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This study analyzed thin-plate bending problems with a geometrical non-linearity using the Hermite 
reproducing kernel approximation and sub-domain stabilized conforming integration. In thin-plate 
bending analyses, the deflections and rotations satisfy so-called Kirchhoff mode reproducing 
conditions. It is then possible to solve large deflection analyses of thin-plates, such as elastic bucking 
problems, with high accuracy and efficiency. Total Lagrangian method is applied to solve the 
geometrical non-linearity of the thin-plates’ deflections and rotations. The Green-Lagrange strain 
and second Piola-Kirchhoff stress forms are adopted to represent the strains and stresses in the thin-
plates. Mathematical formulation and some numerical examples are also demonstrated. 
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1. Introduction 

In recent years, Galerkin-based meshfree/particle methods have been proposed and 
developed to solve engineering problems. These include the Element-free Galerkin 
Method (EFGM) [Belytschko T. et al. (1994)], the Reproducing Kernel Particle Method 
(RKPM) [Liu W. K. et al. (1995)], and the Meshless Local Petrov-Galerkin (MLPG) 
method [Atluri S. N. et al. (1998)], etc. In solid/structural analyses using the 
meshfree/particle methods, the bodies are discretized based on the nodes/particles, and 
the deformations are represented by the interpolation functions which are located on the 
nodes/particles. The methodologies require no finite element meshes in the discretization 
and therefore avoid mesh distortion difficulties in large deformation analyses. When plate 
bending problems are solved using the meshfree/particle methods, there are some 
techniques required to make a structural element because the interpolation functions and 
the numerical integration of the stiffness matrices are sometime different from 
conventional finite element methods (FEMs). Some researchers have attempted to solve 
thin-plate structures using meshfree/particle methods; EFGM [Krysl P. and Belytschko T. 
(1995)] [Krysl P. and Belytschko T. (1996)], [Noguchi et al. (2000)], MLPG [Atluri S. N. 
et al. (1999)], and RKPM [Wang D. and Chen J. S., (2004)] [Chen J. S. and Wang D., 
(2006a)], etc. 
The Hermite reproducing kernel (HRK) approximation with sub-domain stabilized 
conforming integration (SSCI) is one of the meshfree/particle methods to solve thin-plate 
bending problems [Wang D. and Chen J. S., (2008)]. The use of HRK approximation to 
the thin-plate bending problem, the deflections and the rotations, satisfy so-called 
Kirchhoff mode reproducing conditions. The rotations and the curvatures are directly 
represented by the differentiations of the deflection based on Hermite-type interpolation 
forms. Furthermore, the SSCI enhances the accuracy and numerical stability of the 
solutions in treating weak forms for thin-plate bending problems that have second-order 
differentiation of the deflection. The SSCI is based on stabilized conforming nodal 
integration (SCNI) proposed by Chen [Chen J. S. et al. (2001)] [Chen J. S. et al. (2002)]. 
In Galerkin-based meshfree/particle methods, a strain smoothing and stabilization of the 
solution can be achieved in performing numerical integration of the stiffness matrices 
with SCNI. 
The goal of the research is to solve nonlinear analysis of thin-plates structures using HRK 
and SSCI as engineering applications. In this study, as a first attempt, the geometrical 
non-linearity using the total Lagrangian method is introduced to the thin-plate bending 
analyses. The Green-Lagrange strain and second Piola-Kirchhoff stress are used to 
represent the strains and stresses in the thin-plate. As far as we know, the development of 
thin-plate analyses using HRK and SSCI with geometrical non-linearity has not been 
presented to date. In addition, though Wang et al. used the mixed transformation method 
to enforce the essential boundary condition of the deflections and rotations [Chen J. S. 
and Wang H. P. (2000)], penalty formulation is adopted because it is easy to implement 
in the computer program without additional degrees of freedom to the system. In this 
paper, a review of thin-plate analyses with HRK and SSCI is briefly presented in Section 
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2. The methodology is expanded to the thin-plate bending analyses with geometrical non-
linearity using the total Lagrangian method in Section 3. Some numerical examples of the 
thin-plate bending problem are demonstrated in Section 4, and compared with reference 
solutions using commercial FEM software to verify the developments. In Section 5, the 
conclusions of the present study are discussed. 

2. Thin-Plate Bending Problem using the HRK Approximation and SSCI 

In this section, a brief review for the thin-plate bending analyses using the HRK 
approximation with SSCI [Wang D. and Chen J. S., (2008)] is presented. 

2.1. HRK approximation 

The illustration for the thin-plate bending problem is shown in Fig. 1. In the analysis, 
Kirchhoff-Love hypothesis is assumed. The plate domain is  and the boundary is . The 
plate thickness is t. The rotation x and y are defined as the illustration in Fig. 1. In Fig. 2, 
the schematic illustration for thin-plate bending analyses using the HRK approximation is 
presented. In the analyses, nodes are located in the mid-section of the plate. Each node 
has three degrees of freedom, i.e., deflection component and rotation components for the 
x-direction and y-direction. The deflection wh(x) at the position x is represented by the 
superposition of the HRKs with their coefficients, as: 
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in which s is the normalized distance and a is the radius of the kernel function. The 
HRKs are constructed by the sum of the kernel function )(xa  with the basis vectors 

)( xxh I
T , )( xxh I

T
x  and )( xxh I

T
y , as: 
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where )( xxh I
T  is the basis vector to represent the deflection component, and 
)( xxh I

T
x  and )( xxh I

T
y  are the basis vectors for the rotation components. Subscript a 

in kernel function a(xI - x) is the function support. They are obtained by the 
differentiation of )( xxh I

T  for the x-direction and y-direction. In this study, second-
order basis vectors are adopted and the vectors are represented as; 
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In the HRK approximation, the coefficient vectors b(x) in Eq. (5) are determined to 
satisfy the n-th order reproducing conditions. The HRKs also satisfy the Kirchhoff mode 
reproducing condition. Further details for the derivation of the coefficient vectors and the 
Kirchhoff mode reproducing condition are presented in [Wang D. and Chen J. S. (2008)]. 
In Galerkin-based formulation for a thin-plate bending problem, curvature and the 
variation in the weak formare obtained directly by the second-order differentiation of 
deflection wh(x) and numerical integration is performed to determine the stiffness matrix. 
However, in the Galerkin-based meshfree/particle method, it is the possibility of stability 
deficiency in the solution occurring when the direct nodal integration or Gauss 
integration is performed. In this study, the SSCI is adopted to stabilize the solution. 

2.2. Sub-domain stabilized conforming integration 

The schematic illustration for SSCI is presented in Fig. 3. Though, it is known that the 
Voronoi diagram is often adopted for SSCI discretization, the geometric center 
surrounding the four nodes is used to make the integration cells a convenient means. In 
Fig. 3, the square region in the solid lines is the integration domain K for the K-th node. 
The region is divided into four sub-domains Ki )4,,1( i  to integrate the stiffness 

 
Fig. 1   Thin-plate Bending Problem                               Fig. 2 Kernel Approximation 
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matrix for the thin-plate bending problem accurately. The point xKi is the geometric 
center of the sub-domain Ki where the physical values (strains, stresses, curvatures) are 
stored. In SSCI, smoothed curvatures at xKi are represented as, 
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where AKi is the area of Ki and n and n are normal vectors. The descriptions of the 
kernel function are represented as )()(),()(),()( 321 xxxxxx y
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3. Thin-plate bending problem with geometrical non-linearity 

In this section, the thin-plate bending problem considering the geometrical non-linearity 
using the HRK approximation and SSCI are demonstrated. 

3.1. Total Lagrangian method 

The total Lagrangian method is adopted to solve the thin-plate bending problem with a 
geometrical non-linearity. The Green-Lagrange strain tensor and the second Piola-
Kirchhoff stress tensor at time t for the initial configuration are represented as Et

0  and 
St

0 . The principle virtual work at time t without the body force term is represented as, 

0: 00     t t
ttt dd utES   (8) 

in which u is the variation of displacements u, and tt  is traction at the forced boundary 

t . To solve geometrical nonlinear bending problems, the principle virtual work in eq. 
(8) is decomposed and linearized. The principle virtual work at time t+t is presented as, 

 
Fig. 3 Sub-domain stabilized nodal integration (SSCI) 
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The upper script • denotes the material time derivative. A penalty formulation is adopted 
to enforce the essential boundary condition for the deflections and rotations. 

3.2. Implementation of the thin-plate bending problem 

In the thin-plate bending problem considering the non-linear geometry, the linearized 
principle virtual work of Eq. (9) is used. In the matrix form for the left hand side of the 
equation is, 
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L
t K0  is the initial displacement matrix and NL

t K0  is the geometric stiffness matrix. D is 
the stress-strain relationship. Plane stress condition is assumed in this analysis. The 
integration of the plate thickness direction is performed analytically. The matrices LI

t B0  
for I-th particle are presented as, 
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where UI is displacement vector for I-th particle, and the components Bd
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For nonlinear part of Green-Lagrange strain NLI
t B0  for I-th particle and second Piola-

Kirchhoff stresses St
0  are represented as, 
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The right hand side of Eq. (9) is represented in matrix form as, 

QF tttEqofsidehandRight 00)9(.     (18) 

Ftt 
0  is the external force vector for the pressure distribution and moments and Qt

0  is 

the internal force vector. The vectors can be written as follows: 
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in which Ŝ0
t  is the vector form of St

0 . Numerical integration is performed using the 
SSCI in Subsection 2.3 to stabilize the solution. To solve the linearized nonlinear 
equation from time t to t+t, incremental analyses are performed using the Newton-
Raphson iteration method. The convergence is checked each increment step by step, and 
the iterations are finished when difference between the internal and external forces at the 
time t+t is less than a threshold. 

4. Numerical Examples 

Numerical examples for thin-plate bending problem are demonstrated to verify the 
proposed technique. The thin-plate bending problem is shown in Fig. 4 (a) and (b). A 
1000x1000 mm rectangular plate (plate thickness t = 10 mm) is used. The Young’s 
modulus is E = 206 GPa and Poisson’s ratio  = 0.3. Initial deflection is not considered. 
For the applied loads, the pressure distribution in Fig. 4 (a) and the point load at the 
center node in Fig. 4 (b) are applied. Two kinds of node distribution models are used in 
the analyses. Fig. 5 (a) shows the regular node model (21x21 nodes) and Fig. 5 (b) shows 
the irregular node model (21x21 nodes). The solutions are compared with the reference 
solution using MSC.MARC. A 100x100 elements model is used to model the plate and a 
thin-plate shell element (element number 139 in MSC. MARC) is adopted. As membrane 
deformation is not considered in this study, the degrees of freedom for the x, y 
deformations are fixed in the analyses with MSC.MARC. As the boundary condition, 
simply supported and clamped plate conditions are enforced along the edges of the plates. 
The numerical results are shown in Fig. 6 (a) and (b) for simply supported boundary 
condition. Cases for clamped plate condition are shown in Fig. 7 (a) and (b). In the 
figures, the deflections of center the plate are denoted. Both solutions for the regular node 
model and irregular node model are good agreement with the reference solution. 
To perform further results evaluations, L2 error norm is estimated for the thin-plate 
bending problems. Three kinds of analysis models with regular node pattern are used. 
They have 11x11, 21x21 and 41x41 nodes in each model, respectively. Final step 
deflections in Fig. 6 (a), (b) and Fig. 7 (a), (b) are used to compare the L2 error norm for 
simply supported and clamped plate boundary conditions. Numerical results with 
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MSC.MARC are used as the reference solution. The numerical results under pressure 
distribution are shown in Fig. 8 (a) and under point load are presented in Fig. 8 (b). In 
both cases, the L2 error norm are converged as the distance between nodes are closer. 
From the numerical results, it is considered that the proposed method can solve with high 
accuracy the thin-plate bending problem with geometrical non-linearity. 

5. Conclusion 

In this study, thin-plate bending problems with geometrical non-linearity are performed 
using the HRK approximation and SSCI. The total Lagrangian method is used to treat the 
non-linearity. Some numerical examples are presented to verifying the proposed method. 
For future study, a shell element formulation is to be developed considering membrane 
deformation using this technique and elastic bucking problems are solved for engineering 
applications. 
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                                                (a)                                                                                   (b) 
Fig. 4 Thin-plate bending analyses with geometrical non-linearity [(a) under pressure distribution, (b) under 
point load] 
 

 
                                                                 (a)                                                          (b) 
Fig. 5 Node distribution for the analyses of HRK with SSCI [(a) 21x21 regular nodes model, (b) 21x21 
irregular nodes model] 
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                                                (a)                                                                                    (b) 
Fig. 6 Load-deflection curves (simply supported) [(a) Pressure distribution, (b) Point load] 
 

 
                                                (a)                                                                                    (b) 
Fig. 7 Load-deflection curves (clamped plate) [(a) Pressure distribution, (b) Point load] 
 

      
                                                (a)                                                                                    (b) 
Fig. 8 L2 error norm [(a) Pressure distribution, (b) Point load] 
 


