) is reducible. Since N(—1/2) is
irreducible and not a Seifert fibered manifold, this is impossible. Thus it remains
to prove that IV is atoroidal.
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We will follow the argument of the proof of [12, Theorem 4.2]. Assume that N
contains an essential torus S. Since N(0) is a lens space, S is separating. Let W be
the part between S and ON. Also, S is compressible in N(c0), N(—1/2) and N(0).
Thus W is a cable space C(r, s) with cabling slope ro on N, since A(oco, —1/2) = 2
[12, Lemma 2.4]. Solving the equation A(rg,o0) = A(rg,—1/2) =1, ro =0 or —1.
However, 7y = 0, because N(—1) does not contain a lens space summand.

Let dp and 0 be the slopes on S which bound disks in W(0) and W(o0),
respectively. Since 0 is the cabling slope, N(0) = L(r,s){W'(d), where W' =
N — Int W, and W'(d9) denotes dp-Dehn filling on W' along S. Since N(0) is a
lens space, W' is the knot exterior of a knot in S* with meridional slope dy. Then
N(oo) = W'(dso) = L(2,1)8L(2,1). This is impossible, because L(2,1)4L(2,1) has
non-cyclic 1-dimensional homology group. d

Thus N(—p) = Mp(1) is hyperbolic except for finitely many integers p by the
hyperbolic Dehn surgery theorem.

Similarly, consider the tangle 7' as shown in Figure 5. Let N' be the dou-
ble branched covering of 7. Then N'(co0) is a Seifert fibered manifold of type
S%(2,2,2), N'(0) = L(34,9), N'(1) = L(32,9), and N'(1/2) is a non-Seifert fibered,
irreducible, toroidal manifold. As above, N’ can be seen to be irreducible, boundary-
irreducible, and non-Seifert fibered. To prove that N’ is atoroidal, suppose that N’
contains an essential torus. Then N’ is decomposed into the union of a cable space
W = C(r,s) and W' again. Here, we may suppose that W' is atoroidal by choosing
an “outermost” essential torus in N’ with respect to the torus decomposition of N’
(see [17, Lemma 23.3(2)]). There are two possibilities for the cabling slope rg, 0
and 1, as the solutions of A(rg,00) = A(rg,1/2) = 1. In either case, let §p be the
slope which bounds a disk in W (rg). Then N'(ro) = L(r, s)tW'(dp). Since N'(0)
and N'(1) are lens spaces, W' is the knot exterior of a knot in S? with meridional
slope dp.

On the other hand, W (1/2) is a solid torus, since A(rg,1/2) = 1. Let d;/5 be
the slope on 9W (1/2) which bounds a disk in W (1/2). Thus N'(1/2) = W'(61/3)-
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Since N'(1/2) is toroidal and A(do,d1/2) = r > 2, W' must be the knot exterior of
a satellite knot [15]. This contradicts that W' is atoroidal. Hence we have shown
that N’ is hyperbolic. Then N'(—p) = M,(—1) is hyperbolic except for finitely
many integers p by the hyperbolic Dehn surgery theorem again.

Thus we have shown that both A,(1) and Mp,(—1) are hyperbolic except for
finitely many integers p. Finally, we confirm that the knot K, is hyperbolic under
such a choice of p.

Claim 2.5. For any integer p such that Mp,(1) and M,(—1) are hyperbolic, K, is
hyperbolic.

Proof of Claim 2.5. If K, is a torus knot, then K,(4p + 35 £ 1) is not hyperbolic
[20]. Hence K, is not a torus knot.

Next, suppose that K, is a satellite knot. Since K, has tunnel number one, it
has a torus knot as a companion [19]. Let T be the essential torus in E(K,) which
bounds the torus knot exterior. In K,(4p + 35 £ 1), T' is compressible. By [22], T'
bounds either a solid torus or the connected sum of a solid torus and a lens space
in K,(4p + 35 £1). In the former, K,(4p + 35 £ 1) is obtained from Dehn surgery
on a torus knot. However, no Dehn surgery on a torus knot yields a hyperbolic
manifold. The latter is also impossible, because K, (4p + 35 £ 1) is irreducible, and
not a lens space. O

This completes the proof of Theorem 1.1 for the case of type S.
We remark that SnapPea suggests that K, is hyperbolic whenever p # 0.

3. REMARK AND QUESTION

Berge [2] introduced the notion of doubly primitive knots, and described twelve
families of doubly primitive knots, called Berge knots. It is conjectured that Berge
knots comprise all knots admitting lens space surgeries. Except the two families
of Berge knots, referred to as families (VII) and (VIII) as in [1], which lie on the
fiber surface of the trefoil or the figure-eight knot, we can verify that no lens space
surgery is isolated. Baker [1] shows that any knot in families (VII) and (VIII)
has a surgery description on a minimally twisted chain link with an odd number
of components as in Figure 1. Generically, it seems that a knot in those families
admits an isolated lens space surgery, if the corresponding chain link has at least
seven components.

As far as we know, when a hyperbolic knot admits multiple integral exceptional
slopes, these slopes are successive.

Question 3.1. Are integral exceptional slopes for a hyperbolic knot successive?

We expect that any knot given in Section 2 has exactly one non-trivial excep-
tional slope.
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