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Abstract. In this paper, Hs output feedback control for strongly coupled large-scale systems are discussed. When the
positive coupling parameter £ which connect the other subsystems is large, a successive algorithm for solving the algebraic
Riccati equations (ARE) is developed for the first time. Since the proposed algorithm is derived using Newton’s method, it is
noteworthy that the quadratic convergence and uniqueness of the obtained solution are both guaranteed for strongly coupled
parameter €. Moreover, in order to reduce the computation in the resulting Newton’s method, the gradient-based iterative (GI)
algorithm is combined. As a result, it is shown that the reduced-order computation is attained. Finally, in order to demonstrate
the efficiency of the proposed algorithms, computational examples are provided.
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1 Introduction

For large-scale systems, the stability analysis and control and filtering problems have been investigated
extensively (see e.g., [4, 5, 6]). In practice, it is known that such systems are represented by multiarea power
systems [4], distillation columns [5], and cold rolling [6]. They are widely used to represent system dynamics.

In order to obtain the optimal solution, we must solve the algebraic Riccati equation (ARE) that is
parameterized by the positive coupling parameter . Various reliable approaches for solving the ARE have
been well documented in many literatures (see e.g., [10, 12]). If the dimension of systems are relatively
small, these approaches are very useful. However, when these methods are used, the dimension of the
computing workspace should be twice that of the ARE. Therefore, the reduced-order computation needs to
be considered.

The control problems of weakly coupled large-scale systems have been studied by several researchers (see
[5, 13, 14, 15, 16, 17] and references therein). When the positive coupling parameter & which connect the
other subsystems is sufficiently small, the previously used techniques are very efficient. However, as long as
the large coupling parameter € is considered, such methods proposed in these references cannot be applied.
This brings a new issue: how to solve ARE for large coupling parameter € and to guarantee the quadratic
convergence and the local uniqueness.

In this paper, H,, output feedback control for large-scale systems is investigated. It is assumed that
the subsystems of the considered large-scale linear systems are connected by large coupling parameter e.
After establishing the structure of the ARE corresponding to H., control problem by using the implicit
function theorem, an algorithm for solving the ARE corresponding this problem related to large coupled
large-scale systems is established. In order to guarantee the quadratic convergence and local uniqueness
of the obtained solution for any large parameter e, the successive algorithm that is based on the Newton’s
method is proposed for the first time. Moreover, the gradient-based iterative (GI) algorithm is combined to
attain the reduced-order computation. In order to demonstrate the efficiency of our new algorithms, some
computational examples are provided.

Notation: The notations used in this paper are fairly standard. Superscript 7' denotes matrix transpose.
Tr denotes sum of the diagonal elements of a matrix. block diag denotes the block diagonal matrix. Apax
denotes maximum eigenvalue. | - || denotes norm of a matrix. |- |z denotes the Frobenius norm of a matrix
such that |M|% := Tr[M7T M]. det denotes the determinant of a square matrix. I, denotes the p x p identity



matrix. vec denotes the column vector of a matrix [1]. ® denotes the Kronecker product. Uy, denotes a
permutation matrix in Kronecker matrix sense [1] such that Uy, vecM = vecM™, M € R>™.,

2 Output Feedback H,, Control Problem for Strongly Coupled
Large-Scale Systems

Consider linear time-invariant coupled large-scale systems [5, 13].

#(t) = Acx(t) + Brow(t) + Bacu(t), (1a)
2(t) = Cha(t) + Dyu(t), (1b)
y(t) = Caz(t) + Daw(t), (1)
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z;(t) € R™ are the state vectors, w;(t) € R! are the disturbance, u;(t) € R™: are the control inputs,
z;(t) € RPi are the controlled output, and y;(t) € R% are the measured outputs. ¢ denotes a relatively large
positive coupling parameter that connects the linear system with other subsystems.

Without loss of generality, we now consider H, control problems under the following basic assumption.

Assumption 1 1. The pair (Ae, Bie) is stabilizable and (Cy, A:) is detectable for a given e € (0, £*],
e* > 0.

2. The pair (A., Ba.) is stabilizable and (Cs, A.) is detectable for a given e € (0, €*], e* > 0.
3. DTCy =0, B;.DY = 0.

H, optimal control problem for strongly coupled large-scale systems is given below.
[He Optimal Control Problem| Given a stabilizable and detectable plant (1), find all admissible K.
such that |G:(s)|oo < 7y, where G¢(s) equals the transfer function from w to z.

The following result is well known [8, 9].

Lemma 1 Under Assumption 1, there exists an admissible controller such that |G($)|eo < v if and only if
the following three conditions hold.

i) The backward ARE
ATP. + P.A. — P.(By.BY. —~72B,.BL)P. + CTCy =0, (2)

has a unique positive semidefinite stabilizing solution.
ii) The forward ARE
AW + WAL —W.(CTCy —y2CTC)W. + BB, = 0, (3)

has a unique positive semidefinite stabilizing solution.



1) Amax(P-W.) < 72

Moreover, when these conditions hold, one such controller, i.e., a central controller with the free parameter
equal to zero, is given by equation (4).

u(t) = — By P-i(t), (4)

where #(t) = [Ac — (Boe BL. =y 2B1. BL)P. — ZW.CT Cyli + ZW.CTy(t) with Z = (I —y2W.P.)~'. Here,
et)y=1[z{®) 23(@) ]T € R™T"2 s the observer state.

In this section, the asymptotic structure of the solution for the backward ARE (2) is established. The
following structure should be assumed.

P ePis } . 5)

Pg:[epg P,

It should be noted that the assumption of this structure is also made in [4, 5, 6]. Using the implicit function
theorem, let us prove the existence of the implicit functions P; = P;(¢) and P2 = Pia(e) of € such that

PZ‘:PZ'(E)7 ’L:L 2, P12:P12(E). (6)
In order to simplify the notation, the following matrix is defined.

S1+¢e251 €(S112 + S122)
e(S112 4 S122)T Sy + %52

Q:=C{C; =block diag ( Q1 Q2 ).

aSi:SiTa SH:ST Z:17 2)

[

S. := By.BLY —~+72B,.BL =

Substituting the solution P. of equation (5) into the ARE (2), the set of algebraic matrix equations (7) is
obtained.

G = AT Py + Pi Ay + (AL Py + PiaAgy) — PLS1 Py — £2(P1S11 Py + PiaStio Py

+P12ST5o PL+ PiS112 Pl + PiS122Ply + P1aSo Py + €2 P12Sos Plh) + Q1 = 0, (7a)
G2 = AiPlQ + P1Ap + AngPz + PioAgs — P1S1P1o — P1S112Ps — P1S122P2 — P12So Py

+e2(P1S11 P12 + P12ST15Pria + P12SiasPia + €2 P12Sos Po) = 0, (7b)
Go = ALPy + PyAgy + e* (A1, Pro + PlyA1n) — PySoPy — €2 (P2S2aPa + Py S112Ps

+ P S120Py + PoSTioPro + PaStaoPro + PLS1 Pro + €2 PLS11 Pra) + Qo = 0, (7c)

where

1 G1 €Gi2 | _ 7 _
G(P.):= |: &_gﬂ Go ] =AP.+P.A. —P.S.P.+Q=0.

The 0Oth order solutions P;, i = 1, 2, and Py are defined for ¢ — +0 for the algebraic matrix equations.
Then, the solutions P; satisfy the ARE (8)

ALP, 4+ PA; — PS;P,+Q; =0, i=1, 2, (8)

where S; := BlnB{” — ’yizBQiiB%;i.

The ARE (8) produces a unique positive semidefinite stabilizing solution if + is sufficiently large.

Let
vp, = inf{y > 0[ the ARE (8) has a positive semidefinite stabilizing solution}.

Then, matrix A;; — S;P; is nonsingular if we choose v > «p,. For the solution P. of the ARE (2), the
result is given for ¢ — +40.



Theorem 1 It is assumed that the reduced-order ARE (8), which is independent of the perturbation param-
eter €, has a positive semidefinite stabilizing solution. If we select a parameter v > 7p = max{vyp,, Yp,},
then there exists a small & such that for alle € (0, &), the ARE (2) admits a positive semidefinite stabilizing
solution P that can be written as equation (9).

P. =P+ 0O(e) =block diag ( P, P, )+ O(e). 9)

Proof : The proof can be obtained by applying the implicit function theorem [5]. To achieve this, it is
sufficient to show that the corresponding Jacobian is nonsingular at € = 0. It can be shown after some
simplification that the Jacobian of the ARE (7) with the limit ¢ — 40 is given by equation (10).

Jg 0 0
J = * Jia * (10)
0 0 Jo

with

Ji = (A = SiP)" @ I, + I, ® (Ays — S; )",
Jig = (Agg — SoP)T @ I, + Iy, @ (A1 — S1P)7.

The Jacobian (10) can be expressed as
detJ = detJ;detJ2detTs. (11)

Apparently,J; and J;2 are nonsingular because the AREs (8) have positive semidefinite stabilizing solutions.
Thus, detJ # 0, i.e., J is nonsingular at ¢ = 0. Therefore, the existence of & such that the ARE (2) has an
asymptotic structure (9) is directly obtained by applying the implicit function theorem.

The remainder of the proof shows that P. is a positive semidefinite stabilizing solution. Using the
asymptotic structure (9) for €, we have equation (12).

A, — S.P. = block diag( A1 — S1Py Agg — S5 Py ) + O(e). (12)

The matrices A; — S;P; are stable because the ARE (8) has a positive semidefinite stabilizing solution.
Therefore, if ¢ is small, A, — S, P. is also stable. Finally, the positive semidefiniteness can be proved by using
the Schur complement [9] for a sufficiently small . B

3 Newton’s Method for Solving the ARE

In this section, a new algorithm for solving the ARE (2), which can be calculated with a small dimension
and attains quadratic convergence, is proposed.

The Schur vector method [10] is being widely used for solving the ARE (2) because the method has good
precision and ensures the algorithm’s stability. However, it is well known that in this method, the dimensions
of the required workspace for the calculations are twice that of the original full system [10]. On the other
hand, in [11], the following comments have been documented.

“Newton’s method is potentially fast and more accurate than the widely used Schur vector method. The
break-even point is between six and eight iterations assuming that a Bartels-Stewart-like algorithm is used
to solve the algebraic Lyapunov equation (ALE).”

Thus, an algorithm that is based on Newton’s method and uses the structure of the solution in equation
(9) is considered.

Let us consider Newton’s method (13).

PUD(A, = S.PM)Y + (A, — S.PHYT P+ L pg P L Q. =0, n=0, 1, ..., (13a)
P Py

pn) —
T B

€

, (13b)




where the initial conditions are chosen as follows.
P = P =block diag ( P P> ). (14)

It should be noted that Newton’s method is equivalent to the existing Kleinman algorithm [12].
The algorithm represented by equation (13) has the feature given in the following theorem.

Theorem 2 If the parameter-independent reduced-order ARE (8) has a positive semidefinite stabilizing so-
lution, there exists a small & such that for alle € (0, &), 0 < & < 7, the iterative algorithm represented by
equation (13a) converges to the exact solution of P. with a rate equal to that of quadratic convergence; here,
Pg(n) is positive semidefinite. Moreover, the convergence solutions equal those of P- in the ARE (2) in the

)~ P. Subsequently, we have equation (15).

0"
B2’

neighborhood of the initial condition PE(0

|P™ — P | = n=0,1, .., (15)

where

A=2S.] < oo, B=[INGP] T, n= 05GP, 6= pnA,

_ OvecG(P;)

vg(PE)_m> g(PE):PEA6+AEPE_PESEPE+Q~

Proof : The proof follows directly by applying the Newton-Kantorovich theorem [2, 3]. Taking the partial
derivative of the ARE (2) with respect to P: yields

_ OvecG(P.)

VG(P.) : AvecP)T — (Ae = S.P)' @1, + 1, ® (A — S.P.)". (16)

Thus, for any P,. and P,. € R"™™ ™ f := n; + ny the following inequality holds.
”vg(PaS) - vg(PbE)" < )‘”Pas - Pbs"a

where A = 2||S¢]|.

Moreover, using the stability that is established by equation (12), it is shown that there exists a small &
such that for € € (0, ), 6 < &, VG(P.) is nonsingular. Therefore, there exists 3 such that |[VG(P.)] 1| = 5.
On the other hand, using Theorem 1, it is easy to show that |G(P:)| = O(e). Hence, there exists n such that
IVG(P)] 7] - |G(P:)| = n = O(g). Thus, for a sufficiently small €, there exists 6 such that § = 3\ < 271
because = O(e). Thus, using the Newton-Kantorovich theorem, there exists a small & such that for all
e € (0, 6), 6 < g, the iterative algorithm (13a) has quadratic convergence.

Second, the uniqueness of the solution is discussed. Now, let us define t* = [1 — /1 — 26]/(8\). Clearly,
S={PF. : |P.— 0 | <t }isin the convex set D. In the sequel, since |P. — pL | = O(e) holds for a
small €, the uniqueness of P. is guaranteed for subset S by applying the Newton-Kantorovich theorem. B

Remark 1 According to the Newton-Kantorovich theorem [2, 3], for any o > 0, if the following inequality
holds (17),

1
Bonoro:=2[[VGo (P71 ? - [Soc| - 1Go(PL)] < 3 (17)
where

Go(P©) = PO Ay, + AT PO — PO S, PO + Q.

A — Al g0l S = Sy + €3S £0(S112 + S122) Qo. = Q1 e0Q12
0s eodar  Aa » P0e €o(S112 + 5122)T Sa +€8S22 P e 50Q1T2 Q2 ’

the asymptotic structure in equation (9) is also established.

Furthermore, the quadratic convergence is attained. On the other hand, these values of G and & are equiv-
alent under the Newton-Kantorovich theorem within the premise of the sufficient condition (17). Hence, when
we apply the proposed result to the considered problem, it is sufficient to investigate whether the condition in
equation (17) holds or not for any small €.



3.1 Successive Algorithm

If the coupling parameter ¢ is not sufficiently small, the initial condition (14) will be not adequate. Hence,
in order to achieve a quadratic convergence of the proposed algorithm (13) for any large parameter ¢, the
successive algorithm is newly proposed. The concept is given below. It is assumed that the step of the
successive algorithm is m. Suppose that

el < el < <elml <,

Then, if the following inequality (18) holds, the next approximate solutions PE[mH] := lim PE(”), m=1, 2, ...

n—oo

can be computed successively by choosing a new initial condition PE(O) = E[m].

glml(elmly .= glmlplmiziml < 90=1 "y =0, 1, ..., (18)
where

A= 2|5 (™) < oo, S = Se(el™), Bl = [[vG (P, ol = gt g (Pl
glm) (clmly — glml plm] \[m].

This concept employs the fact that when the parameter € is small, the initial problem is approximated by
the reduced-order problem to be a reliable initial solution. The successive algorithm for a relatively large
parameter ¢ is given as follows.

Step 1. Solve (8) for P;;. When m = 0, choose as the initial conditions (14).

Step 2. For sufficiently small e[, compute 8% and 0.

Step 3. If the following inequality holds, solve (13) for Pgm under the condition PE(O) = PE[O].

9l0) = gyl N[0l  o—1, (19)
If the inequality (19) does not hold, decrease €0 and go to Step 2.

Step 4. Select el such that €l%! < el!l. Let m = 1 and check for inequality (18). If this inequality holds,
solve (13) for PE[Q] under the condition that PE(O) = Pg[l].

Step 5. Select el™ such that £l < el < ... < &l™ If the inequality (18) holds, increment m — m + 1
and solve (13) for P+ .= lim P{™ under the condition that P = PI™.
n—od
Step 6. Repeat Step 5 until the desired magnitude of ¢ is attained. If the desired e is achieved, stop.
Otherwise, declare that no control law exists for £[™.

The main result for the above algorithm is stated as follows.

Theorem 3 Assume that the conditions of Theorem 2 hold and ARE (2) have a solution. Suppose that for

elml, Pg[m}, the Jacobian J := J(s[m], E[m]) is nonsingular at ¢ = e[™. Then, there exists a small &* such that
for alle € (0, 6*), Newton’s method (13) converges to exact solutions P¥ with a quadratic convergence rate.
Moreover, for each step m, convergence solutions PX is the unique solution for ARE (2) in the neighborhood

of the initial conditions PE(O) = Ps[m]. In other words, the following relations are satisfied.

(200"

() _prl=_2_ )
"Pe Pa ” 6[m])\[m]2n7

n=0, 1, .., (20)

where 0 < 20M < 1.

Proof : The proof is similar to that of Theorem 2. In other words, since the proof of Theorem 3 can also be
derived by using the Newton-Kantorovich theorem, it is omitted. W
It should be noted that the bound of € can be obtained successively with regard to the sufficient condition.



4 Iterative Algorithm for Solving ALE

It is possible to solve the algorithm in equation (13a) by using a linear equation because such an algorithm
is based on the ALE. However, this method results in an increase in the workspace dimensions for the
numerical computation when the dimensions of the matrices Py, P2, and P, increase. That is, let us
consider the following linear equation (21).

(n+1)

VECPI Vech
(13) & AM™ VecPl(;LH) =—| vecQu2 |, (21)
VeCP2(n+1) vecQ)2
where
AT ®@ Iy, + I, ® AT (A3 @ In, + I, ® A3)) 0
A= Ay @ I, AT @ Iy + Iny @ AT i I, ® A%, e
0 EQ(A% ® In1 + (ITH Y Agl)UTbﬂm) <A12 ® Inz)UTHTLz + Inz ® A12
g pm .| A A (Mg p) _[ Qi Q2
A - S.P) = [ o ] PSP 4, [ & de ]

In this case, if the dimensions n; and ny are large, the dimension of A would be quite large because the
Kronecker products are used.

4.1 Fixed Point Algorithm

In order to reduce the computational dimension, the fixed point algorithm for solving the ALE (13a) has
been formulated in [13, 18]. This algorithm and the convergence proof that is different from the existing
results [13, 18] is summarized. Let us consider the following ALE (22), in a general form.

E'X.+ X.E.+ H. =0, (22)
where F; € R™*"i is stable and X; = XiT >0e R™*™, H;, = HzT e R =1, 2.
L E1 €E12 L H1 €H12 _ X1 €X12
mo=| g o |ome= | p ] o= 2 )
It should be noted that for the ALE (22),
P o X A, - S.P™ = E., PMS.PM™ 4 Q. = H..

where = stands for the replacement.
Substituting X, into the ALE (22), we have the following set of three linear equations (23).

FEIX, + X\FE + (BL XL + X15Ey) + H, =0, (23a)
ETX15+ X 1B+ EL Xy + X19Fs + Hyp = 0, (23b)
E¥ X, + XoFy + e*(ELX 1o + XLE1) + Hy = 0. (23c)

By considering the form of equation (23), we propose the following algorithm in equation (24) to solve the
ALE (22).

EFx®) 4 x 0 p 4 2ELxET L xW By + Hy =0, (24a)
EIXY 4 xUVE, 4 2(ELXE 4+ xBTE L) + Hy =0, (24b)
ETx*D 4 xEV g, o xE D p 4 gL x4y, =0, (24c)

X9=0,i=12X5,=0 k=0, 1, ...

The following theorem indicates the convergence of the algorithm in equation (24).



Theorem 4 If E;, i =1, 2 is stable, there exists a small & such that for alle € (0, 6), 0 < &, the iterative
algorithm in equation (24) converges to the exact solutions of X; and Xa1 with a rate equal to that of linear
convergence. Subsequently, we obtain equation (25).
XM — Xi| = 0(e™), i=1, 2, (25a)
IXH — X =0(E%), k=1, 2, ... (25b)

Proof : The proof follows directly by applying the fixed point theorem [7]. First, it is easy to verify that the
algorithms in equations (24) and (26) are identical.

X{Y = 2uXy)
= £ / exp(E;‘FS)(EQTng)T + Xl(g)Egl) exp(E1s)ds + / exp(E¥ s)Hy exp(F1s)ds, (26a)
0 0
XY= ()
= 52/ exp(EQTs)(ElTQXg) + Xl(I;)TElg) exp(Eas)ds + / exp(Ed s)Hy exp(Fys)ds,(26b)
0 0
X3t = (Y, XY = 2a(xy). (260)

Thus, taking into account the stability of E; with regard to equation (26a), there exist my > 0 and ¢ > 0
such that | exp(ET s)| < myexp(—¢1s) [19]. As a result, for any X§, and X},

o0
|21(X1y) = Z0(XTp)| < 26| B | - | X7, — szH/O mi exp(—2¢15)ds 1= e2 M1 | X{, — X1,

there exist M; and the parameter ¢ = £; such that e€2M; < 1. Using a technique similar to that given
above, there exist M, and the parameter ¢ = ¢;, i = 2, 3 such that e2M; < 1.

|22(X1y) — Z2(X1o)| = 2 M| XTy — Xof,
| Z5(XT5) — ZS(X%Q)H = 52M3‘|Xf2 - sz”~

If the convergence factor is chosen to satisfy

1 1 1
0 < e < min { ) , } (27)
VM VMo Mg
then the algorithm in equation (24) attains linear convergence for the fixed point theorem. W
When the coupling parameter ¢ is sufficiently small, the fixed point algorithm (24) is very efficient.
However, as long as the coupling parameter ¢ is large, such algorithm cannot be applied. Hence, in order

to guarantee the convergence for large parameter €, we formulate a new algorithm for solving the ALE (22)
that is based on the GI algorithm.

4.2 Gradient-Based Iterative (GI) Algorithm

Let us consider the following cross-coupled algebraic Lyapunov equation (CALE) (28), in a general form.

EI'X + XE, + FLYT +YFy + H =0, (28a)
E?Y + XFEis + E%Z +YEs+ Hs =0, (28]3)
FEY7Z + ZFy+ FLY + YT Fi5 + Hy = 0. (28c)

It should be noted that for the CALE (28),

X=X, Xia=Y, Xo= 7, 2Fig = Fia, €2Ey = Foy.



In order to solve the CALE (28), the GI algorithm is given below.

X1(k+1) = X(k) — pE1 Ly (E) 29
Xo(k+1) = X (k) — pLi (k) EY — pLo(k)ET, [ (292)
Zi(k+1) = Z(k) — pLs(k)EY
Zolk 1) = 2(k) ZEng,(k% — 1B Lo (k) } ’ (29b)
Yi(k+1) =Y (k) — pLi (k) F3y — pLao(k)ES 99
Ya(k +1) = Y (k) — pE1La(k) — pFi2Ls(k) } 7 (29)
Y (k+1) =YT(k) — uFa Ly (k)
VI (k4 1) = YT(8) — (0D } | (264)
Xk 4 1) = 22 JQF X2 ®) 1 1) = w
Y(k+1)= Yi(k) ;YQ(k) YT(k+1) = Yy (k);y‘* (k)7 k=0, 1, .., (29€)
where
X(0)=0, Y(0) =0, Z(0) =0,
Li(k) :== EYX (k) + X(k)Ey + FLYT (k) + Y (k) Foy + Hy,
Ly(k) :== E{Y (k) + X (k)E12 + B3, Z(k) + Y (k) E3 + Hia,
Ly(k) := E3 Z(k) + Z(k)Ey + FLY (k) + Y7 (k) Fi2 + H.

Theorem 5 If the CALE (28) has the unique solutions X*, Y* and Z*, then the iterative solutions X (k),

Y (k) and Z(k) that are given by the GI algorithm (29) converge to X*, Y* and Z*. That is, the following
conditions are satisfied.

lim X (k) = X, (30a)
lim ¥(k) = Y™, (30b)
lim Z(k) = Z*. (30c)

k—o00

In order to prove Theorem 5, the following well-known result will be used.

Lemma 2 Let us consider the CALE (31).

ETX + XE, + FIYT + YFy =0, (31a)
ETY + XEyw+ ELZ+YE, =0, (31b)
EIZ + ZE,+ FLY +YTF, = 0. (31c)

The CALFE (31) has unique solutions X =0,Y =0 and Z =0 if and only if the following equation holds.

EY @ In, +1n, @ B{  FJy @ In, + (In, @ F51)Up,p, 0
det El,®1I,, I, Bl + ET @ I,,, I, ® EL # 0. (32)
0 (Flo ® Iny)Ungny + In, @ iy EJ @ Iy, + In, ® EJ

Proof : Define the error matrices

X (k)= X (k) = X*, Xi(k) = Xy(k) = X", Z(k) = Z(k) = Z*, Zi(k):= Zi(k) = 2", i =1, 2,
Y (k) :=Y(k)—Y*, Yi(k) :=Yi(k) — *,2_12
YT(k)y :=YT(k) - VT, YI(k) =YV (k) - YT, i=3, 4.
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Using the CALE (28) and GI algorithm (29), it is not difficult to obtain

(k+1) = X (k) — pBy L (k)
1( X(k 22551 }7 (33&)

Xo(k + 1) = X(k) — pLy (k) ET — pLo(k)ET,
Zy(k+1) = Z(k) — pLs(k)ET
Z;(k +1)=Z(k) — NE?;ES(JS — uBy Ly (k) } ’ (33b)
Vi(k +1) = Y (k) — pLa(k)Ff — pLa(k)ES } (330)
Y2 k + 1) = Y(k) /,LElLQ(k) - /.LFlng(k) ’
?T(k‘ + 1) = Y/T(k) - /,LFQlf/l(k‘)
V2 (k1) = VT (k) — pLo(k) } ’ (33d)
where
Li(k) == EY X(k) + X (k)Ey + leYT(k) +Y (k) Fa,
Lo(k) := ETY (k) + X (k)Er2 + E5, Z (k) + Y (k) Ea,
L3(k) = gz(k)‘FZ(k)EZ‘FFnY( ) + ~T( )Fio.

Taking Frobenius norm of both sides of (33a) results in

G- B0 [10 BT

< IK ()3 — 20T [X(R)Er Ly (k)] + ma s B B £(K),
%o (k + DI3 = [X (k) — nLa ()BT — pLa(k) B[

Jrw-ntm or [P EB][E ]

<IXE = 20T [ () (Li(RET + La(R)ED) | + mp (1Eal3 + 1EralF) £(R),

IR2(k+ DI = R (k) — uBuEa (R = ]

where L(k) := |Li (k)| + |L2(k) |3 + |La (k)3
Using the similar technique, the following inequalities hold.

1Xi(k+ D)3 < IR (03 — 20T [ (6) Ly (k)] + mp? | Br[3.L(R) -~
1Xa(k + DIF < IXW0)IF - 20T [X(k) (L0 ET + Lok ES )| + nape® (1B + |Eral) £(K)

|Z2(k + DI < 12013 — 20T | Z() Lo (R) EF | + napi?| B l3-L(R) )
|Za(k + DIE < 120013 — 20T [ Z(k) (EsLy(k) + EanLa(k)) | + naw® (1Bl + | EanI3) £(8) [

P30k + DIF < 17013 — 20T [V (k) (L) FS + La(R)ET )| +map? (1Bl + | Fail3) £(R) 10
[Va(k+ DI < IV (R)13 = 20T |V (k) (BiLa(k) + FiaLa(k)) | + nae® (IB1 G + | Fial3) £0k) [
IV (k + D3 < IVT )13 — 20T [FT(0)Far Ly (B)| + mapi? | P 3L(R) i)
[V (k+ D3 < V7013 — 20T [F7 () La(R)F | +nap | Fial3L(k) [

Hence, the following results hold.

100+ 1) + Kok D _ 1K+ DB+ 1%+ DI
4 - 2
= [0 — pTe [KW) B La(k) + Ly (R)BT + La(b)EG)] +
120+ 1)1

| Xk + D)7 =

n1M

2 (2”E1”F+”E12”F) L(k), (35a)
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< V2 - uTx [Z0{La(R) BT + BaLa(k) + EnLa(i)}] + "2 (IEal} + | Enl?) L), (35D)
¥ (k + DI

= |V (R)% — W |V (6){ L (0)F, + Br La(k) + La(k)EY + FiaLs(k)}]
+%2 (2l Br 5 + na | Balf + nol| Fial% + na| Faa[3:) £(K), (35¢)
197 (k + 1)1

< YT (k)3 — uTr [Y/T(kﬁ){Fmil(’f) + z?»(’f)l[71T2}] + %2 (n1| Far |5 + nol Fizl%) £(k). (35d)

Thus, summing the above four inequalities, the following result is satisfied.

|X(k+ DIF + 20V (k+ DIE + 12k + DIE

X
< IXR)E +20Y (R)5 + 1Z(0)|% — (k) + > L(K)A, (36)

where

n n n n
A= (n1+ 2 1B + (5 +m) 1Ballh + S| Buald + S| Eauld + ma FauF + ol Faol.

Moreover, summing the inequality (36) from zero to N results in
[X(N + DIE + 2V (N + DE + 1 Z(N + DI

< IXO)F +2Y ©O)F + 1ZO)F — n(1 = Ap) Y L(K). (37)

If the convergence factor is chosen to satisfy
0<p<A™? (38)

then

N [eS) ~ ~ ~

L) < 3 (I WIE + 1207 + 1 Ls(k)[}) < oo (39)

k=0 k=0
This implies that as k — oo, Li(k) — 0,i=1, 2, 3. According to Lemma 2, X(k) — 0, Y(k) — 0 and
Z(k) — 0 as k — oo. This completes the proof of Theorem 5. B

4.3 The Dual ARE

In this section, a numerical algorithm for solving the dual ARE (3) of the ARE (2) is given as an important
algorithm.
Let us consider the dual ARE (40).

AW, +W. AT —W.UW. +T. =0, (40)

where

W1 €W12
5W1€ W2
U:=C3Cy—~ 2C{Cy =block diag ( U1 Us ),

T, + 2Ty, e(Ty12 + T122)
(Thi2 + Ti22)T To+ 2Ty

WEZ[ ]7Wi:WiT207

, =17, T =T

(X

T.:= B,.Bl. = [ .
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The 0th order solutions W;, i = 1, 2 and Wiy are also defined as e — 40 for the dual ARE.

where U; := Cglcg; — ’}/_2CMClTi.
The ARE (41) will produce a unique positive semidefinite stabilizing solution if + is sufficiently large.
Let

w; = inf{y > 0] the ARE (41) has a positive semidefinite stabilizing solution}.
Then, matrix A;; — W;U; is nonsingular if we choose v > yw,.

Theorem 6 It is assumed that the reduced-order ARE (41), which is independent of the perturbation param-
eter €, has a positive semidefinite stabilizing solution. If we select a parameter v > Jw = max{yw,, Yw,},
then there exists a small p such that for alle € (0, p), the ARE (/1) admits a positive semidefinite stabilizing
solution W, that can be written as equation (42).

W. =W + O(e) = block diag ( W1 W> ) + O(e). (42)

Proof : Since this can be proved by using a technique similar to that used in Theorem 1, it is omitted. B
In order to solve the ARE (40), we can apply Newton’s method by using the asymptotic structure in
equation (42).

Theorem 7 Let us consider Newton’s method (43).

(Ac = WUYWrHD L witD A, - wWo)T + wWUWMNY 4T =0, n=0, 1, ..., (43a)
(n) (n)
we = | e e (430)
eWiy Wy
W = block diag ( W, W> ). (43c)

If the parameter-independent reduced-order ARE (41) has a positive semidefinite stabilizing solution, there
exists a small p such that for all e € (0, p), 0 < p < p, the iterative algorithm in equation (43a) converges
to the exact solution W, with a rate equal to that of quadratic convergence. Subsequently, we obtain equation

(44)-

0(*")

(n) _ =2 )
W - W = S

n=0,1, .., (44)

where

¢ =2|U] < o0, § = [[VFWNY, =6 |FWO)|, ¢=d0¢,

_ OvecF(W.)

VF(W.) = FvecV )T FW.) = AW, + W AT —W.UW, +T..

Proof : Since this can be proved by using a method similar to that of Theorem 2 that is based on the
Newton-Kantorovich theorem [2, 3], it is omitted. W

It should be noted that the computation of the algorithm in equation (43a) can be done by substituting
it into equation (24) or (29) as follows.

W. = X., (A —wW™0O)T = E., WWUW™ +T. = H.. (45)
Finally, we succeed in establishing the numerical algorithm with the reduced-order computations for solving
the dual ARE of strongly coupled systems.
5 Computational Examples

In order to verify the efficiency of the proposed algorithms, some computational examples are provided.
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5.1 Example 1

It should be noted that since Newton’s method (43) can be employed by using steps similar to those of the
proposed algorithm in equation (13), it is omitted. The system matrices of the large-scale systems (1) are
given as follows as a modification of [4].

0 1 —0.266 —0.009 0.0024 0 -0.087 0.002
A —2.75 —-2.78 -1.36 —0.037 Ao — —0.185 0 1.11 —0.011
n= 0 0 0 1 8412 = 0 0 0 0 :
—4.95 0 —55.5 —0.039 0.222 0 8.17 0.004
[ 0.021 0 0.121 0.003 —0.21 1 —1.6 —0.005
Ay — -1.1 0 -1.62 -0.015 Ao — -19 —-1.8 9.3 —0.12
2 0 0 0 0 ez 0 0 0 1 ’
i 243 0 137 —-0.034 -3.1 0 —56  0.032
[0 0 0 0
36.1 78.9 3.5 4.2
B = 0 , Biag = 0 , Bi12=DB121=0, Bo11 = e Baoy = o | By =DB21 =0,
0 0 0 0
o [VO3L] oo [0
O2x8 Ip;

The two basic quantities for the system are vp, = 9.7396 x 1072 and vyp, = 5.3678 x 1072, Thus, for
every boundary value v > ¥p = max{yp,, yp,} = 9.7396 x 1072, the ARE (2) has a positive semidefinite
stabilizing solution for a sufficiently small . On the other hand, using MATLAB, the minimum value of ~*
such that there exists a dynamic feedback controller is v* = 9.7396 x 10~2 for ¢ = 1073,

In order to verify the exactitude of the solution, we calculate the error per iteration in Table 1, where

~ = 10, and the convergence condition is given by |G( E(n))” < 10719, Hence, it can be observed from Table
1 that the algorithm in equation (13a) attains quadratic convergence.

5.2 Example 2
Consider the system (1) with

701

I
Mo O
= o O

|
ocoloor
ocolooco
ocolmroco

00
00
.Di=|0 0
I 0
0 1

It is easy to verify that for every boundary value v > 1, the ARE (2) has a positive semidefinite stabilizing
solution for a sufficiently small e. In order to evaluate the convergence criteria, the values of A" of (18)
should be calculated. First, the partitioned equation of the ARE (2) can be obtained as follows.

g1 92 93 P1 P2 Ep3
g(Pe) :AZPE_FPEAE _PESEP6+Q = 92 94 Gs ) Pe = D2 Y2 EPs ;
93 95 Ge EP3 EPs  Pe

where gi ‘= gi(pla .- 5 D6, 6)7 1= 15 a65 = (1 +€2)(1 7772%

91(p1, - D6, €) = —2p2 — %ap; + 1,

92(p1, - D6, €) = P1 — P2 +€°p3 — ps — £ apsps,
93(p1, - sP6, €) =DP1 —P5 — AP3Pe;

94(P1s -, D6, €) = 2p2 — 2pa + 2&%p5 — 2 ap?,
g5(p1, - D6, €) = P2+ P3 — P5 + P6 — aPsPs,
g6(D1, -, D6, €) = 2e°p3 — apt + 1
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Therefore, the related equations (16) are given below.

T
GP.,e)=[q 92 95 94 95 96| ., Pre=[p p2 ps P2 P5 D6 |,

0 —2 —2c%ap; 0 0 0
. 1 -1 2(1—-aps) -1 —e2ap; 0
0G(P., ¢) 5 1 0 -« 0 -1 —«
57;5 =VO(P ) =1 op6 —2 2e2(1 — aps) opg
0 1 1 0 —l—aps 1—aps
0 O 2¢? 0 0 —2apg

Therefore, it results in the following equation.

detVG(P., ™) = 8aps|(aps)® + aps + 1] + O(e), a:=1 -2, fg:= 7
«

It should be noted that apg # 0. Thus, there exists 4™ for sufficiently small £ such that
A = [VG(P., 7.

In order to verify the validity of the proposed successive algorithm in the previous section, iterations are
carried out. Since for small parameter €% = 0.001 at m = 0, 1% = 0.01230027 < 0.5 holds, the quadratic
convergence can be verified without the simulation. Thus, for sufficiently small €, it can be concluded
that the uniqueness of the solution is guaranteed if inequality (19) holds. The simulation results using the
successive algorithm are given for ¢ = 0.001 ~ 0.1201070. The convergence criteria for all m is given as
Table 2. It is observed that since for all m, inequality (18) (9™ < 271) is satisfied, Newton’s method (13)
exhibits a quadratic convergence. Moreover, the uniqueness of the convergence solutions are guaranteed
at the neighborhood of each e = ¢l™. In other words, if the parameter ¢ begins from ¢/ = 0.001, the
initial conditions P”) = P of (14) satisfy inequality (19). For the next step, if el™l is chosen such that
elll < el < ... < g™l for all m, inequality (18) also holds. Therefore, when solution P™ are solved by
using Newton’s method (13), quadratic convergence is achieved. In fact, for all m, this useful phenomenon
has been observed. Moreover, the local uniqueness would be achieved at the neighborhood of each ¢ = ™.
It should be noted that the required solution is obtained by repeating the successive algorithm recursively
until the bound of ¢ = 0.1201070. In this case, it may be also noted that the error estimations (20) are
satisfied.

5.3 Example 3

Consider the system (22) with

E. := =2l yn, + erand(n; +ng), By € R™*™ | Ey € R™"27%"2,
H, =2l 4n, +eMTM, M =rand(1, n; +ny), H € R"*™  H, ¢ R"™*"2,
ny = 20, Nng = 10,

where rand(m, n) denotes a scalar value drawn from a uniform distribution on the unit interval with m-by-n
matrix of the same dimension.

The convergence of the GI algorithm in equation (29) is demonstrated as n; = 20 and ny = 10. The
small parameter of the GI algorithm (29) is chosen as u = 1072. For various large &, Table 3 shows the
required iteration for the GI algorithm (29) versus the fixed point algorithm (24), where the convergence
condition is given by |£(X)| = [ETX®) + XM E+ H.| < 1071, Tt should be noted that “NC” stands for
no convergence. From Table 3, it can be verified that the GI algorithm can succeed in obtaining the solution
for a large e, while the fixed point algorithm (24) cannot. Furthermore, even if the large-scale systems (22)
are composed of two four-dimensional subsystems, the required workspace is four. This feature is very useful
from the practical viewpoint.
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Table 1. |G(P{™)]
I

n\ e e=10""2 e=10""° e=10" e=10"" e=100

0 6.3881 x 102 6.3881 x 10 ° 6.3881 x 10~ % 6.3881 x 10~ ° 6.3883 x 10~ ©
1 3.5601 x 10~ 3.5458 x 1076 3.5444 x 1078 3.4186 x 10710 2.7829 x 10~
2 3.5601 x 10~4 2.2232 x 10~ 2.0435 x 10~ 2.1110 x 10~

3 2.5761 x 101!

Table 2. Convergence criteria.

m ] ol < 271
m =0 ~ 392 el™ =0.001 + m x 0.0001 ALL O.K.
m = 392 ~ 4396 el™ = 0.0402 + (m — 392) x 0.00001 ALL O.K.
m = 4396 ~ 44263 | ™ = 0.08024 + (m — 4396) x 0.000001 ALL O.K.
Table 3. Required Iterations
Algorithm \ € e=0.1 e =0.3 e =0.5 e =0.6
GI algorithm 15313 434650 11943 6256
Fixed point algorithm 24 NC NC NC

6 Conclusion

A numerical algorithm for solving the ARE that is related to H,, output feedback control problem for
strongly coupled large-scale systems has been investigated. In order to solve ARE, the successive algorithm
that is based on Newton’s method has been derived. As a result, it has been shown that the quadratic
convergence is guaranteed under the appropriate initial condition. Moreover, the local uniqueness of the
solutions has been proved for any parameter €. Then, in order to reduce the dimension of matrix calculation,
a GI algorithm has been combined with Newton’s method instead of a fixed point algorithm. Thus, the
dimension of the computation for the algebraic manipulation will be same as that of the solutions. Finally,
the numerical example used yielded excellent results.
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