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Abstract

Recently developed computational techniques are applied to the simula-
tion of the crack propagation of a surface crack in a welded joint. The
results are compared with those obtained by the conventional techniques.
Three approaches are adopted: three-dimensional finite element analysis us-
ing quadratic tetrahedral finite elements; the two-dimensional extended finite
element method using the Mk factor; and the use of three-dimensional Mk
factor formulae. In the numerical examples, stress intensity factors, Mk fac-
tors, crack paths and fatigue cycles are evaluated for a surface crack in a
T-shaped welded joint. The accuracy and effectiveness of the approaches are
discussed.
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1. Introduction

Welded joints are often adopted in ships and ocean structures. Evaluation
of fatigue strength of the welded joints is important in assessing the structural
integrity of welded structures. The detailed description for mechanics of
materials, fatigue and fracture are given in [1-5]. Methods of evaluation
include fracture mechanics analysis and crack propagation simulation. So
far, several analytical/numerical approaches have been proposed and new
computational techniques have been developed. Additionally, simulations
for complex shape geometry are easily handled by advances in computer
power.

Fracture mechanics analysis and crack propagation simulations are con-
ducted to evaluate the fatigue crack growth life of welded joints. To carry
out such simulations, the stress intensity factor (SIF) of cracks embedded at
the weld toe should be evaluated accurately. However, there are difficulties
in obtaining the SIF of cracks because the welded joints have complex geom-
etry, and they have a crack front singularity and high stress concentration
near the weld. Weld toe magnification factor (Mk factor) can be used to
evaluate the SIF of a surface crack located at the weld toe. The Mk factor
was originally proposed by Maddox [6] to quantify the change in stress inten-
sity due to the presence of welded attachments. The SIF of a surface crack
located at the weld toe can be predicted from formulae for the Mk factor
and reference SIF solutions of a surface crack on a rectangular plate; i.e.,
the so-called Raju-Newman solution [7]. In addition, simplified prediction
of the crack propagation can be carried out by adopting the Paris law [8].
The Mk factor is evaluated using two-dimensional (2D) or three-dimensional
(3D) welded joint models. In this paper, the Mk factors in 2D and 3D cases
are denoted Mk(2D) and Mk(3D), respectively. Simplified formulae for the
Mk factor have been proposed for several types of welded joints and have
been included in standard specifications: e.g., BS7910 [9] and WES2805 [10].
The use of the Mk factor is a simple and effective approach, and the Mk
factor is used by service engineers in evaluating the structural integrity of
welded structures.

In recent years, new computational techniques have been proposed to re-
duce the modeling tasks in crack analyses. Finite Element Analysis (FEA)
is widely used in the fracture mechanics problems and the applications for
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ships and ocean structures were carried out [11-16]. FEA using triangular
or tetrahedral finite elements (FEs) is one such technique. The FE model-
ing of complicated geometry including cracks is made possible by software
that automatically generates meshes. Techniques to compute the SIF have
been proposed and employed in the simulation of crack propagation using
triangular or tetrahedral elements [17-20]. Meshfree approaches, such as the
element-free Galerkin method [21,22], eXtended finite element method (X-
FEM) [23,24] and free mesh method [25,26] can reduce the modeling tasks
for structures with complex shape. As one such approach, the X-FEM is
suitable for solving crack problems and analyzing crack propagation; the
new basis functions are introduced to the original displacement function of
the finite element method (FEM) to represent the displacement discontinu-
ity of the crack surface and the near crack tip asymptotic solutions. The
crack propagation is effectively analyzed because relocations of the enrich-
ment functions are performed without remeshing procedures. As another
approach, the boundary element method [27-29] reduces the modeling tasks
since only the surface meshing of cracked bodies is needed in the discretiza-
tion.

In this study, propagation of a surface crack in a T-shaped welded joint
is simulated using the new approaches of computational fracture mechan-
ics. Although actual fatigue failure in welded joints starts multiple surface
cracks and forms a very shallow surface crack along the stress concentra-
tion region, single semi-elliptical crack is assumed to validate the fracture
mechanics analysis and crack propagation simulation. The results are com-
pared with those obtained with conventional techniques. Three approaches
are employed: (i) 3D FEA using quadratic tetrahedral FEs, (ii) the 2D X-
FEM using the Mk(2D), and (iii) the use of Mk(3D) formulae. In (i) 3D FEA
using quadratic tetrahedral FEs, automatic mesh generation software [30] is
adopted to model surface cracks in welded joints. The surface crack is defined
by the 3D model directly and the FE model is automatically generated using
the tetrahedral FEs. The virtual crack closure-integral method (VCCM) [31]
is adopted to evaluate the SIFs. The remeshing is incrementally performed
as the crack extends. For the (ii) 2D X-FEM using the Mk(2D), a method
proposed by the authors [32] is adopted. The method is based on the wavelet
FEM [33-35] and the X-FEM. The discretization is based on fixed grids (the
so-called voxel approach) [36], and the approach is suitable for modeling
complex shape geometries such as welded joints. Hereafter, the method is
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referred to as the WX-FEM. Although the analysis is 2D, simplified propa-
gation of a surface crack in a welded joint can be simulated using the Mk(2D)

and Raju-Newman solution. Furthermore, 3D crack propagation simulations
are carried out using the Mk(3D) formulae and Raju-Newman solution in
the (iii) Mk(3D) formulae approach. The Paris law is adopted for the crack
growth law. The SIFs, Mk factors, crack paths and fatigue cycles obtained
with the three approaches are compared, and the accuracy and effectiveness
of the proposed approaches are discussed.

The paper is organized as follows. Section 2 presents crack propagation
simulation using the Mk(3D) formulae. Crack modeling and simulation of
crack propagation using the tetrahedral FEs are described in section 3. Sec-
tion 4 presents the simulation of crack propagation using the WX-FEM and
Mk(2D). In section 5, propagation of surface cracks in T-shaped welded joints
is simulated as numerical examples. Finally, conclusions are drawn in section
6.

2. Simulation of crack propagation using the Mk factor

2.1. Mk factor

A T-shaped welded joint structure including a surface crack is shown in
Fig. 1 (a). The Mk factor is used to evaluate the mode-I SIF K of a surface
crack at the weld toe. The Mk factor is defined as the ratio of the K value
with and without the welded attachment:

Mk =
K(in plate with attachment)

K(in same plate but with no attachment)

. (1)

Researchers [6,37-39] have evaluated the Mk factor using a 2D edge crack
model (Mk(2D)) because it has been difficult to model a 3D welded joint
model including a surface crack. However, it has been found that the esti-
mation of the SIF using Mk(2D) is overly conservative, and it was proposed
to evaluate the Mk factor using a 3D model (Mk(3D)) and 3D FEA [40-42].
Bowness and Lee [43-45] proposed highly accurate formulae for Mk(3D) in
wide ranges of the aspect ratio of the surface crack, welded attachment thick-
ness, main plate thickness and weld angle, for T-butt welded joints through
a parametric study of 3D FEAs. In addition, simplified formulae of the Mk
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factor for several types of welded joints have been included in standard spec-
ifications [9,10], and the formulae can be adopted to evaluate behaviors of
crack growth in welded joints using the Paris law.

2.2. Simulation of crack propagation using the Mk(3D)

The mode-I SIF of a surface crack at the weld toe can be predicted em-
ploying the Mk factor formulae and Raju-Newman solution. In addition,
simplified predictions of the crack propagation can be made to adopt the
Paris law. The surface crack is assumed to initiate at the weld toe, and it
grows under cyclic loadings. A flowchart of the crack propagation analysis
using Mk(3D) formulae is shown in Fig. 1 (b). The cross-section of a semi-
elliptical surface crack and the local coordinates are shown in 1 (c). Global
and local coordinates are denoted x1, x2, x3 and x′

1, x
′
2, x

′
3, respectively. ϕ

is an eccentric angle of the semiellipse. The depth of the surface crack is
denoted a and the width is denoted 2c. The crack growth from cycle Nk

to cycle Nk+1 is schematically presented as shown in Fig. 1 (d). ∆ak and
∆ck are crack growth increments at the deepest point and the crack ends
in the k-th step of the calculation, respectively. Adopting Mk(3D) formulae,
propagation of a semi-elliptical surface crack at the weld toe is simulated
according to the following procedures.

(i) Employing the Mk(3D) formulae and Raju-Newman solution, K of a
surface crack in a welded joint is estimated at the deepest point Ka

and at the crack ends Kc.

(ii) ∆Ka and ∆Kc are evaluated using Ka and Kc obtained in procedure
(i). The crack growth increments ∆ak and ∆ck in the k-th step are
evaluated by substituting ∆Ka and ∆Kc into the Paris law.

(iii) ∆ak and ∆ck are added to ak and ck, respectively. The geometry is
updated for the computation of the k+ 1-th crack propagation step as
shown in Fig. 1 (d).

Procedures (i)-(iii) are repeated until the crack grows to the prescribed size.
Because K is only evaluated at the deepest point and the crack ends, the
developed surface crack maintains a semi-elliptical shape. In chapter 4, crack
propagation simulations of a surface crack using Mk(2D) are presented.
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Figure 1: Procedures for simulating the propagation of a semi-elliptical surface crack using
Mk(3D).

3. Simulation of crack propagation using tetrahedral FEs

VCCM (Virtual Crack Closure-Integral Method) employed to compute
the SIFs is briefly described. In VCCM computations, only the nodal opening
displacements and nodal forces at the crack front are needed to evaluate the
SIFs. The mode splitting is relatively easy in the mixed-mode problem com-
pared with the case in other SIF calculation techniques; e.g., the J-integral
[46] and virtual crack extension methods [47]. Okada et al. [31] proposed
applying the VCCM calculation technique to 3D cracks using quadratic tetra-
hedral FEs.

Automatic mesh generation software is adopted to generate the FE welded
joint model including surface cracks. The user interface of the FE pre-
processing software (pre-software) [30] is shown in Fig. 2 (a). A surface crack
can be directly defined in the 3D model and the FE modeling using quadratic
tetrahedrons can be performed simply by one-click operation. The software
is connected with MSC.NASTRAN [50] in a Windows operating system and
the remeshing is executed incrementally in a batch process. Flowchart of the
crack propagation simulation is presented in Fig. 2 (b). The simulation has
the following procedures.

(i) A 3D-CAD welded joint model is arranged and imported the CAD
model into the pre-software.
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(ii) Surface crack position/size 

 are set on 3D-CAD model 

(iii) Generation of FE model
 (Tetrahedral FEs)

(iv) MSC.NASTRAN calculation

(v) SIFs evaluation (VCCM)

(vi)        Crack growth

          ( Paris law )

Stop Analysis

(i) Import 3D-CAD model

Crack length > Breaking length? 

(a) (b)

Figure 2: User interface and flowchart of a 3D crack propagation simulation system.

(ii) The initial crack size is defined and the location of the surface crack is
set in the model.

(iii) Local settings of the mesh parameter are defined in the model. A mesh
is automatically generated using quadratic tetrahedral FEs.

(iv) The boundary and loading conditions are set for the FE model. Linear
static analysis is performed using MSC.NASTRAN.

(v) SIFs are evaluated using the VCCM technique in the post-processing
software.

(vi) Crack growth rates are evaluated using the SIFs. Because the KI-
dominant problem is only treated in this study, KI is used to evaluate
the crack growth rate and the surface crack always extends in the same
plane. The crack geometry is updated.

Procedures (iii)-(vi) are repeated until the surface crack grows to the pre-
scribed size. The crack surface in the FE model is shown in Fig. 3 (a). A
schematic illustration of the crack propagation is shown in Fig. 3 (b). The
surface crack extends from cycle Nk to cycle Nk+1. The nodes along the crack
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Figure 3: Cross-section of a surface crack in the FE model and schematic illustration of
the crack propagation.

front are denoted Mi (i = 1, · · · , n), and the crack growth increments are
denoted ∆i, respectively. In the proposed approach, the crack growth rate
and the crack growth direction are evaluated for all nodes along the crack
front. Although it is known that a plane stress condition is assumed near
the crack ends, a plane strain condition is assumed at all nodes of the crack
front.

4. Crack propagation simulation using 2D WX-FEM and Mk(2D)

4.1. Analysis of 2D crack problems using WX-FEM

The wavelet FEM [33,34] is a numerical technique used to solve partial
differential equations. Wavelet functions are used as interpolation functions
in the FEM framework. Spatial resolution of the analysis model is easy to
control based on the multiresolution analysis in the wavelet theory [51,52].
A schematic illustration of the wavelet FEM is presented in Fig. 4. Linear
B-spline scaling/wavelet functions are adopted as the basis functions. The
lowest resolution is assumed level-j. The level-j scaling functions are periodi-
cally located to represent the low-resolution solution. In addition, the level-j
wavelet functions are adopted to represent the high-resolution solution. The
wavelet functions can be superposed locally where a high-resolution approx-
imation is needed such as stress concentration. In the fracture mechanics
analysis, wavelet functions located in the radius re is employed. Equally
spaced structured cells (level-j cell) and sub-cells are adopted to accurately
integrate the stiffness matrix including the wavelet functions. In the similar
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manner, higher resolution wavelet functions (level-j + 1, j + 2, · · · ) can be
superposed subsequently to increase the spatial resolution.

Level-j scaling function

Level-j wavelet function

Crack

re

Level-j cell (for numerical integration) Gauss quadrature

x1
x2

x1

x2

Sub-cell (for numerical integation)

Figure 4: Wavelet FEM for crack problems.

Cell

Sub-cell

Enriched node Js (Scaling function)

Enriched node Cs (Scaling function)

Enriched node Cw (Wavelet function)

Crack

Welded joints

2
 re

ρ

Weld toe treatment

(a) (b)

Ω+Ω-

Ω+Ω-

x1

x2

Figure 5: WX-FEM modeling of 2D welded joints.

To solve crack problems effectively, new basis functions are introduced
into the wavelet FEM according to the concept of the X-FEM (WX-FEM),
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to treat the crack problems and represent the displacement discontinuity of
the crack surface and the high stress concentration near the crack tip. Fur-
ther details of the WX-FEM are presented in [32]. A schematic illustration of
the WX-FEM for the 2D welded joint structure is shown in Fig. 5 (a). The
enlarged view near the welding part is shown in Fig. 5 (b). Because the WX-
FEM discretization is based on fixed grids (the so-called voxel approach) [36],
and it is then quite possible to model a complex shape geometry. Further-
more, a sub-cell approach is adopted to accurately represent the boundary of
the body. The radius of curvature ρ of the weld toe treatment can be easily
modeled employing the proposed approach as shown in Fig. 5 (b).

4.2. Crack propagation simulation of a surface crack using the 2D WX-FEM
and Mk(2D)

The crack propagation is simulated using the 2D WX-FEM and Mk(2D).
A schematic illustration of the approach for a surface crack in a T-shaped
welded joint is presented in Fig. 6 (a). A flowchart of the crack propagation
simulation is shown in Fig. 6 (b). The procedures are follows.

(i) A 3D welded joint with a surface crack is modeled as a 2D plane strain
edge cracked plate that has the same profile as the 3D welded joint.
The SIF K of the edge crack is evaluated employing the 2D WX-FEM.

(ii) K of the 2D single edge cracked plate is evaluated using the established
formulae; e.g., [54].

(iii) Mk(2D) is evaluated using K obtained in procedures (i) and (ii); i.e.,
Mk(2D)= K(2D welded joint)/K(2D cracked plate).

(iv) K of the surface crack in the 3D welded joint is estimated as the product
of the Raju-Newman solution and Mk(2D) obtained from procedure
(iii).

(v) The range of SIF ∆K is obtained using K evaluated in procedure (iv),
and the crack extends for the next step of the calculation.

Procedures (i)-(v) are repeated until the edge crack reaches the specified
length. In this approach, the propagation of a surface crack in a welded joint
can be simulated effectively without applying the direct 3D approach.
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Figure 6: Crack propagation simulation using the WX-FEM and Mk(2D).

5. Numerical Examples

Crack propagation is simulated for surface cracks in T-shaped welded
joints employing the approaches described in Chapters 2, 3 and 4. Two
types of welded joints are adopted. The welded joints used in section 5.1
and 5.2 are referred to as Models A and B, respectively. The parameters are
defined in Table 1.

Table 1: Parameters needed for the welded joint models.

S Main plate length ρ Weld toe radius
W Main plate width t1 Main plate thickness
H Height of rib t2 Thickness of rib
L Footprint width of rib l1 Vertical leg of welding
θ Weld angle l2 Horizontal leg of welding

The initial crack is a semi-circular surface crack at the weld toe. a is crack
depth and c is crack half width. The size of the initial crack is a0 = c0 =0.2
mm (a0/c0 =1.0). The crack develops under cyclic loading until the crack
depth reaches one-half the thickness of the main plate. The number of cycles
in the final step is assumed as the fatigue crack growth life. Tensile and
bending loadings are applied and the stress ratio is set to zero. A small
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scale yielding condition is assumed and the welding residual stress is not
considered. The material is TMCP (thermo-mechanical control process) steel
and the coefficients for the Paris law are C = 7.24e-13 and m = 3.565 (SIF
unit: MPa m1/2).

The 3D FEA using quadratic tetrahedral FEs, the 2D WX-FEM and
the Mk(3D) formulae are adopted for the crack propagation simulations. The
SIFs, Mk factors, crack paths and fatigue cycles are examined and compared
between the three approaches. In the 3D FEA, 400 nodes are used at the
crack front to evaluate the SIFs. The number of nodes is maintained after the
crack propagation. In the WX-FEM, level-j scaling/wavelet functions and
level-j + 1 wavelet functions are adopted. The wavelet functions are located
in the radius re =2.0 mm from the crack tip. To check the accuracy of the
WX-FEM model, 2D FEM models are also constructed using MSC.MARC
MENTAT [55]. The J-integral is used to evaluate the SIFs and mode splitting
of KI and KII is performed employing the crack option of MSC.MARC.

5.1. Analysis of a T-shaped welded joint with a radiused toe (ρ/t1=0.1) (Model
A)

5.1.1. FE modeling and evaluation of Mk factors

Model A is shown in Fig. 7 (a). One-sided welding is employed and
the model has a radiused weld toe (ρ/t1=0.1). Close-up view of the weld
toe is presented in Fig. 7 (b). The surface crack is located at S/2 in the
longitudinal direction of the model. When the welded attachment is removed,
Model A becomes a rectangular plate including a surface crack as shown in
Fig. 7 (c). The model is called Model A’. The geometries are defined by the
parameters shown in Table 2. Young’s modulus E =210 GPa and Poisson’s
ratio ν =0.3 are assumed.

Table 2: Parameters for Model A.

S 124 mm ρ 2.2 mm
W 100 mm t1 22 mm
H 52 mm t2 18.5 mm
L 27.5 mm l1 9.0 mm
θ π/4 l2 8.09 mm
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Tensile loading (T1) :

(a) 3D FEM model (b) Loading conditions
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Figure 8: FE model and the boundary conditions (Model A).
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Figure 9: Deformations of Model A (a = c =0.2 mm) are visualized x1 − x3 plane at
x2 =50 mm.
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The 3D FE model including a surface crack is shown in Fig. 8 (a). The
whole structure is divided into 3.0 mm tetrahedral elements and the surface
crack region is divided into 0.1 mm elements. There are 0.7 million nodes
and 0.45 million elements in the initial crack model. To examine Mk factors
and crack propagation simulations, three kinds of boundary conditions are
employed. Schematic illustrations of the loading conditions are shown in
Fig. 8 (b). When tensile loading condition (T1) is chosen, force boundary
conditions using Rigid Body Element 2 (RBE2) elements are adopted. RBE2
[50] is a type of rigid body element, and a tying relation can be constructed
between a reference node and tied nodes. The center node of the model edge
(x2−x3 plane) acts as the reference node and the other nodes on the x2−x3

plane are tied nodes as shown in Fig. 8 (a). The loads are enforced along the
x1 direction, and the rotation component θx2 is fixed on the reference nodes.
When tensile loading condition (T2) is chosen, uniform pressure is employed
on the edge. Therefore the rotation θx2 of the edge is free. In addition, RBE2
is employed on the edge, and moments are enforced on the reference nodes
when bending loading condition (B1) is chosen.

To check the accuracy of the FE model, Mk(3D) is examined. A paramet-
ric study is performed to evaluate Mk(3D) of the surface crack in Models A
and A’. The surface crack dimensions a and c are varied from 0.2 to 10.0 mm
(a/t1=0.01-0.45) while maintaining the aspect ratio a/c =1.0. KI are evalu-
ated at both the crack ends and the deepest point. The results are compared
with the Mk(3D) formulae eqs. (A5)-(A8) in [43]. KI is also calculated using
Model A’ to evaluate Mk(3D). The boundary condition (T1) is adopted for
tensile loading case, and (B1) is adopted for bending loading case for both
sides of Model A’.

The deformations of Model A (a = c =0.2 mm) with various boundary
conditions are examined in Fig. 9 (a)-(c) for tensile loading case and Fig. 9
(d) for bending loading case. The deformations are visualized x1 − x3 plane
at x2 =50 mm. When a rotation fixed boundary condition is employed both
sides (T1-T1) in Fig. 9 (a), the displacement of the edges in their perpen-
dicular directions is uniform. On the other hand, a rotation-free boundary
condition is employed both sides of the model (T2-T2) in Fig. 9 (c), the
edges are rotated and the local bending due to the asymmetric attachment
occur near the weld toe. The local bending can also be seen when rotation
free and fixed boundary conditions (T1-T2) are adopted as shown in Fig. 9
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(b). Additionally, the welded joint model is deformed under bending moment
as shown in Fig. 9 (d) when bending loading condition (B1-B1) is adopted.

The change in Mk(3D) for a/t1 with the boundary conditions (T1-T1),
(T1-T2) and (T2-T2) are examined. The Mk(3D) of the crack ends and the
deepest point is presented in Fig. 10 (a) and the close-up view a/t1 < 0.2 is
presented in Fig. 10 (b). Mk(3D) of the crack ends are larger than that of the
deepest point because the high stress concentration is generated at the weld
toe. Additionally, the Mk(3D) are decrease as the a/t1 is larger. The Mk(3D)

of the analysis with the boundary condition (T1-T1) is larger than theMk(3D)

with the boundary conditions (T1-T2) and (T2-T2). It is found that the local
bending near the weld toe reduce the Mk(3D). The boundary conditions (T1-
T1) and (B1-B1) are employed for the crack propagation simulations.

The Mk(3D) is compared with the reference solutions. The results are
presented in Fig.11 (a) and (b) for the tensile (T1-T1) and bending (B1-
B1) loading cases. In the tensile loading case, Mk(3D) approaches unity as
a/t1 is increases. In contrast, Mk(3D) decreases below unity when a/t1 is
greater than 0.1 for the bending loading case since the welded attachment
restrains the upward and opening deformations of the surface crack. The
Mk(3D) formulae are also presented in the figures as reference solutions. In
the tensile loading case, the Mk(3D) at the deepest point evaluated by the
3D FEA is good agreement with the reference solution. On the other hand,
the Mk(3D) at the crack ends is smaller than the formula. In the bending
loading case, both the Mk(3D) at the deepest point and crack ends are good
agreement with the formulae. Although the trends in the values at the crack
ends agree between the formula and theMk(3D), one can find some differences
in their values. It should be pointed out that when the stress intensity factor
is computed using the energetic methods such as J-integral, VCCM, etc.,
the evaluated stress intensity factors have steep variations at the vicinity of
the surface point as presented by Li et al. [56] and Okada et al. [57]. The
values of the stress intensity factor at the crack ends strongly depend on
the methodology, finite element mesh discretization, finite element type, etc.
Therefore, the differences in the evaluated values are inevitable. Thus, it can
be considered that although there are some differences between the Mk(3D)

and the formula at the crack ends in the tensile loading case, the change in
SIF due to the stress concentration at the weld toe can be evaluated through
tetrahedral FE modeling and SIF evaluations.
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Figure 10: Comparisons of Mk(3D) employing analyses with the boundary conditions T1
and T2 (Model A).
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Figure 11: Comparisons of Mk(3D) with the reference solutions (Model A).

The 2D WX-FEM model with an edge crack is shown in Fig. 12 (a). The
whole structure is divided into equally spaced structured cells with dimen-
sions of 0.5 mm, and the sub-cell approach is adopted to accurately represent
the fillet shape and the radius of curvature at the weld toe. The length of a
sub-cell is about 0.03 mm. The 2D FE model is shown in Fig. 12 (b). The
whole structure is divided into 0.5 mm FEs, and very small 0.02 mm FEs
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are adopted near the edge crack to evaluate the SIFs. For the tensile load-
ing case, uniform stress σ11 is adopted at the model edges. In the bending
loading case, bending moment M is enforced on the edges.

KI and Mk(2D) of the WX-FEM model are compared with the refer-
ence solutions. In the tensile loading case, uniform stress σ11=1.0 (MPa) is
adopted. The bending moment is adopted such that the bending stress is
σb(= 6M/W 2)=1.0 MPa in the bending loading case. The variations in KI

for the crack length a are shown in Fig. 13 (a). KI of a single edge cracked
plate [54] are also presented. The results of the WX-FEM are in good agree-
ment with those of the 2D FEM. Additionally, KI approaches the single edge
cracked plate values as the crack length increases. Furthermore, the Mk(2D)

variations of the WX-FEM are shown in Fig. 13 (b). The results are com-
pared with the Mk(2D) formulae in [40]. High Mk(2D) is obtained when a/t1
is small, and Mk(2D) approaches unity as a/t1 increases. Although the for-
mulae provide results that are larger than the WX-FEM solutions when a/t1
is small owing to the assumption of a sharp notch, they are good agreement
with each other. The comparisons confirmed that the WX-FEM can repre-
sent the high stress concentration near the weld toe with high accuracy.

5.1.2. Crack propagation simulation

The crack propagation simulations are carried out employing the 3D FEA,
the WX-FEM and the Mk(3D) formulae. Tensile and bending loadings are
enforced such that the maximum tensile stress is 200 MPa and the maxi-
mum bending stress is 200 MPa. The surface crack develops every 9,000
cycles (tensile loading case) and 14,000 cycles (bending loading case) per in-
crement. The crack paths are shown in Fig. 14 (a) and (b) for tensile and
bending loading cases, respectively. In addition, KI of the crack ends and
the deepest point are presented in Fig. 15 (a) and (b), respectively. In the
tensile loading case, there are small differences in KI between the crack ends
and the deepest point. The surface crack develops a semi-circular shape. In
the bending loading case, the KI of the crack ends uniformly increase but
the deepest point remains constant. The surface crack thus develops a semi-
elliptical shape. Furthermore, the WX-FEM well predicts KI at the crack
ends although the same Mk(2D) is adopted for evaluating KI at the deepest
point and the crack ends. This is because the stress concentration at the weld
toe is not so severe and there are small differences in the Mk factors between
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the deepest point and the crack ends. It is noted that KI evaluated by the
3D FEA is smaller than the results of the Mk(3D) formulae. The differences
arise from the distinction of the Mk(3D) values presented in Fig. 11 (a).

The relations between the number of cycles and the crack length a are
presented in Fig. 16 (a) and (b) for tensile and bending loading cases, re-
spectively. Because the fatigue crack growth life is determined by the depth
a, the fatigue life depends on KI at the deepest point. The fatigue lives
determined by 3D FEA, the WX-FEM and the Mk(3D) formulae are around
12.1×105, 15.5×105 and 8.9×105 cycles, respectively, for the tensile load-
ing case, and 17.7×105, 17.9×105, and 14.6×105 cycles, respectively, for the
bending loading case. KI at the deepest points are presented in Fig. 17 (a)
and (b) for a < 2.5 mm. It is found that the fatigue life corresponds to the
magnitude of KI when the depth is small. Although the crack propagation
simulation techniques are different, the determined fatigue lives for Model A
are in good agreement.

3D FEM

WX-FEM

(a) Tensile loading (b) Bending loading

3D FEM

WX-FEM

Formula Formula

Figure 14: Crack paths in the crack propagation simulations (Model A).
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Figure 17: KI in the crack propagation simulations (a < 2.5 mm) (Model A).

5.2. Analysis of the T-shaped welded joint with a ground weld toe (Model B)

5.2.1. FE modeling and evaluation of Mk factors

Crack propagation simulations for Model B are carried out. Model B is
presented in Fig. 18 (a). The model has a ground weld toe. Young’s modulus
is E = 206 GPa and Poisson’s ratio is ν = 0.3. The main plate is ground
0.4 mm from the surface to remove the undercut. The parameters are set
as shown in Fig. 18 (b). The model was used in the SR202 report (Ship-
building research committee 202) [58] and the fatigue strength evaluation
was discussed employing fatigue tests and numerical simulations. The initial
crack is located at the deepest point of the radiused toe. To the authors’
knowledge, there is no Mk(3D) formulae for the ground weld toe. The results
are therefore compared with those obtained with 3D FEA and the 2D WX-
FEM. The SR202 numerical results are also adopted as reference solutions
although there was no detailed discussion of the accuracy in that report.

The 3D FEA model with a surface crack is shown in Fig. 19. A half
model is adopted because of the symmetry property of the problem. There
are 0.45 million nodes and 0.3 million elements in the initial crack model. A
bending loading is enforced. The bending moment and symmetrical bound-
ary condition are enforced on the 3D FEA model as shown in Fig. 19. The
WX-FEM model with an edge crack is presented in Fig. 20 (a). A half
model is again adopted. To check the accuracy of the WX-FEM model, the
2D FEM model is arranged as shown in Fig. 20 (b). The boundary condi-
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tions of the WX-FEM and FEM models are shown in Fig. 20 (a) and (b).
The mesh divisions of the 3D FEA, WX-FEM model and 2D FEM model
are the same as those of Models A and B.

The results of KI are presented in Fig. 21 (a) for the WX-FEM, the 2D
FEM, the SR202 report and a single edge cracked plate. In the SR202 report,
KI was evaluated using a finite element substructure model [59]. The crack
length a′ (a′ = a+0.4 mm) is defined as shown in Fig. 21 (b). Although there
are differences between the results of the WX-FEM and the SR202 report,
the WX-FEM results correspond to the 2D FEM results. In addition, KI

of the WX-FEM approaches that of a single edge cracked plate as the crack
length is increases. It is thus confirmed that the WX-FEM results provide
highly accurate solutions for Model B.

In addition, Mk(2D) is examined. Because the weld toe is ground, two
kinds of crack lengths a and a′ can be considered when evaluating KI for a
single edge cracked plate. The KI values and the Mk(2D) for the WX-FEM
model and the single edge cracked plate are shown in Table 4. When the
crack length a′ is chosen, very small Mk(2D) is obtained. The crack length a
is then adopted in evaluating Mk(2D) although Mk(2D) is slightly larger than
unity as the crack length increases.
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Figure 18: T-shaped welded joint (Model B).
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Table 3: Parameters for Model B.

S 152 mm ρ 6.0 mm
W 100 mm t1 22 mm
H 52 mm t2 10.0 mm
L 28 mm l1 9.0 mm
θ π/4 l2 9.0 mm

M

x1 x2

x3
Symmetrical B.C.

Reference node
Tied nodes

RBE2 connection

Figure 19: FE model and boundary conditions (Model B).
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Figure 20: WX-FEM model and FEM model (Model B).
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Table 4: Variations of KI and Mk(2D) of Model B (KI unit: MPa mm1/2).

a (a′) KWX−FEM
I KPlate

I (a) Mk(2D)(a) KPlate
I (a′) Mk(2D)(a

′)

0.2 (0.6) 1.38 0.88 1.57 1.50 0.92
1.0 (1.4) 2.51 1.90 1.32 2.22 1.13
3.0 (3.4) 3.59 3.19 1.12 3.40 1.05
5.0 (5.4) 4.52 4.23 1.07 4.44 1.02
7.0 (7.4) 5.63 5.35 1.05 5.60 1.00
9.0 (9.4) 7.11 6.77 1.05 7.11 1.00
11.0 (11.4) 9.26 8.79 1.05 9.30 1.00
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5.2.2. Crack propagation simulation

The crack propagation is simulated for Model B. The results of the 3D
FEA, 2D WX-FEM and the SR202 report are compared. Four bending load-
ings are adopted to provide maximum bending stresses of 130, 150, 200 and
300 MPa, and the surface crack develops every 6.0×104, 4.0×104, 1.5×104

and 0.3×104 cycles, respectively.
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Figure 22: KI for the crack propagation simulations (Model B).

KI values at the deepest point are shown in Fig. 22 for the 3D FEA
and WX-FEM. The results of 3D FEA are in good agreement with those
of the WX-FEM for all crack lengths. The relation between the number
of cycles and crack length a is shown in Fig. 23. The results are in good
agreement in all loading cases. Additionally, the fatigue lives of the 3D FEAs
and the WX-FEM are summarized in Table 5. The results of the SR202
report are digitized from the report. Although the approaches of the crack
propagation simulations are different, the results show good correlation. It
is thus confirmed that the approach used in this study can be adopted to
determine the fatigue crack growth life of a surface crack in a welded joint.
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Table 5: Fatigue crack growth lives (Model B).

3D-FEA WX-FEM SR202

130 MPa 8.58 ×106 7.86 ×106 6.30 ×106

150 MPa 5.20 ×106 4.72 ×106 3.87 ×106

200 MPa 1.88 ×106 1.70 ×106 1.38 ×106

300 MPa 4.32 ×106 3.96 ×106 3.34 ×106
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In the numerical examples, crack propagation simulations were performed
using the 3D FEA, the WX-FEM and Mk(3D) formulae for a surface crack
in a T-shaped weded joint. When using the Mk(3D) formulae, the crack
propagation was easily simulated with simplified formulae and the calcula-
tion required a very short computational time. Employing the WX-FEM, 2D
propagation of an edge crack could be simulated with high accuracy without
remeshing procedures and a highly accurate Mk(2D) was obtained. In addi-
tion, propagation of a surface crack in a welded joint was simulated using the
Mk(2D) and Raju-Newman solution. In the 3D FEA using quadratic tetra-
hedral FEs, although large-scale computation was needed, highly accurate
SIFs were obtained and there was no need to assume a semi-circular shape of
the surface crack. It will thus be possible to simulate propagation of a sur-
face crack located in an arbitrary position of a welded joint. Although the
above techniques are different, the results obtained for KI , crack lengths and
crack paths are in good agreement. It is thus confirmed that the approaches
used in this study can be used to simulate crack propagation and predict the
fatigue crack growth life for a surface crack in a welded joint.

6. Conclusion

In this paper, propagation of surface cracks in T-shaped welded joints
was simulated using new approaches of computational fracture mechanics.
Two computational approaches were adopted. One was the 3D FEA us-
ing quadratic tetrahedral FEs and the other was the 2D WX-FEM and the
Mk(2D). The results were compared with results obtained with Mk(2D) and
Mk(3D) formulae. The SIFs, Mk factors, crack paths and fatigue cycles were
compared. The accuracy and effectiveness of the proposed approaches were
discussed with the numerical examples. It was confirmed that the approaches
of computational fracture mechanics and the crack propagation simulations
were effective in evaluating the fatigue strength of welded joints.
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