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Abstract

An optimization methodology is proposed for the piezoelectric transducer

(PZT) layout of an energy-recycling semi-active vibration control (ERSAVC)

system for a space structure composed of trusses. Based on numerical opti-

mization techniques, we intend to generate optimal location of PZTs under

the constraint for the total length of PZTs. The design variables are set as

the length of the PZT on each truss based on the concept of the ground

structure approach. The transient problems of the mechanical and electri-

cal vibrations based on the ERSAVC theory are considered as the equations

of state. The objective is to minimize the integration of the square of all
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displacement over the whole analysis time domain. The sensitivity of the

objective function is derived based on the adjoint variable method. Based

on these formulations, an optimization algorithm is constructed using the

fourth-order Runge-Kutta method and the method of moving asymptotes.

Numerical examples are provided to illustrate the validity and utility of the

proposed methodology. Using the proposed methodology, the optimal lo-

cation of PZTs for the vibration suppression for multi-modal vibration is

studied, which can be benchmark results of further study in the context of

ERSAVC systems.

Keywords: , Optimal design, Semi-active vibration control, Sensitivity

analysis, Piezoelectric actuator

1. INTRODUCTION

Vibration suppression is one of the most important issues in the design

and operation of space structures. Due to limited launch capabilities, such

structures need to be extremely light-weight although some structures suc-

cumb to vibrations because of their low structural stiffness. Moreover, vi-

brational energies are hard to disperse in the vacuum of space, in contrast

to ground environments. These problems can be overcome by vibration con-

trol schemes. Much research has already been performed on the synthesis of

the piezoelectric transducer (PZT) and electric devices, and the main struc-

tural vibration control methodologies [1, 2]. PZTs attached to or embedded

in structures can convert mechanical energy into electrical energy and vice

versa. These have been extensively used as actuators, sensors, and transduc-

ers for various purposes.
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Vibration control schemes can be categorized into three types: active,

passive and semi-active. In the active vibration control (AVC), a voltage

or an electric charge has to be supplied from an external energy source to

the PZTs. AVC systems basically provide the greatest vibration suppres-

sion among these three methodologies. However, for special structures that

have limited energy sources, such as space structures and sea-based plat-

forms, minimizing energy consumption is imperative. Moreover, since accu-

rate models of large space structures are hard to construct due to difficulties

with preliminary experiments and manufacturing errors of these structures,

non-robust active vibration systems can potentially exhibit unstable behav-

iors.

The passive vibration control (PVC) in contrast is always stable, as no

energy is supplied to the system. Compared with the AVC, these are easier to

implement in actual systems, as no controllers, sensors, or filters are required.

However, in most cases, vibration suppression is inferior compared with AVCs

and, furthermore, performance levels might not be sufficient.

The third type, the semi-active vibration control (SAVC), dynamically

changes some property of the structure according to feedback from the state,

without adding extra energy. SAVC systems are usually able to achieve

higher performance than PVC schemes without the disadvantages of AVC

systems. Outlines of the various methods categorized as SAVC can be found

in comprehensive reviews [3, 4, 5].

In this study, the focus of the work is on semi-active vibration suppression

having energy-recycling capability with circuit switching [6, 7, 8, 9, 10]. For

energy-recycling type SAVC schemes, controllers are composed of piezoelec-
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tric materials and switchable circuits whose status is controlled according to

the state of the controlled target. Richard et al. [6], Corr and Clark [7],

and Onoda et al. [8] have proposed methods for the energy-recycling semi-

active vibration control (ERSAVC) using an inductive circuit with a switch-

ing element. Depending on switching strategies, these energy-recycling sys-

tems are variously called SSDI, LR-switching, RL-shunt, and others. Such

energy-recycling systems inherently possess energy-harvesting and energy-

confinement mechanisms [9] that make vibration suppression effects much

better than the ones of conventional semi-active systems. Their extended

scheme, requiring an additional external voltage to provide further damping,

so-called SSDV (synchronized switch damping on voltage), were also studied

by Lefeuvre et al. [11], Badel et al. [12] and Ji et al. [13, 14]. Recently, Qiu

et al. [10] presented an extensive overview of this field (i.e., switching con-

trols using piezoelectric materials for vibration suppression) that will enable

readers to quickly grasp the history and significance of semi-active vibration

suppression.

In ERSAVC systems, the improvement of the control logic and the circuit

construction were mainly focused on [15, 16]. However, the location of PZTs,

which is one of the most important design issues of the ERSAVC systems,

especially for multi-modal vibration, has not been studied. In ERSAVCs, the

vibration suppression is performed by varying the electric charge and voltage

in a time scale of electrical circuit having shorter period than the structural

one. This drastic change of control value nearly equals to applying impulse

forces to the structure. Moreover, the timing of the control is based on

the both structural and electrical time dependent state which is hard to be
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predicted. This discontinuity and nonlinearity make us unable to introduce

optimal location of PZTs in ERSAVCs theoretically. Thus, a numerical study

is the only way to find the optimal location of PZTs in ERSAVCs.

Numerical optimization for the design of control systems, such as place-

ment optimization of sensors and actuators, has long been studied for AVCs

(e.g. [17, 18, 19, 20, 21]). The development of AVC optimization method-

ologies at early and middle stages is reviewed in [19, 22] respectively. The

integrated optimization of the control system and the controlled structure

has also been well-studied (e.g. [23, 24, 25, 26]). In AVCs, since the control

theory which predicts the state of the system is well established, such as the

theory of controllability and observability judged from the singular value of

the Gramian, the outline of the optimal location of PZTs can be estimated

without numerical optimization. However, to construct the system having

the most effective vibration suppression with the lowest control energy, nu-

merical optimization could be utilized. In this methodology, by integrating

the numerical simulation of the system and gradient based optimization ap-

proach, the optimal solution could be found with a shorter time than the

trial and error design.

Following the study for AVCs, we construct an optimization methodol-

ogy for ERSAVC systems for a space structure composed of trusses proposed

in [8] in this study. Based on approximation techniques and numerical op-

timization techniques, we intend to generate optimal location of PZTs un-

der the constraint for the total length of PZTs within a reasonable analysis

time. Moreover, using this methodology, the optimal location of PZTs for

the vibration suppression for multi-modal vibration is studied, which can
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be benchmark results of further study in the context of ERSAVC systems.

First, the design variables chosen are the set of PZT lengths in the truss-

elements. Physical properties of the PZT are expressed as functions of these

design variables. Next, vibration analysis of the truss is formulated based

on the transient response analysis using the modal method. The objective

is to minimize the integral of the squares of all displacement over the whole

analysis time domain. The sensitivity of the objective function is derived

based on the adjoint variable method [27, 28]. Based on these formula-

tions, an optimization algorithm is constructed using the method of moving

asymptotes (MMA) [29]. Finally, we provide numerical examples for sin-

gle and multi-mode vibration to illustrate the validity and usefulness of the

proposed methodology and to obtain the mechanical aspect which could be

useful for further design of ERSAVC systems from these results.

2. Numerical modeling of energy-recycling semi-active vibration

control systems

2.1. Setup of the piezoelectric transducer

For modeling, a space frame truss, as sketched in Fig. 1, with some PZTs

for vibration control is determined as the design target. First, the element

comprising the PZT on the truss is defined. We consider a rod-type PZT, as

depicted in Fig. 2, made of certain stacked piezoceramics. The piezoceramic

plates are connected in electrically parallel. The PZT is connected to a truss

and forms one rod element connecting two nodes of the structure. In the

numerical analysis, the integrated structure is modeled to have only axial

stiffness and piezoelectric behavior. Thus, the piezoelectric property of the
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PZT can be expressed in terms of the truss element characteristics.

Figures 1 and 2 are about here.

Let lp and δlp be the length and elongation of the PZT respectively. The

equations of state of the PZT comprising a stacked piezoceramic layer are

formulated as follows [30]:

fp = kpδlp − bpQ (1)

V = −bpδlp +
Q

Cp

(2)

where fp is the axial force applied to the PZT, and V and Q are its voltage

and electric charge, respectively, with

kp ≡
Apϵ33

lp(ϵ33s33 − d33
2)

(3)

bp ≡
d33

np(ϵ33s33 − d33
2)

(4)

Cp ≡
Apn

2
p(ϵ33s33 − d33

2)

lps33
(5)

where kp, bp, Cp and Ap are the axial stiffness, piezoelectric coefficient, ca-

pacitance and cross-sectional area of the PZT respectively; s, d and ϵ are

compliance, piezoelectricity and permittivity of the PZT material, and np

the number of the piezoceramic stacks.

We assume for simplicity that the PZT and the truss element have the

same axial stiffness to avoid the change of eigenvalues and eigenvectors of the

structure during the optimization. Let l and δl be the length and elongation
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of the rod containing the PZT, the elongation of the PZT is expressed as

follows:

δlp =
lp
l
δl (6)

2.2. Equations of state for the truss with PZTs

The structure is composed of ne linear truss elements having nn node

points and np PZTs. Let m be the number of degrees of freedom of this

model. Considering as the state variables the displacement vector u at the

nodes and the electric charge vector Q at the PZTs, the following equation

of motion and piezoelectric equation are taken as the equations of state:

Mü+Cu̇+Ku = BpQ (7)

V = −Bp
Tu+Cp

−1Q (8)

where M is a mass matrix, C a damping matrix, K a stiffness matrix, Bp

a piezoelectric coupling matrix, V an electric potential vector, and Cp a

capacitance matrix.

For reasons of numerical effectiveness and to describe vibration suppres-

sion in terms of the modal coordinate system, the displacement u in global

coordinates is transformed into a modal displacement q as follows:

u = ϕq (9)

where

ϕ ≡ [ϕ1, ϕ2, ..., ϕm] (10)

and ϕk is the k-th eigenvector of the following eigenvalue problem:

(K− ω2
kM)ϕk = 0 (11)
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where

ϕT
kMϕk = 1 (12)

and ωk is the k-th eigenfrequency. Substituting Eq. (9) into Eq. (7) and

multiplying by ϕT from the left, the following modal equation of state in

terms of q is obtained.

q̈+ 2ΞΩ
1
2 q̇+Ωq = ϕTBpQ (13)

where

Ω ≡ diagonal[ω2
1, ω

2
2, ..., ω

2
m] (14)

Ξ ≡ diagonal[ξ1, ξ2, ..., ξm] (15)

and ξk is the k-th modal damping ratio.

2.3. Energy-recycling semi-active vibration control

The control strategy of the ERSAVC used to effect vibration suppression

within the structure [8] is outlined. In this modeling, an additional inductor

and a switch are connected to each PZT which is modeled as a series connec-

tion of a voltage source, a capacitor and a resistor to form an LCR-circuit

(see Fig. 3). With Qi as state variable, the state equations for the i-th cir-

cuits containing the i-th PZT with the switch in the on or off position are

represented as follows:

When the i-th switch is on : LiQ̈i +RpiQ̇i + C−1
pi Qi = bpiδlpi (16)

When the i-th switch is off : Q̇i = 0 (17)
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where Li is the inductance of the circuit corresponding to the i-th PZT, and

Rpi, Cpi, bpi and δlpi are the resistance, capacitance, piezoelectric coefficient

and axial elongation of the i-th PZT. We assume that the PZT resistance is

dominant in the circuit and the resistance of the inductor is enough small to

be ignored.

Based partially on active control theory, the purpose of the switch is to

initiate feedback control suppress vibration. The electric charge is stored in

the PZT by changing the polarity of the charge. The control strategy of

the ERSAVC is to actuate the switch of the circuit so that Qi has the same

sign as the target electric charge of the active control theory with an absolute

value that is as large as possible. For the sake of simplicity, the target electric

charge is set according to the direct feedback from the displacement velocity;

that is, let QTi, denote the target electric charge of the i-th PZT, then

QTi = −α ˙δlpi, where α is an arbitrary positive gain [31]. Assuming that the

electric oscillation is much faster than the structural vibrations, the electric

charge can be maintained at its maximum value if the switching occurs at

half-periods in the electric oscillation. The operating law for the switch of

the i-th PZT is formulated as follows:

When QT iVi < 0 turn on the switch for a duration of π/ωci, (18)

where ωci is an eigenfrequency for the i-th circuit. After the switch is turned

on, Qi begins to decrease when Vi is positive, and vice versa. However,

decreases (or increases) in Qi do not continue for long because of electric

oscillations. That is, this switching law means that the switch is turned

on at the displacement peak for a half-period duration. Accordingly, electric

charge keeps its peak value within a half period of the vibration until the next
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displacement peak. Figure 4 shows the relationship between the displacement

and the electric charge when the PZT is subjected to a sinusoidal forcing

displacement. In short, electric charge is added only at the peak of the

displacement, as shown in Fig. 4, to quickly transfer vibrational energy into

electrical energy for damping.

Figures 3 and 4 are about here.

In the multi-degrees of freedom system, QTi is determined from linear

quadratic regulator (LQR) control theory. Taking electric charge Q of each

PZT as control variables, the state equations in modal coordinate is rewrit-

ten:

ż = Az+BQ (19)

where

A ≡

 0 I

−Ω −2ΞΩ
1
2

 (20)

z ≡

 q

q̇

 (21)

B ≡

 0

ϕTBp

 (22)

The optimal Q is obtained as the minimizer of the following cost function.

J =

∫ ∞

0

(
zTW1z+QTW2Q

)
dt (23)
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where W1 and W2 are weighting matrices. Using the positive definite solu-

tion P of the following Riccati equation:

PBpW2
−1P−ATP−PA−W1 = 0, (24)

The matrix QT composed of QT i is calculated as follows:

QT ≡ −Fz (25)

where

QT ≡ [QT1, QT2, ..., QTnp ]
T (26)

F ≡ W2
−1Bp

TP (27)

3. Optimization methodology

3.1. Design variables

In this study, we intend to obtain the optimal layout and length of the

PZTs. Based on the ground structure approach [32] to truss optimization,

candidates for the layout position are assigned to all truss elements com-

prising the target structure. That is, np equals ne. The PZT lengths are

considered as design variables for each truss, and in this regard very small

design variables represent an absence of a PZT in the actual design based

on the optimal result. The following length ratio vector between total bar

length and the PZT r is also regarded as a design variable:

r ≡ [r1, r2, ..., rnp ] (28)
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where

ri ≡
lpi
li

(29)

rmin ≤ ri ≤ 1 (30)

and rmin is the minimum value of ri. The piezoelectricity bpi, capacitance

Cpi and resistance Rpi in Eqs. (13) and (16) depend on the length of the

PZT. Assuming that the number of stacks npi of the i-th PZT is a linear

continuous function of ri as follows:

npi ≈ nmax i × ri (31)

where nmax i is the number of stacks when ri = 1. The coefficients of PZT in

Eqs. (4) and (5) and the resister can be expressed as functions of ri:

bpi =
b0
npi

≈ b0
nmax i

r−1
i (32)

Cpi =
Apin

2
piC0

lpi
≈ Apin

2
max iC0

li
ri (33)

Rpi =
R0

npi

=
R0

nmax i

r−1
i (34)

where

b0 ≡
d33

ϵ33s33 − d33
2 (35)

C0 ≡
ϵ33s33 − d33

2

s33
(36)

and R0 is the resistance of a single layer of piezoceramic that forms the stack.

Note that, since the Riccati equation of Eq. (24) contains the piezoelectric

matrix Bp, the coefficient matrix F in Eq. (27) of the target electric charge
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can vary during optimization. However, for simplicity, we would like to

keep F constant during optimization. In the Riccatti equation Eq. (24), if

BpW2
−1 is constant, the result becomes also constant independently of the

value of r. Thus, the weighting matrix W2 is set as a function of r to cancel

out the effect of r in Bp as follows:

W2 = wdiagonal[r] (37)

where w is a positive coefficient.

3.2. The dependence of vibration suppression performance on the design vari-

able

The relationship between the PZT length and vibration suppression is

analyzed for a system with a single degree-of-freedom composed of truss and

i-th PZT undergoing forced periodic displacement u0 cosωt. We assume the

switching is performed at each maximum displacement. This is the ideal

behavior for ERSAVC system, as shown in Fig. 4. In the steady state of

the time harmonic forced vibration problem, the work done by the external

force equals to the dissipation energy of the system. In the ERSAVC sys-

tem, the energy dissipation occurs by converting the mechanical energy into

the electrical energy by PZT. Thus, the work done by the PZT per cycle

approximately equal to the energy transformation rate from mechanical to

electrical energy, which is written [10]:

Wcycle =
4bpiCpiδl

2
pi(1 + e−ζciπ)

(1− e−ζciπ)
(38)
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where

ζci ≡
Rpi

2Liωci

(39)

ωci ≡

√
1

LiCpi

(40)

Substituting Eqs. (32)-(34) into Eq. (38), the energy transformation rate

can be expressed as a function of the design variable ri. Wcycle can also be

used as the evaluation index of the energy dissipation of the system even in

the transient problem. Using properties used in Section 5, the graph of Wcycle

in the interval 0 < ri ≤ 1 is presented as Fig. 5. A positive correlation is

observed between PZT length and energy transformation rate; thus, a longer

PZT achieves greater vibration suppression.

Figure 5 is about here.

3.3. Optimization problem

In the original paper of ERSAVC [8], time integral of the root mean

square of displacements of all truss nodes is used as the evaluation criteria

of the vibration suppression performance. Similarly, the time integration of

the square norm of the displacement vector is used to define the objective

function F of this optimization problem:

F (r,u,Q) ≡
∫ T

0

||u||2dt (41)

where T is the time when the evaluation ends. For the objective function

having time integral form, the adjoint variable method [27, 28] can be applied
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in its sensitivity analysis. As derived in the previous subsection, a positive

correlation is observed between the PZT length and the vibration suppression

effect. Thus, the optimal solution could have all possible PZTs at their

maximum length. To reduce the maximum value of the total PZT length, a

length constraint is introduced; the optimization problem is the represented

as follows:

minimize
r

F (r,u,Q) (42)

subject to

np∑
i=1

rilp ≤ lU (43)

rmin ≤ ri ≤ 1 for i = 1, ..., np (44)

and lU is the upper bound for the total length of PZTs.

3.4. Sensitivity analysis

As the design variables are updated using MMA [29], we require the first-

order sensitivity of the objective function and constraints to perform the

optimization. Since the derivation is lengthy, only the results are shown here;

a detailed derivation is shown in the Appendix. Using the adjoint variable

method [27, 28], the derivative of the objective function with respect to the

i-th design variable ri defines a function of the state variable Q and the

adjoint variables λ and µ:

dF

dri
= −

∫ T

0

λT ∂Bp

∂ri
Qdt+

∫
TSi

µi

{
∂

∂ri

(
Rpi

Li

)
Q̇i +

∂

∂ri

(
1

RpiLi

)
Qi

}
dt

(45)
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and TSi is the time when the i-th switch is on. The adjoint variables are

obtained by solving the following adjoint equations:

η̈ + 2ΞΩ
1
2 η̇ +Ωη = ϕT (B0µ− 2u) (46)

αµ̈− βµ̇+ γTµ = −Bp
Tλ (47)

where

α ≡ diagonal
[
α1, α2, ..., αnp

]
, αi ≡

 When i-th switch is on : 1

When i-th switch is off : 0
(48)

β ≡ diagonal
[
β1, β2, ..., βnp

]
, βi ≡

 When i-th switch is on :
Rpi

Li

When i-th switch is off : 1
(49)

γ ≡ diagonal
[
γ1, γ2, ..., γnp

]
, γi ≡

 When i-th switch is on : 1
LiCpi

When i-th switch is off : 0
(50)

λ = ϕη (51)

and B0 is a matrix to represent the diagonal matrix D as a linear form B0
Tu

as follows:

B0
Tu ≡ D (52)

where

D ≡ diagonal
[
D1, D2, ..., Dnp

]
, Di ≡

 When i-th switch is on : bpiδlpi

When i-th switch is off : 0

(53)

The above adjoint equations are solved with the following terminal condi-

tions:

η(T ) = 0, η̇(T ) = 0, µ(T ) = 0, µ̇(T ) = 0 (54)
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4. Numerical implementation

4.1. Algorithm

The optimization algorithm is shown in Fig. 6. The eigenvalues and

eigenvectors of the system in Eq. (11) and the feed-back matrix of the LQR

control theory in Eq. (27) are calculated first since these do not vary dur-

ing optimization. In the optimization loop, the state equations and adjoint

equations are solved by the fourth-order Runge-Kutta method. The state

equations are an initial value problem, whereas the adjoint equations are

a terminal value problem. The design variables are updated by MMA [29]

using the calculated sensitivity.

Figure 6 is about here.

4.2. Approximation of state and adjoint equations

The approximation of the circuit equation in Eq. (16) and its correspond-

ing adjoint equation in Eq. (47) is discussed with the purpose to reduce the

computational cost. The eigenfrequencies of the vibration equation for the

structure in Eq. (13) do not vary during optimization because mass and

stiffness of the structure are fixed. The same thing can be said of the cor-

responding adjoint equations in Eq. (46). However, the eigenfrequency of

Eqs. (16) and (47) can vary during optimization since the coefficient of the

equation is a function of the design variable. According to Eq. (40), the

eigenfrequency of the circuit with the lowest design variable rmin is
√
rmin

−1

times the one with the highest design variable 1. In general, the step size of
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the Runge-Kutta method must be chosen small enough compared with the

period of the highest-order vibration to prevent divergence of the solution.

Thus, the required time-step for the circuit equation can be
√
rmin times

its maximum value when the design variable is at its minimum value. It

could cause an increase in the computational cost even though the equation

corresponds to a closed switch.

To avoid this problem, an approximation to Eq. (16) is used instead. Let

us again consider the system with a single degree of freedom described above.

Figure 7 shows a sketch of the time-variation of the electric charge around

the time when the switch is closed. The electric charge increases or decreases

according to Eq. (16) during a half-period of the electrical vibration. As-

suming that the period of the electrical vibration is short enough compared

with the period of the mechanical vibration and the PZT elongation does not

vary during this switch ON period, the electric charge after that time Qafter

can be calculated analytically as follows:

Qafter = −Qbeforee
−ζciπ + bpiδlpiCpi(1 + e−ζciπ) (55)

where Qbefore is the electric charge at the time the switch is just closed. A

detailed derivation is given in the Appendix. We vary the electric charge

according to this equation at a quarter of the period after closing the switch

instead of solving Eq. (16) directly. The approximated electric charge is also

shown in Fig. 7. The adjoint equation in Eq.(47) is also solved by the same

approximation.

Figure 7 is about here.
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5. Numerical Examples

The following numerical examples are provided to confirm the validity and

usefulness of the proposed methodology using the truss shown in Fig. 1. In all

examples, the aluminum truss element has stiffness 1.99×106N/m and length

density 9.5×10−2kg/m. For simplicity, the PZT is assumed to have the same

stiffness, density and cross-sectional area. Other PZT properties required in

Eqs. (32)-(34) are set as follows: b0 = 1.31× 108N/C, Ap = 2.88× 10−5m2,

C0 = 2.28× 10−7F, R0 = 1.97× 103Ω, and nmax = 1300. The length of each

bay is set as 0.38m. Masses of 0.5kg are mounted at all nodes of the 4-th

and 5-th bays. All the above physical factors are based on experimental data

given in [9]. The minimum value rmin of the design variable is set to 10−3.

All eigenmodes are used in performing calculations in the modal coordi-

nate system. The first to the sixth-order eigenmodes and their corresponding

eigenfrequencies are shown in Fig. 8. During the optimization, the PZTs are

fixed to all truss elements. For simplicity, the maximum length of PZT is set

to 0.38m which equals the length of the bay in all elements. The coefficient

w in the weighting matrix W2 in Eq. (23) is set to 1.0× 106. The time-step

for the integration is set to 1.0×10−5s, sufficiently shorter than the period of

the highest-order vibration of the structure (4.88×10−4s). The upper bound

for the sum of the design variables of Eq. (43) is set to 13 which corresponds

to 10% of the maximum total length of the PZTs.

Figure 8 is about here.
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5.1. Confirming the validity of the approximation to the state and adjoint

equations

The validity of the approximation to the equations of state, Eq. (16),

and the adjoint equation, Eq. (47), using Eq. (55) is first confirmed. As the

benchmark example, the first dominant mode of free vibration is considered.

The initial modal velocity is set to 0.1m · kg
1
2/s for the first mode and 0 for

all other modes. The integration time for the state equations is set from 0

to 1s. All design variables are set to unity. Table 1 shows a comparison of

the objective function in Eq. (41) between the direct calculation and the

approximate calculation.

Table 1: Comparison between the objective functions calculated by direct and approximate

methods

Calculation method Direct Approximate Error

Objective function 2.42× 10−7 2.41× 10−7 0.57%

The validity of the analytical sensitivity derived from Eq. (45) was estab-

lished by comparing the results with numerical sensitivities obtained using

the finite difference method (FDM), performed according to following equa-

tion:

F ′(ri) =
F (r+ ai∆c)− F (r)

∆c
, (i = 1, ..., n) (56)

where n is the number of design variables, ai is a vector for which the i-th

element is 1 and all other elements are 0, and ∆c is set to 10−3. In this

example, the initial modal velocity is set to 0.1m · kg
1
2/s for the first mode

and 0 for all the other modes. The weighting matrix W1 in Eq. (23) is set

to W1 = diagonal[1, 1/ω2
1]. The integration time for the state and adjoint
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equations is set from 0 to the first eigen-period to maintain stable compu-

tation of the analytical sensitivity. The design variable r is set uniformly

to 0.5. The objective function used in Eq. (56) is calculated by the direct

method. The analytical sensitivity using the adjoint variable calculated by

the approximate method is compared with the FDM sensitivity. Each re-

sult is normalized to unit norm. The least-squares error of the analytical

sensitivity with respect to the corresponding FDM value was 0.15%. Figure

9 shows a bar-graph comparison of the top 14 sensitivities of both types.

The numbers of elements corresponding to these sensitivities are shown in

Fig. 10. This figure indicates elements with high sensitivities are located on

the upper and lower parts of the structure. Since only small differences are

observed in this figure, the analytical sensitivity can be regarded as having

sufficient accuracy for optimization.

Figures 9 and 10 are about here.

5.2. Optimization for the first mode vibration

As the first benchmark example, optimization is performed of the PZT

layout and length for the first dominant mode of free vibration. The initial

value of design variable r is set uniformly to 0.1. The same integration time

from 0 to the first eigen-period is introduced to perform a stable calculation

of the sensitivity and low computational cost. When performing the analysis

with the integration time 0 to five times the first eigen-period, the squared

norm of the displacement integrated from 0 to the first eigen-period made
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up 78.4% of the objective function in the initial layout. Thus, we consider

the integration time up to the first eigen-period is sufficient for the perfor-

mance evaluation during the optimization. Other analysis conditions are set

the same as the previous sensitivity analysis example. Figure 11 shows the

optimal r of each PZT after 100 iterations. The optimal length for each PZT

is represented in the grayscale. The base trusses are plotted with dashed

lines. Figure 12 shows the convergence history of the objective function.

Long PZTs are located on the upper and lower sides of the structure with

the length constraint becoming active. Figure 13 shows the top 14 design

variables and maximum forces of these elements in the time history of the

analysis of the optimal layout. The top 14 maximum forces were observed in

the same elements with the top 14 design variables as a result. These were

also identical to the elements with the top 14 sensitivities shown in Fig. 9.

Since the design variables strongly correlated with the maximum forces, this

layout is mechanically reasonable. Moreover, stable convergence is observed

in Fig. 12 showing that in this example optimization has worked correctly.

Figure 14 shows the variations in the PZT electric charge of the No.3 element

shown in Fig. 10 and the first modal displacement of the optimal structure.

ERSAVC performs electric charging only at the peak of the displacement, as

shown in Fig. 4, to quickly transfer vibrational energy into electrical energy

for damping. As switching is performed near the peak of the displacement

and the PZT has been efficiently charged, ERSAVC has definitely worked

well in this example. To confirm the performance improvement of the op-

timal layout over the initial, a re-analysis was performed with the longer

integration time from 0 to five-times the first eigen-period. Figure 15 shows
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the time histories of the squared norm of the total displacement and the

norm of the total electric charge. In the optimal layout, quicker damping

was observed together with quicker electric-charging of the PZTs. In this

analysis, the objective function which is the time integral of the squared

norm of the total displacement was reduced by about 16.2% from 2.95×10−7

to 2.48× 10−7.

Figures 11, 12, 13, 14 and 15 are about here.

5.3. Optimization for other vibrations and evaluation of optimal results

As the second example, optimizations for the following types of vibration

are performed: the higher-order vibration of the vertical bending mode, the

torsional vibration, the integrated vibration of the vertical and horizontal

bending, and the integrated vibration of the vertical bending and torsion.

Labeling the first dominant mode studied above as Case 1, these next studies

are referred to as Case 2 through Case 5. The initial conditions for each of

these vibrations are listed in Table 2. Cases 6 and 7 are used only to evaluate

optimal configurations. All initial conditions and choices of weighting matrix

W1 are listed in this table. The integration time for the state and adjoint

equations is set from 0 to the first eigen-period in the same way as the first

optimization example. The initial value of design variable r is set uniformly

to 0.1.
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Table 2: Initial conditions used in optimization and evaluation for certain free vibrations

Case No. Description Initial condition W1 in Eq. (23)

1 First-order vertical bending 1st modal velocity is 0.1 diagonal[1, 1/ω2
1 ]

2 Second-order vertical bending 3rd modal velocity is 0.1 diagonal[1, 1/ω2
3 ]

3 First-order torsion 4th modal velocity is 0.1 diagonal[1, 1/ω2
4 ]

4

Integration of the first-order

vertical and horizontal bending 1st and 2nd modal velocities are 0.1 diagonal[1, 1, 1/ω2
1 , 1/ω

2
2 ]

5

Integration of the first-order

vertical bending and torsion
1st and 4th modal velocities

are 0.1 and 0.2 diagonal[1, 1, 1/ω2
1 , 1/ω

2
4 ]

6
Vibration after

vertical initial velocity

Velocity of the right

bottom side is [0 0 0.1]T diagonal[1, ..., 1, 1/ω2
1 , ..., 1/ω

2
6 ]

7
Vibration after

xyz-directional initial velocity

Velocity of the right

bottom side is [0.1 0.1 0.1]T diagonal[1, ..., 1, 1/ω2
1 , ..., 1/ω

2
6 ]

Figure 16 shows optimal configurations for vibrations corresponding to

Cases 2 through 5. The improvement of the objective functions in each

optimization is shown in Table 3. In all optimizations, reductions in the

objective functions were observed. Since the second-order bending vibration

is dominant in Case 2, two separate segments of the long PZT can be observed

in Fig. 16(a) on the both upper and lower sides. In Fig. 16(b), long PZTs

are located on the diagonal members under torsional vibrations. Figure 16(c)

shows long PZTs in members on top, on both sides, and on the bottom near

the left side under the integrated vibration of the horizontal and vertical

first-order bending. Figure 16(d) is an integrated structure from Fig. 11

and Fig. 16(c) corresponding to the integrated vibration of the first-order

bending and torsion. In the ERSAVC, PZTs should basically be located on

the truss element with high elongation to store the electric charge effectively.

Thus, all these structures can be regarded as mechanically reasonable.

Figure 16 is about here.
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Table 3: Improvement of the objective function in the optimization for various vibration

types

Optimization under

Case 1 Case 2 Case 3 Case 4 Case 5

(×10−9)

Objective function

Initial 230.23 2.74 3.37 444.39 242.72

Optimal 222.56 2.54 2.87 439.27 231.41

Reduction rate [%] 3.33 7.49 16.45 1.15 4.66

The validity of these optimal configurations is confirmed by re-analysis.

In addition to vibration studies of Cases 1 to 5, Cases 6 and 7 listed in Table

2 are used in the evaluation. Vibrations in Cases 1 to 5 were excited by the

initial modal velocities that are far from the natural phenomenon. Thus,

vibrations corresponding to possible natural vibrations excited by motion of

the whole system are introduced. Case 6 is a free vibration with z directional

velocities at the right bottom side of the structure. Case 7 is a free vibration

with xyz directional velocities at the same point. The weighting matrix W1

is set as for the vibration suppression of the six lowest modes. Each vibration

is applied to the five optimal systems shown in Figs.11 and 16. To clarify

the performance difference, the integration time for the state and adjoint

equations is set from 0 to five times the first eigen-period, which is longer

than that used in the optimizations. Table 4 lists the objective function for

each result. Rows correspond to each vibration case used in the optimization,

and columns correspond to the vibration case used for evaluation. For Cases

1 through 5, each optimal system optimized for the same vibration exhibits

26



the highest vibration suppression performance (diagonal items in Table 4).

For Case 6, the optimal system for Case 1 seems to be useful as the vibration

might be dominated by vertical bending. For Case 7, the optimal system

for Case 4 exhibits the highest performance. It would seem that horizontal

bending is only considered in Case 4.

Table 4: Evaluation of optimal results under several types of vibrations

Objective function in the analysis under

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

(×10−9)

Optimal result
obtained in

Case 1 247.59 2.55 4.27 987.03 308.27 1.09 5.16

Case 2 319.82 2.54 3.86 925.70 375.93 1.25 3.13

Case 3 427.22 6.72 2.82 1077.14 463.44 1.46 8.38

Case 4 257.04 3.94 5.63 494.66 367.20 1.23 2.14

Case 5 250.53 3.58 3.05 1291.83 247.27 1.11 6.73

6. Conclusion

In this study, we developed an optimization method for ERSAVC systems

suitable for space structures composed of trusses. Based on the concept of

the ground structure approach for the truss layout optimization, the lengths

of the PZT on each truss element were chosen as design variables. Physical

properties of the PZT were expressed as functions of these variables. Vi-

bration analysis of the truss was performed based on the transient response

analysis using the modal method. The objective function was taken to be

the integral of the square of all displacements over the whole analysis time
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domain. The sensitivity of the objective function was derived based on the

adjoint variable method. Combining these formulations, an optimization al-

gorithm was constructed using the MMA. Numerical examples were provided

to demonstrate the validity of our method.

For all low-order modes, optimization of the PZT layout and length was

successful. Performance evaluations were performed on several types of vi-

brations. The integrated vibration caused by initial global displacements

was only considered in this evaluation. Ideally, this type of vibration should

also be considered in the optimization. However, as mainly studied in the

eigenvalue optimization in structural optimization (e.g. [33, 34]), optimiza-

tion for multiple modes is usually a challenging problem. The same thing

can be said of the proposed methodology presented in this paper. Thus, the

design strategy for semi-active systems should be one in which optimization

is performed for a few fundamental modes of the target vibration.
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Appendix A. Derivation of sensitivity

A detailed derivation of the sensitivity given in Eq. (45) and the adjoint

equations in Eqs. (46) and (47) is presented. Note that the effect of varying

the design variables during switching is ignored for simplicity. The equations
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of state in Eqs. (7), (16) and (17) are first expressed in matrix form:

Mü+Cu̇+Ku = BpQ (A.1)

αQ̈+ βQ̇+ γQ = D

= B0
Tu

(A.2)

In Eq. (53), the elongation δlpi of the i-th PZT, expressed as δlpi = riδli, in

the integrated element comprising a truss and a PZT, as shown in Fig. 2.

As the piezoelectric factor bpi is inversely proportional to the design variable

ri, B0 becomes a constant matrix independent of the design variables. Thus,

in Eqs. (A.1) and (A.2) only matrices Bp, β and γ depend on the design

variable r.

The general objective function for the sensitivity analysis is defined as a

time integral of a function h.

F (u, u̇, ü,Q, Q̇, Q̈, r, t) ≡
∫ T

0

h(u, u̇, ü,Q, Q̇, Q̈, r, t)dt (A.3)

Introducing the adjoint state vector λ and µ, the Lagrangian is:

L ≡
∫ T

0

hdt+

∫ T

0

λT (Mü+Cu̇+Ku−BpQ)dt+

∫ T

0

µT (αQ̈+βQ̇+γQ−B0
Tu)dt

(A.4)

Using this, the derivative of the objective function can be expressed as:

dF

dr
=

∂L

∂r
+

∂L

∂u

du

dr
+

∂L

∂u̇

du̇

dr
+

∂L

∂ü

dü

dr
+

∂L

∂Q

dQ

dr
+

∂L

∂Q̇

dQ̇

dr
+

∂L

∂Q̈

dQ̈

dr
(A.5)
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Each term is calculated as follows:

∂L

∂r
=

∫ T

0

∂h

∂r
dt−

∫ T

0

λT ∂Bp

∂r
Qdt+

∫ T

0

µT

(
∂β

∂r
Q̇+

∂γ

∂r
Q

)
dt (A.6)

∂L

∂u

du

dr
=

∫ T

0

∂h

∂u

du

dr
dt+

∫ T

0

λTK
du

dr
dt−

∫ T

0

µTB0
T du

dr
dt (A.7)

∂L

∂u̇

du̇

dr
=

∫ T

0

∂h

∂u̇

du̇

dr
dt+

∫ T

0

λTC
du̇

dr
dt (A.8)

∂L

∂ü

dü

dr
=

∫ T

0

∂h

∂ü

dü

dr
dt+

∫ T

0

λTM
dü

dr
dt (A.9)

∂L

∂Q

dQ

dr
=

∫ T

0

∂h

∂Q

dQ

dr
dt−

∫ T

0

λT

(
Bp

dQ

dr

)
dt+

∫ T

0

µT

(
γ
dQ

dr

)
dt

(A.10)

∂L

∂Q̇

dQ̇

dr
=

∫ T

0

∂h

∂Q̇

dQ̇

dr
dt+

∫ T

0

µT

(
β
dQ̇

dr

)
dt (A.11)

∂L

∂Q̈

dQ̈

dr
=

∫ T

0

∂h

∂Q̈

dQ̈

dr
dt+

∫ T

0

µT

(
α
dQ̈

dr

)
dt (A.12)

Substituting Eqs. (A.6)-(A.12) into Eq. (A.5),

dF

dr
=

∫ T

0

∂h

∂r
dt−

∫ T

0

λT ∂Bp

∂r
Qdt+

∫ T

0

µT (
∂β

∂r
Q̇+

∂γ

∂r
Q)dt

+

∫ T

0

(
∂h

∂u
+ λTK− µTB0

T

)
du

dr
+

(
∂h

∂u̇
+ λTC

)
du̇

dr
+

(
∂h

∂ü
+ λTM

)
dü

dr
dt

+

∫ T

0

(
∂h

∂Q
− λTBp + µTγ

)
dQ

dr
+

(
∂h

∂Q̇
+ µTβ

)
dQ̇

dr
+

(
∂h

∂Q̈
+ µTα

)
dQ̈

dr
dt

(A.13)

If the equations in the second and third lines of Eq. (A.13) are zero, the
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following adjoint equations are obtained by applying the integration by parts,

Mλ̈+Cλ̇+Kλ−B0µ =

(
−∂h

∂u
+

d

dt

∂h

∂u̇
− d2

dt2
∂h

∂ü

)T

(A.14)

λT (T )M+
∂h

∂ü
(T ) = 0 (A.15)

∂h

∂u̇
(T ) + λT (T )C− λ̇

T
(T )M− d

dt

∂h

∂ü
(T ) = 0 (A.16)

αµ̈− βµ̇+ γTµ−Bp
Tλ =

(
− ∂h

∂Q
+

d

dt

∂h

∂Q̇
− d2

dt2
∂h

∂Q̈

)T

(A.17)

µT (T )α +
∂h

∂Q̈
(T ) = 0 (A.18)

∂h

∂Q̇
(T ) + µT (T )β − µ̇T (T )− d

dt

∂h

∂Q̈
(T ) = 0 (A.19)

If the objective function is the time integral of the square norm of the dis-

placement vector in Eq. (41), the derivatives of function h can be obtained

as follows:
∂h

∂r
= 0,

∂h

∂u
= 2uT ,

∂h

∂u̇
= 0,

∂h

∂ü
= 0 (A.20)

Substituting Eq. (A.20) into Eqs. (A.13)-(A.19), the sensitivity of the ob-

jective function is found to be:

dL

dr
= −

∫ T

0

λT ∂Bp

∂r
Qdt+

∫ T

0

µT

(
∂β

∂r
Q̇+

∂γ

∂r
Q

)
dt (A.21)

Substituting Eq. (A.20) into Eq. (A.14), the adjoint equations become:

Mλ̈+Cλ̇+Kλ = B0µ− 2u (A.22)

αµ̈− βµ̇+ γTµ = −Bp
Tλ (A.23)

λ(T ) = 0, λ̇(T ) = 0, µ(T ) = 0, µ̇(T ) = 0 (A.24)

Moreover, the adjoint variable λ is transformed into its modal variable η

using following equation.

λ = ϕη (A.25)
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Substituting Eq. (A.25) into Eq. (A.22) and multiplying ϕT from the left,

the following equations are obtained:

η̈ + 2ΞΩ
1
2 η̇ +Ωη = ϕT (B0µ− 2u) (A.26)

η(T ) = 0, η̇(T ) = 0 (A.27)

Note that since matrices α, β and γ are diagonal, Eq. (A.23) is decomposed

into a set of ordinary differential equation by considering the state of each

switch independently.

Appendix B. Derivation of approximated electric charge

Let us consider a system with a single degree of freedom composed of a

truss with i-th PZT being subjected to a forced periodic displacement. Let us

assume that the switch of the circuit is turned on when t = 0. The following

equation is the state equation of this system:

Q̈i + 2ζciωciQ̇i + ω2
ciQi =

bpi
Li

δlpi (B.1)

where δlpi is the elongation of PZT. The initial values of electric charge

and PZT elongation are denoted Q0 and u0 respectively. Assuming that

this elongation, because it is sufficiently shorter than the amplitude of the

mechanical vibration, does not vary during the time when the switch is closed,

the solution of this equation can be deduced as follows:

Q(t) =(Q0 − bpiCpiδlpi)[cos {ωci

√
1− ζcit}

+
ζci√
1− ζci

sin {ωci

√
1− ζcit}]e−ζciωcit + bpiCpiδlpi

(B.2)

Assuming that ζc ≪ 1, we simplify Eq. (B.2) as

Q(t) ≈ (Q0 − bpiCpiδlpi) cos (ωcit)e
−ζciωcit + bpiCpiδlpi (B.3)
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At t = π/ωci, electric charge is

Q(π/ωci) ≈ −(Q0 − bpiCpiδlpi)e
−ζciπ + bpiCpiδlpi (B.4)

Replacing Q(π/ωci) and Q0 by Qafter and Qbefore respectively, Eq. (55) is

obtained.
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Figure 4: Outline of time-variation for displacement and electric charge under ERSAVC.
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Figure 5: Dependence of energy transformation rate on design variables in the single DOF

model.

41



� � ��� ��� � � � � � � 	 � � 
 ��� 
�� � � � � ��	 � � � � � � ���

��� � � 
 � � � ��� � ��� � � � ��	 � � � � � � � ��� ��� � � 	 � � �� �  ! " � � # ! � � � � � $ !
�� � � ��%�
 � � � & '�
 � � ��()� � � � �

��� � � 
 � � � ��� � ��� � * � � � � 	 ��
 
 � � � � � �
� � ��� � ��� � ��� � � � � � � �

��� � � 
 � � � ��� � ��� � * � � � � 	 � � � � � � � �+� �,� � � 	 � � �� - # ! � � � � - $ ! 
�� � � ��%�
 � � � & '�
 � � ��()� � � � �

��� � � 
 � � � ��� � ��� � ��� � � � 	 � � � � �.� 
� � ��� � * � � � � 	 ��
 
 � � � � � ��� � ��� � ��� � � � � � � � � � /

0�1 � � � ��� � � � � �)	 � � � � � � ���.
 � � � ��23254

��� � 	 � � � � � 6

7�� �98 � �
:��

�.� � � 
 � � � ��� � � � � 	 � � 
 � ��� � �
� � � � � 	 � � � � � �.� 
 � � � !

��� � � 
 � � � ��� � ��
 � � � � � � ;)()� � � � <�� 

=�>�%?� � � � � � � � � � � � �)� � � @ # !
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Figure 8: Eigenmode shapes: (a) The first mode (13.01Hz): vertical bending, (b) The

second mode (13.40Hz): horizontal bending, (c) The third mode (53.32Hz): vertical bend-

ing, (d) The fourth mode (57.04Hz): torsion, (e) The fifth mode (57.83Hz): horizontal

bending, (f) The sixth mode (128.48Hz): stretching.
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Figure 11: Optimal layout of PZT for the first dominant mode of free vibration.
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Figure 12: History of optimization for the first mode dominant vibration.
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Figure 13: Comparison of the top 14 optimal design variables with the maximum force

applied to these elements.
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Figure 14: Variation of the first-order modal displacement and electric charging of the

PZT.
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Figure 15: Time history of the squared norm of total displacement and norm of total

electric charge of initial and optimal layout of PZT in re-analysis.
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(a)

(b)

(d)

(c)

Figure 16: Optimal layout of PZTs for various vibration types. (a) through (d) correspond

to Cases 2 through 5 described in the text.
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