
International Journal of Fracture manuscript No.
(will be inserted by the editor)

Dynamic crack arrest analysis by ordinary state-based
peridynamics

Michiya Imachi · Satoyuki Tanaka · Murat Ozdemir ·
Tinh Quoc Bui · Selda Oterkus · Erkan Oterkus

Received: date / Accepted: date

Abstract Dynamic fracture analysis for the crack ar-

rest phenomenon is performed by ordinary state-based

peridynamics formulation and discretization employing

transition bond concept. Double cantilever beam speci-

men is chosen for our numerical evidence purpose. The

analysis consists of two main phases namely, generation

and application (prediction) phases. In the generation

phase, the dynamic stress intensity factors of propagat-

ing and arrested cracks are estimated by the present

formulation for given crack path histories, and good

agreement is achieved. As for the application phase,

dynamic stress intensity factors as well as total crack

lengths after crack arrests are in good agreement with

the experiments. Moreover, the influence of transition
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bond concept on the crack arrest behavior is investi-

gated and it is found that the transition bond is very

efficient in the simulation of the crack arrest problem

such that premature arrests of cracks are observed with-

out transition bond cases.

1 Introduction

Dynamic fracture and crack propagation phenomenon

are unstable and they could be detrimental to the safety

in solids and structures. Brittle fracture of relatively

thick plates in ship structures, especially for large con-

tainer ships, has been remarked. Regarding unstable

characteristic of dynamic brittle fracture, it is crucial

to assess dynamic crack propagation and crack arrest

in ship structures to avoid serious damages. In this re-

spect, Shibanuma et al. (2016a,b, 2018) have recently

carried out extensive studies for the brittle crack propa-

gation and arrest behavior of steel ship plates. Compu-

tational fracture mechanics is a convenient and power-

ful method for designing and evaluating the safety and

integrity of structures.

In earlier times, regarding dynamic fracture, Crosley

and Ripling (1969, 1971) assumed that dynamic effects

can be neglected; however, Hahn et al. (1973) then

pointed out that consideration of dynamic influences

is crucial. In this respect, for the analysis of cracks,

dynamic effects must be taken into consideration for

a reliable structural safety estimation. Even if a crack

is stationary, the loading may change over time, which

in turn would cause the Stress Intensity Factors (SIFs)

to be time dependent. As for a propagating crack, both

crack velocity and SIFs might be time dependent. More-

over, moving boundaries, loading rate etc. bring addi-

tional complications in the analysis of cracks, in which
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advanced dynamic fracture modeling turns out to be

necessary. Several works have been conducted for eval-
uating dynamic fracture parameters and many of them

have been summarized in textbooks, which are par-

tially (Anderson 2005), and completely devoted to the

dynamic fracture (Freund 1990; Ravi-Chandar 2004).

Kanninen and Popelar (1985) addressed advanced top-

ics in fracture mechanics from the engineering point of

view.

Several decades ago, the crack propagation was sim-

ulated by Finite Element Method (FEM) using node re-

lease technique as summarized in Kanninen (1978) and

this technique may not have sufficient accuracy. How-

ever, some noteworthy studies can be found in open

literature. Kobayashi (1979) reported dynamic FEM

results for crack arrest problem considering generation

and prediction (application) phases. Nishioka et al. (1981)

proposed moving singular elements in simulation of fast

fracture analysis. In that approach, the crack tip has
fixed location but the shape of surrounding regular ele-

ments changes accordingly. Nishioka and Atluri (1982)

then addressed the crack arrest phenomenon for a prop-

agating crack by transient FEM considering generation

and prediction phases. Nishioka and Atluri (1982) also

examined the relation between energy release rates and

path-independent integrals as well as dynamic stress in-

tensity factors (DSIFs). The path-independent integrals

for mixed-mode fracture were analytically obtained by

Nishioka and Atluri (1982). Recently, Kopp et al. (2018)

and Coré et al. (2018) obtained dynamic energy re-

lease rates by FEM and discrete element method, re-

spectively. Kopp et al. (2018) carried out experimental

works in addition to FEM for simulating dynamic brit-

tle fracture of polymer pipes. Coré et al. (2018) simu-

lated generation phase by discrete element method to

calculate energy release rates.

The conventional FEM (Zienkiewicz et al. 2005) ex-

periences serious difficulties in considering dynamic frac-

ture, crack propagation and asymptotic fields near the

crack tip. Re-meshing is necessary to capture the frac-

ture parameters and crack path of a propagating crack,

which makes the conventional FEM computationally in-

efficient.

To overcome several drawbacks in conventional FEM,

eXtended FEM (XFEM) was proposed by Belytschko

and Black (1999). Menouillard et al. (2006) incorpo-

rated lumped mass matrix to the XFEM formulation,

and the dynamic fracture parameters for the stationary

and moving cracks were evaluated by explicit time in-

tegration. Liu et al. (2011) combined spectral element

method with XFEM and obtained dynamic fracture pa-

rameters. Although, XFEM has some advantages for

treating discontinuities and singular stress fields, it also

has difficulties for extending three dimensional (3D)

problems in which numerous possible patterns for crack
segments across the enriched elements must be taken

into consideration.

In general, the numerical techniques summarized

above are formulated based on Classical Continuum

Mechanics (CCM) and CCM has difficulty for treating

discontinuities because of the characteristic of its equa-

tions. In CCM, special treatments are required to model

discontinuities as well as singular tip fields. Moreover,

evaluating fracture mechanics parameters becomes a

difficult task in CCM framework.

Recently, Silling (2000) reformulated elasticity the-

ory for discontinuities. The method is called “Peridy-

namics (PD)”, which offers great potential for simula-

tion of dynamic fracture. In PD formulation, the solids

and structures are discretized as similar to particle meth-

ods and each particle has a finite volume. Then, the

interaction between a certain material point and other

material points within its horizon are established. This

concept is similar to molecular dynamics, which is a

non-local theory. PD formulation is further divided into

three sub-categories namely bond-based PD, ordinary

state-based PD (OSPD) and non-ordinary state-based

PD based on the definition of force interactions be-

tween material points (Silling and Askari 2005; Silling

et al. 2007). The potential of PD formulation attracted

many researchers for modeling and analysis of dam-

age/fracture of brittle materials considering thermal

(Kilic and Madenci 2009; Oterkus and Madenci 2012)

and mechanical loads (Cheng et al. 2015; Zhou et al.

2016, 2017; Dipasquale et al. 2017; Zhao et al. 2018;

Shojaei et al. 2018; Zhang and Qiao 2019). PD is ca-

pable of analyzing complex dynamic fracture problems,

and the crack arrest is also complicated. In the present

study, the applicability of the PD for the complex crack

arrest problems is emphasized.

Recent studies focus on development of new frac-

ture criteria as well as damage modeling of bond fail-

ure. Dipasquale et al. (2017) discussed the failure cri-

teria for OSPD by examining the maximum stretch

criterion and maximum energy that can be stored in

a deformed bond. Zhao et al. (2018) proposed a new

fracture criterion based on crack opening displacement

for conventional and dual-horizon PD. It was assumed

that when the relative deformation between material

points reaches the critical crack tip opening displace-

ment of fracture mechanics, the bond failure occurs.

Zhang and Qiao (2019) presented a new bond failure

criterion considering critical skew for mode-II type of

fracture. In the summarized PD works so far, the frac-

ture and damage criteria were examined within PD

framework, however the previous works of the present
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authors (Imachi and Tanaka 2016; Imachi et al. 2018,

2019) modeled fracture using conventional fracture me-
chanics while force state and stresses were computed

within PD framework. Imachi and Tanaka (2016) and

Imachi et al. (2018) developed an OSPD formulation to

calculate DSIFs for stationary cracks, then this formu-

lation was implemented for crack propagation by intro-

ducing transition bond concept to reduce oscillations in

DSIFs of dynamically propagating cracks (Imachi et al.

2019). Imachi et al. (2019) reported that oscillations in

DSIFs would reduce the accuracy in the crack path es-

timation based on maximum circumferential stress cri-

terion. In the transition bond concept, the bond force

beyond failure is decreased gradually rather than re-

leasing the bond suddenly.

In the present study, the recently developed ap-

proach reported by Imachi et al. (2019) is further ex-

tended to study dynamic crack arrest problems. Transi-
tion bond concept is adopted to simulate bond behavior

beyond failure of the bond. A meshfree discretization

is employed. Physical values are interpolated by mov-

ing least squares (MLS) approximation (Lancaster and

Salkauskas 1981).

As far as the authors’ knowledge, OSPD formula-

tion has not been applied for the crack arrest prob-

lem yet in the literature. Kalthoff et al. (1976) exper-

imentally evaluated DSIFs for pure mode-I fast crack

propagation, and addressed the influence of dynamic

factors (stress waves, vibrations) on the crack propa-

gation and crack arrest. In the present study, Double

Cantilever Beam (DCB) specimen under wedge load

(Kalthoff et al. 1976) is considered to be the numerical

example. Generation and application studies are carried

out on the basis of Nishioka and Atluri (1982). In the

generation phase, the experimental crack data (crack

path and velocity) are considered as input and DSIFs

are reproduced by the present formulation. In the appli-

cation phase, DSIFs are computed first by the present

formulation and the crack velocity is then estimated

by a prediction curve assuming a correlation exists be-

tween DSIFs and the crack velocity. Then, total crack

lengths by the present formulation and experiments are

compared to check the validity of OSPD formulation in

the crack arrest problem. Furthermore, the influence of

transition bond concept on the crack arrest problem is

addressed.

The structure of the paper is established as follows.

In section 2, 2D OSPD formulation and its discretiza-

tion are given. Crack initiation and arrest criteria in

traditional fracture mechanics framework are described

in section 3. Section 4 covers the numerical examples

and discussions on the numerical results. In the last

section, Section 5, some major conclusions drawn from

the study are remarked.

2 Peridynamics formulation and discretization

2.1 Basics of peridynamics

The basics of PD theory is briefly summarized within

the OSPD framework. The PD theory is based on non-

local form of elasticity (Silling 2000; Silling et al. 2007).

In PD theory, a “bond” is considered for defining inter-

actions between material points. The equation of mo-

tion for PD material points is given as follows (Madenci

and Oterkus 2014).

ρ(x)ü(x, t) =

∫
H

(
T (x, t)−T (x′, t)

)
dV ′+ b(x, t), (1)

in which H denotes influence region within horizon,

neighbourhood, of a material point as shown in Fig.1.

In Eq. (1), ρ represents density of the material point,

ü(x, t) is the acceleration vector, and b(x, t) stands for

external force vector per unit volume.

The discretization of a body in PD theory is similar

to conventional meshfree approaches. A body is divided

into material points representing a volume dVj , where

j represents the indices of material points within the

horizon. In the OSPD, T (x, t)(= T ) and T (x′, t)(= T ′)

are the interacting force density vectors for material

points initially located at x and x′, respectively. Force

states respectively operate on the relative position vec-

tors x′−x and x−x′, resulting in force density vectors,

T and T ′, for finite volumes.

u

u’

x

x’

Initial 

config.

Deformed 

config.

y

y’

d

H

Fig. 1 Horizon of a material point located at x in 2D and
schematic of force density vectors

In the OSPD formulation, the magnitude of force

densities, are not necessarily equal for each material
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point, but their direction is aligned with the relative

position vector, y′ − y, in the deformed configuration.
This is because the force states are not only associated

with the deformation of a PD bond between material

points, but also deformation states of other bonds. The

force density vector, T in 2D OSPD, which is parallel

to the bond, can be written as given by Le et al. (2014),

T = tm, (2)

here m = (ξ+η)/|ξ+η| is the unit direction vector in

deformed state. ξ = x′−x and η = u′−u represent the

relative position and displacement vectors, respectively.

The magnitude of the force state, t is given for plane

stress condition as (Le et al. 2014),

t =
2(2ν − 1)

ν − 1

(
κ′θ − α

3
(ωed) • |ξ|

) ω|ξ|
(ω|ξ|) • |ξ|

+ αωed, (3)

where the volume dilatation, θ and other PD parame-

ters, α and κ′, can be expressed as

θ =
2(2ν − 1)

ν − 1

(ω|ξ|) • e
(ω|ξ|) • |ξ|

, (4)

α =
8G

(ω|ξ|) • |ξ|
, (5)

κ′ = K +
G(ν + 1)2

9(2ν − 1)2
. (6)

The magnitude of force state, t for plane strain condi-

tion is

t = 2
(
κ′θ − α

3
ωed • |ξ|

) ω|ξ|
(ω|ξ|) • |ξ|

+ αωed, (7)

where the parameters are

θ = 2
(ω|ξ|) • e
(ω|ξ|) • |ξ|

, (8)

α =
8G

(ω|ξ|) • |ξ|
, (9)

κ′ = K +
G

9
. (10)

In the above equations, ν, G and K are the Poisson’s

ratio, shear and bulk modulus, respectively. ω is the

influence function, which is associated with the relative

position vector between material points. The influence

function is considered to be zero outside the horizon.

ed is deviatoric part of the extension state, e.

2.2 Discretization of peridynamic formula

The equation of motion is given in integral form, and

the discretized form of Eq. (1) for the k-th material
point is written as

ρ(k)ü(k) =

N∑
j

(T (k)(j) − T (j)(k))A(j) + b(k), (11)

where the subscripts (k) and (j) denote k-th and j-

th material points, and T (k)(j) and T (j)(k) are the force

densities for k- and j-th material points interacting each

other. N is the number of material points within the

horizon of k-th material point. Simply rearranging Eq.

(11), acceleration vector of a material point at n-th time

step is obtained as

ün
(k)

=
1

ρ(k)

[
N∑
j

(T (k)(j) − T (j)(k))A(j) + b(k)

]
. (12)

Adopting central difference scheme, ün
(k)

= (un+1
(k)

−
2un

(k)
+ un−1

(k)
)/(∆t)2 , displacement vector of k-th ma-

terial point at (n+ 1)-th time step is written as

un+1
(k) =

(∆t)2

ρ(k)

[ N∑
j

(T n
(k)(j) − T n

(j)(k))A(j) + bn(k)

]
+ 2un

(k) − un−1
(k) , (13)

where ∆t is the time interval and the superscripts n−
1, n and n + 1 indicate variables at (n − 1), (n) and

(n+1)-th time steps. The magnitude of the force vector

between k- and j-th material points for plane stress

condition in the discretized form can be given by

t(k)(j) =
2(2ν − 1)

ν − 1

(
κ′
(k)θ(k)

−
α(k)

3

N∑
j

ω(k)(j)e
d
(k)(j)|ξ(k)(j)|A(j)

)

×
ω(k)(j)|ξ(k)(j)|

N∑
j

ω(k)(j)|ξ(k)(j)||ξ(k)(j)|A(j)

+α(k)ω(k)(j)e
d
(k)(j),

(14)

where

θ(k) =
2(2ν − 1)

ν − 1

N∑
j

ω(k)(j)|ξ(k)(j)|e
d
(k)(j)A(j)

N∑
j

ω(k)(j)|ξ(k)(j)||ξ(k)(j)|A(j)

. (15)

In Eq. (15), ω(k)(j) is the influence function between k-

and j-th material points.
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Unbroken (intact)

bonds

Broken bonds
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Broken bonds
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Fig. 2 Crack modeling in PD framework: (a) Pre-existing and propagating crack, (b) transition bond concept

In the PD framework, the fracture is simulated by

release of bond force. It is considered that if a bond

between two material points, k and j is broken, the

influence function between these points turns out to

be zero, i.e., ω(k)(j) = 0. This failure condition is rep-

resented by a scalar-valued function fb to modify the

influence function. The fb is defined as

fb =

{
1 unbroken bond

0 broken bond
. (16)

Then, the modified influence function ω̂(k)(j) = fb ·
ω(k)(j), representing the fracture/failure condition of

the PD bonds is introduced to the magnitude of force

states, Eq. (14) as follow.

t(k)(j) =
2(2ν − 1)

ν − 1

(
κ′
(k)θ(k)

−
α(k)

3

N∑
j

ω̂(k)(j)e
d
(k)(j)|ξ(k)(j)|A(j)

)

×
ω̂(k)(j)|ξ(k)(j)|

N∑
j

ω̂(k)(j)|ξ(k)(j)||ξ(k)(j)|A(j)

+α(k)ω̂(k)(j)e
d
(k)(j),

(17)

and volume dilatation, Eq. (15), is modified as

θ(k) =
2(2ν − 1)

ν − 1

N∑
j

ω̂(k)(j)|ξ(k)(j)|e
d
(k)(j)A(j)

N∑
j

ω̂(k)(j)|ξ(k)(j)||ξ(k)(j)|A(j)

. (18)

In the implementation of pre-existing cracks in a PD

model, it is assumed that the bond between two mate-

rial points is broken i.e., fb = 0, if their relative posi-

tion vectors within the horizon passes through a crack

surface. As for the moving cracks, when a propagating

crack passes through a bond of two material points, it

is considered that the bond is broken as indicated in

Fig. 2(a).

2.3 Transition bond concept

In the conventional PD framework, the fracture is mod-

eled by sudden release of bond forces while the crack is

propagating. Imachi et al. (2019) reported that sudden

release of bond forces had caused significant oscillations

in the DSIFs, even though the trend of DSIFs agree

well with the reference values. When the crack path is

obtained by maximum circumferential stress criterion,

the oscillations may reduce the accuracy of crack path

estimations. In order to reduce numerical oscillations

in fast propagating cracks, the damping effects might

be introduced near the crack tip or entire specimen as

similar to works of Aoki et al. (1987) and Coré et al.

(2018). Aoki et al. (1987) implemented gradual reduc-

tion of nodal forces in FEM near the crack tip. Coré

et al. (2018) implemented damping concept in discrete

element method. A similar approach was recently pro-

posed by Imachi et al. (2019) to suppress the numerical

oscillations, in which the bond force is reduced gradu-

ally instead of sudden releasing. This is called the “tran-

sition bond” approach. In this technique, however, the

damping effects are adopted for PD bonds rather than

the material points. The bond force is decreased gradu-

ally within a damping length when a propagating crack

segment passes through a bond. The unbroken bond

becomes a transition bond and fb decreases gradually

from 1.0 to 0.0. Transition bond concept is illustrated

in Fig. 2(b).

The fb function is dependent on the time t− tcr and

the crack velocity ȧ. t− tcr is the elapsed time after the
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breaking of a PD bond.

fb(t, ȧ) =


1 unbroken bond

0 < fb < 1 transition bond

0 broken bond

. (19)

The fb function is simply defined as

fb =

(
1− da

∆a

)n

, (20)

where da stands for crack size increment and ∆a is the

damping length. Imachi et al. (2019) examined influ-

ences of the damping length parameter and damping

coefficient, n on the crack propagation and DSIFs. In

the present study, ∆a = δ/2 and n = 4 are utilized.

3 Modeling of crack arrest and evaluation of

DSIFs

Criteria for propagation of a pre-existing crack and

crack arrest are given here. New crack surfaces would

occur when the SIF, KI is equal or larger than frac-

ture toughness KIc. Material resistance against rapidly

propagating crack is less than the resistance against

crack initiation. For simplicity, Kalthoff et al. (1976)

assumed that the material resistances against crack ini-

tiation KIc, crack propagation KID and the crack arrest

KIa are constant and equal to each other.

The crack arrest phenomenon is conceptually the

reverse of the crack initiation, that is the crack prop-

agation stops when the certain conditions are met. In

the static analysis concept, the crack would be arrested

when the static SIF, Kstat
I determined by conventional

static analysis concept under external loading condition

becomes less than the material resistance at when the

crack is arrested. On the other hand, dynamic analysis

framework considers DSIFs to judge whether the crack

propagates or is arrested.

P

P

a
H

Fig. 3 Schematic illustration of the specimens

The difference between arrest toughnesses and ar-

rested crack lengths by static and dynamic analysis

concepts becomes significant when the specimen is rel-

atively narrow, e.g., DCB (Kalthoff et al. 1976). As for
the wide specimens, the difference between SIFs and

arrested crack length turns out to be less significant. It

can be explained by reaching of reflected stress waves to

the crack path soon in case of narrow specimens while

it takes time for wide specimens. Moreover, the arrest

toughness also depends on the environmental aspects,

e.g., temperature.

3.1 Interaction integral for DSIFs

The fracture is associated with the energy balance, that

is if the crack growth energy exceeds the material resis-

tance, the crack propagation would take place. Most of

the excess energy after the crack initiation dictates the

crack velocity. Considering this tight relationship be-

tween energies and fracture, the interaction integral can

be adopted for evaluating DSIFs. Réthoré et al. (2005)

implemented interaction integral method for dynamic

crack propagation. Interaction integral I for evaluating

SIFs is expressed as

I =

∫
Ω

[
∂q1
∂xj

{
(σaux

ij

∂uact
i

∂xk
+ σact

ij

∂uaux
i

∂xk
)

− (σaux
ml

∂uact
m

∂xl
− ρu̇act

l u̇aux
l )δkj

}
+ q1

{
(
∂σaux

ij

∂xj

∂uact
i

∂xk
+

∂σact
ij

∂xj

∂uaux
i

∂xk
)

+ ρ(u̇aux
i

∂u̇act
i

∂xk
+ u̇act

i

∂u̇aux
i

∂xk
)
}]

dΩ.

(21)

In the given equation, σij , ui and u̇i denote the stress,

displacement and velocity components, respectively. Ac-

tual and auxiliary field variables are expressed by super-

scripts “act” and “aux”.Ω stands for domain of integra-

tion and δkj is the Kronecker delta. Spatial derivatives

of physical values are computed by employing MLS ap-

proximation (Imachi et al. 2018). Domain integration

is evaluated by adopting weight function q1, as same as

Imachi et al. (2019).

The interaction integral I can be written in terms

of DSIFs considering the actual and auxiliary fields as

I =
2

E∗ (AI(ȧ)K
act
I Kaux

I +AII(ȧ)K
act
II Kaux

II ), (22)

where AI(ȧ) and AII(ȧ) are the universal functions,

which are also function of crack velocity, ȧ. The uni-

versal functions are adopted from Freund (1990) as

AI(ȧ) =
4αd(1− α2

s)

(κ+ 1)D
, AII(ȧ) =

4αs(1− α2
s)

(κ+ 1)D
, (23)
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Specimen No: 4

Specimen No: 8

Specimen No: 17

Specimen No: 24

Fig. 4 Input parameters for DCB specimens with crack ini-
tiation toughness values derived from Kalthoff et al. (1976)

where κ = (3−ν)/(1+ν), E∗ = E and κ = 3−4ν, E∗ =

E/(1 − ν2) are material constants for the plane stress

and plane strain conditions, respectively. The other pa-

rameters are αd=
√
1− ȧ2/c2d, αs=

√
1− ȧ2/c2s, andD =

4αdαs − (1 + α2
s)

2. cd and cs are the longitudinal and

transverse wave speeds, respectively.

In computing actual DSIFs, the auxiliary SIFs can

be assumed as Kaux
I = 1, Kaux

II = 0 for pure mode-I

and Kaux
I = 0, Kaux

II = 1 for pure mode-II conditions.

Introducing these assumptions into Eq. (22) yields

Kact
I =

E∗

2AI(ȧ)
II, Kact

II =
E∗

2AII(ȧ)
III, (24)

where II and III are the interaction integrals for mode-I

and mode-II, respectively. They were defined by Imachi

et al. (2019). In the given equations, subscripts I and

II represent the field variables for mode-I and mode-II.

The stress components are evaluated by assuming force

flux in a material point is equivalent to state of stress,

which is expressed as (Silling and Lehoucq 2008),

σact =

∫
H
T ⊗ ξdV. (25)

Spatial derivatives as well as velocity components are

evaluated by MLS approximation as given in Imachi

et al. (2018). Moreover, discretization of interaction in-

tegral was discussed by Imachi et al. (2019), the details

are therefore not presented here.

4 Numerical examples and discussions

DCB specimens under wedge loading are considered to

be numerical examples. There are two stages regard-

ing analysis for crack propagation and arrest. In the

first stage, called the generation phase, DSIFs are repro-

duced for given crack path histories. The second stage
is the application (prediction) phase, in which the crack

path history is evaluated for computed DSIFs until the

crack is arrested, assuming a relationship between the

crack velocity and DSIFs as given by Kanninen and

Popelar (1985) and Prabel et al. (2007). Then, arrested

crack lengths are compared with the available reference

results.

The specimen for the crack arrest simulation is de-

picted in Fig. 3. The main dimensions are the same for

all specimens and PD division, dx=1.0 mm, is same

regardless of the specimen. A prescribed displacement

is applied to the specimen. In the dynamic analysis

by PD, the displacement constraint conditions are not

necessary as opposed to FEM. The present models are

therefore free of displacement constraints except for the

prescribed displacements. In Fig. 3, a stands for initial

crack length, which is not explicitly given by Kalthoff

et al. (1976), however the initial crack lengths can be

derived by extrapolation using input data given in Fig.

4.

4.1 Generation phase

The capability of present formulation, in the evaluation

of DSIFs for given crack path histories, is presented. In

the generation phase, the crack length as well as the ve-

locity are considered to be the input parameters. Input

data are obtained from the experimental values pro-

vided by Kalthoff et al. (1976). Specimens with num-

bers 4, 8, 17 and 24 are adopted. Generated input values

for the specimens are given in Fig. 4.

Crack velocities can be easily derived from Fig. 4,

and DSIFs are obtained employing OSPD formulation

by updating crack position and velocity. In the given fig-

ure, higher crack initiation toughness, Kq values repre-

sent blunted crack tip, while the crack starts propagat-

ing at the smaller Kq values for sharp crack tips. Crack

tip properties (sharp or blunted) are not explicitly mod-

eled in PD discretization; however, they are taken into

account as material property. When the crack tip gets

blunted, it is clear that the arrested crack length is

larger than that by other cases. For blunted crack tips,

stored elastic strain energy prior to crack propagation

is larger than that by sharp crack tips. Once the crack

starts to propagate, elastic strain energy mostly turns

into fracture (generation of new crack surfaces) and ki-

netic energies (Nishioka and Atluri 1982). Larger ki-

netic energy dictates larger crack velocity. Such kinetic

energy can be dissipated by the fracture, and larger ki-

netic energy means larger crack length.
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Fig. 5 Solution algorithm for the generation phase

So far, the physical interpretation of input values

was expressed. The input values are processed using

the flowchart given in Fig. 5 to reproduce the DSIFs.

In the generation phase, crack position and crack

velocities are updated using the values in Fig. 4. Bond

condition is assessed for breakage of PD bonds as same

as Imachi et al. (2019). Eventually, corresponding DSIFs

are calculated using interaction integrals defined in the

previous section, see Eq. (24), for with and without

transition bond cases. In order to point out the influ-

ence of the transition bond concept on the crack arrest,

the computed DSIFs for with and without transition

bonds are compared with the experimental results given

by Kalthoff et al. (1976) in Fig. 6. In Fig. 6(a) to (c),

the arrested crack lengths are larger than the case in

Fig. 6(d). In Fig. 6(d), the crack initiation toughness is

the smallest one and the crack speed is very low com-

pared to other specimens. When the crack speed starts

to decrease, DSIFs in Fig. 6(d) decrease accordingly as

opposed to other specimens. This is because of early

arrest of crack before the reflected stress waves reach

the crack tip. In Fig 6(a) to (c), the numerical DSIFs

increase around t=300 µs. At that time, the crack in

specimen no. 24 is already arrested.

Generation phase results for specimen no. 4 were

reported by Nishioka and Atluri (1982) and Kobayashi

(1979) in addition to Kalthoff et al. (1976). DSIFs for

specimen no. 4 are therefore compared with the numer-

ical results given by Nishioka and Atluri (1982) and
Kobayashi (1979) as well as the experimental results

by Kalthoff et al. (1976) in Fig. 7. In this figure, the

present results are evaluated by transition bond con-

cept.

In Figs. 6 and 7, crack length and velocities (input

values) are also indicated with respect to the DSIFs.

As it is obvious in Figs. 6 and 7, the DSIFs decrease

considerably just after the onset of crack propagation

and such reduction in DSIFs is more pronounced for

blunted crack tips. This is because of the sudden release

of stresses by the fracture. After a while, the DSIFs tend

to follow a stable trend around a certain value. This

trend can also be observed in the experimental results.

Fairly good agreement is achieved between the present

(with transition bond) and experimental results. The

agreement becomes much clear for sharp cracks (smaller

Kq values). Fig. 6 also shows that even if the trend of

DSIFs looks to be in a reasonable range without the

transition bond case, the oscillation becomes too signif-
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Fig. 6 Estimation of DSIFs for given crack path histories: (a) specimen no. 4 (Kq = 2.32), (b) specimen no. 8 (Kq = 1.76),
(c) specimen no. 17 (Kq = 1.33), (d) specimen no. 24 (Kq = 1.03)

icant and adopting transition bond reveals more stable

DSIFs estimation. In the generation phase, we compute

DSIFs by imposing crack location and crack velocities

as inputs and this is the reason why the arrested crack

lengths are the same with and without transition bond

cases. The influence of transition bond concept on the

crack arrest is expected to be more pronounced in the

application phase as shall be discussed next.

Numerical results also indicate that when crack ve-

locity starts to decrease, the DSIFs tend to increase

slightly and then reduce again up to crack arrest as ob-

served in Fig. 6(a) and (b). In Fig. 7, it is clear that

when the experimental DSIFs start to fall, numerical
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Fig. 7 DSIFs for specimen no. 4 (Kq = 2.32) obtained by
present method with transition bond concept and reference
values by Kalthoff et al. (1976), Nishioka and Atluri (1982)
and Kobayashi (1979)

DSIFs values obtained by the present method as well

as reference results by Kobayashi (1979) and Nishioka

and Atluri (1982) increase slightly. The possible reason

of such tendency of numerical DSIFs may be explained

by the difference between experimental and numerical

simulation conditions. The real specimens have thick-

ness, whereas the plane stress condition is adopted in
the present computations considering numerical stud-

ies of Kobayashi (1979), Nishioka and Atluri (1982).

In this case, stress waves reflected from the boundary

of the specimen also have consequences on DSIFs. In

addition, crack tip geometry through the thickness di-

rection might affect the fracture phenomenon; however,

the available information on this issue is limited. Fur-

thermore, one of the possible reasons might be that the

initial crack velocity is assumed to be constant in the

present computations since the crack velocities at the

beginning of the crack initiation were not reported by

Kalthoff et al. (1976).

4.2 Application phase

In the generation phase, the experimental crack data

are considered to be input. However, such approxima-

tion is limited for the specimens which have experimen-

tal results. In the application phase, the crack arrest

phenomenon can be examined by making some assump-

tions on the relationship between crack velocity and
DSIFs. Considering the crack data in Kalthoff et al.

(1976), an expression is adopted defining the relation-

ship between crack velocity and DSIFs as similar to

Kanninen and Popelar (1985) and Prabel et al. (2007).

Kd =
Ka

1−
(
ȧ

vl

)m . (26)

In Eq. (26), the crack arrest toughness is assumed as

Ka=0.759 MN·m−3/2, the limiting crack velocity, vl
is utilized as 480 m/s, and the arbitrary parameter is

m=2. These values are determined to get better agree-

ment with the experimental crack velocity-DSIFs rela-

tions. The prediction curve with the experimental crack

velocity-DSIFs relation is given in Fig. 8.
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Fig. 8 Prediction of crack velocity-DSIFs relation with the
experiment in Kalthoff et al. (1976)

In Fig. 8, the prediction curve is intentionally de-

rived slightly above the experimental DSIFs-crack ve-

locity values. For the crack velocities less than 50 m/s,

there are many overlapped experimental data points,

which reduces the accuracy of crack velocity estima-

tions for small crack sizes when the prediction curve

is fitted along the data points. The prediction curve is

therefore derived slightly above the experimental data

to avoid premature crack arrest.

In the application phase, the main work flow is sim-

ilar to that of the generation phase and given in Fig.

9. As can be seen in Fig. 9, the force states and stress

components under prescribed displacements are com-

puted first. Then, it is examined whether the crack

propagation occurs or not by checking the condition

of PD bonds. If the crack propagation does not take

place yet, the DSIFs are then evaluated for stationary



Dynamic crack arrest analysis by ordinary state-based peridynamics 11

Apply load/boundary conditions

Compute force state and stresses

Eqs. (17) and (25) 

Judge crack propagation

Explicit time integration

Continue ?

Start

Input data

No

End

Yes

Application Phase 

Start

Update crack position

End

Compute DSIF

for stationary crack

Compute DSIF

for moving crack

YesNo
a > 0
.

Compute crack speed, a
Eq. (26)

.

Yes

Compute bond condition

Eqs. (19) and (20)

Imachi et al. (2018) Imachi et al. (2019)

Fig. 9 Solution algorithm for the application phase

cracks based on the technique given by Imachi et al.

(2018). The DSIFs for stationary cracks are then com-

pared with critical SIFs. If the equivalent SIF is greater

than the critical SIF, it is assumed that crack prop-

agation occurs and crack velocity (ȧ) is obtained by

Eq. (26). In the case of crack propagation (ȧ > 0), the

DSIFs are computed using interaction integrals as given

in Eq. (21). Crack velocity is then calculated through

Eq. (26). The crack length is updated by taking into ac-

count the crack velocity. Then, the PD bond condition,

either with or without transition bonds, is evaluated

depending on the analysis setting.

The computed DSIFs and total crack lengths are

compared with the experimental results given by Kalthoff

et al. (1976) in Fig. 10. We also compare with and

without transition bond cases in terms of the DSIFs

and total crack lengths. Here, the experimental results

are digitized and compared with the present OSPD re-

sults. Fig. 10(a) shows that the total crack lengths ob-

tained with and without transition bonds are close to

each other and they agree well with the experimental

values. The experimental crack propagation length is

129.0 mm for specimen no. 4, while the computed crack

propagation lengths are 132.6 mm for transition bond

and 124.0 mm for without transition bond cases. On

the other hand, oscillations in DSIFs become more sig-

nificant compared to generation phase results, see Fig.

6(a). As for the specimens no. 8, 17 and 24, the crack

stops propagating in early stages because of the oscilla-

tions in DSIFs for without transition bond cases. Due

to the higher oscillations of DSIFs, the estimated crack

velocities by Eq. (26) become zero shortly after the on-

set of crack propagation. For the specimens 8 and 17,

the experimental crack propagation lengths are 100 and

56 mm, respectively. Whereas the crack propagation

lengths are 88.2 and 58.2 mm for with transition bond

concept and 20.0 and 10.2 mm for without transition

bond cases. Moreover, in Fig. 10(d), the crack stops just

after the onset of crack propagation. In this case, exper-

imental crack propagation length is 29.7 mm, while the

crack propagation lengths are 29.1 and 1.0 mm with and

without transition bond cases, respectively. These nu-

merical values clearly indicate that the transition bond

concept improved the results remarkably.

For specimen no. 4, the numerical results can be

found in the literature for the application phase. So, we
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Fig. 10 Estimation of DSIFs and total crack lengths in the application phase: (a) specimen no. 4 (Kq = 2.32) (b) specimen
no. 8 (Kq = 1.76), (c) specimen no. 17 (Kq = 1.33), (d) specimen no. 24 (Kq = 1.03)

compare computed DSIFs and total crack length esti-

mations by using transition bond concept with those

given by Nishioka and Atluri (1982) and Kobayashi

(1979) in Fig. 11. It is evident in Fig. 11 that the present

OSPD formulation agrees well with the reference results

obtained by both experimental and numerical manners.

Owing to the transition bond concept, the oscillations

in DSIFs are reduced in a certain extent and a good

agreement is achieved.
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Fig. 11 DSIFs and total crack lengths for specimen no. 4
(Kq = 2.32) obtained by present method with transition bond
concept and reference values by Kalthoff et al. (1976), Nish-
ioka and Atluri (1982) and Kobayashi (1979)

5 Conclusions

In this paper, we have presented numerical investiga-

tions for the dynamic crack arrest phenomenon by us-

ing the OSPD formulation. Transition bond concept is

adopted for suppressing numerical oscillations in the

fast crack propagation. The study includes two phases,

namely, generation and application phases. In the gen-

eration phase, experimental crack history data is as-

sumed to be input, DSIFs are evaluated by the present

formulation. A good agreement is achieved with refer-

ence transient FEM and experimental results using the

transition bond concept.

In the application phase, DSIFs are obtained by the

present formulation and assuming a certain relationship

between DSIFs and crack velocity; the crack position

is updated. Then, total crack lengths and DSIFs are

compared with the experiments and reference numeri-

cal results. The agreement between present and refer-

ence results is very good when the transition bond is

adopted.

The influence of transition bond concept is exam-

ined. Transition bond concept affects estimated DSIFs

notably in the generation phase. As for the applica-

tion phase, these effects become more pronounced so

that premature crack arrest is observed for sharp cracks

when transition bond is not employed.
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Réthoré J, Gravouil A, Combescure A (2005) An energy-

conserving scheme for dynamic crack growth using the
eXtended finite element method. Int J Numer Meth Eng
63:631–659

Shibanuma K, Yanagimoto F, Namegawa T, Suzuki K, Ai-
hara S (2016a) Brittle crack propagation/arrest behavior
in steel plate - Part I: Model formulation. Eng Fract Mech
162:324–340

Shibanuma K, Yanagimoto F, Namegawa T, Suzuki K, Ai-
hara S (2016b) Brittle crack propagation/arrest behavior
in steel plate - Part II: Experiments and model validation.
Eng Fract Mech 162:341–360

Shibanuma K, Yanagimoto F, Suzuki K, Aihara S (2018)
Brittle crack propagation/arrest behavior in steel plate
– Part III: Discussions on arrest design. Eng Fract Mech
190:104–119

Shojaei A, Mossaiby F, Zaccariotto M, Galvanetto U (2018)
An adaptive multi-grid peridynamic method for dynamic
fracture analysis. Int J Mech Sci 144:600–617

Silling SA (2000) Reformulation of elasticity theory for dis-
continuities and long-range forces. J Mech Phys Solids
48:175–209

Silling SA, Askari E (2005) A meshfree method based on the
peridynamic model of solid mechanics. Comput Struct
83:1526–1535

Silling SA, Lehoucq RB (2008) Convergence of peridynamics
to classical elasticity theory. J Elasticity 93:13–37

Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peri-
dynamic states and constitutive modeling. J Elasticity
88:151–184

Zhang Y, Qiao P (2019) A new bond failure criterion for ordi-
nary state-based peridynamic mode II fracture analysis.
Int J Fracture 215:105–128

Zhao J, Tang H, Xue S (2018) A new fracture criterion for
peridynamic and dual-horizon peridynamics. Front Struct
Civ Eng 12:629–641

Zhou W, Liu D, Liu N (2017) Analyzing dynamic fracture
process in fiber-reinforced composite materials with a
peridynamic model. Eng Fract Mech 178:60–76

Zhou X, Wang Y, Qian Q (2016) Numerical simulation of
crack curving and branching in brittle materials under dy-
namic loads using the extended non-ordinary state-based
peridynamics. Eur J Mech Solid 60:277–299

Zienkiewicz O, Taylor R, Zhu JZ (2005) The Finite Element
Method: Its Basis and Fundamentals, 6th edn. Elsevier
and Butterworth-Heinemann


