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Abstract

The Universal Seesaw Model is an extension of the Standard Model (SM) that aims
to explain the mass hierarchy problem between fermions by introducing heavy vector-
like fermions (VLFs). These VLFs mix with the SM fermions, providing a seesaw-like
mechanism that naturally explains the small masses of the light quarks and leptons
while accommodating the heavy masses of the third family quarks. In addition,
flavor-changing neutral currents (FCNC) are present at the tree level.

In this thesis, we present the study of the quark sector of the universal seesaw
model with SU(2), x SU(2)g x U(1)ys gauge symmetry in the massless case of the
two lightest quark families. This model aims to explain the mass hierarchy of the
third family quark by introducing a vector-like quark (VLQ) partner for each quark.
In this model, we introduce SU(2);, and SU(2)r Higgs doublets.

We derive the Lagrangian of the model explicitly for the quark sector, Higgs sec-
tor, and kinetic terms of the gauge fields. Starting from a Lagrangian invariant under
SU(2)r, x SU(2)r x U(1)ys, we systematically present the Lagrangian at each stage
of symmetry breaking. After the SU(2)g Higgs doublet acquires a non-zero vacuum
expectation value (vev), the Lagrangian becomes invariant under the SM gauge sym-
metry, and further breaking to U(1)en, occurs when the SU(2);, Higgs doublet acquires
its vev. At each stage of the symmetry breaking, we present the Lagrangian with the
remaining gauge symmetry. Additionally, we investigate the flavor-changing neutral
currents (FCNC) of Higgs (h) and Z-boson in the interaction with the top, heavy
top, bottom, and heavy bottom quark.
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Chapter 1

Introduction

1.1 Background

The Standard Model (SM) of particle physics is the most successful framework for
describing the fundamental elementary particles and their interactions. The precision
test measurements conducted at the Large Hadron Collider (LHC), Large Electron-
Positron Collider (LEP), and other facilities have validated the model’s predictions to
an extraordinary degree of accuracy. The discovery of the Higgs boson by the ATLAS
[1] and CMS [2] experiments in 2012 confirmed the existence of all elementary particles
predicted by the SM.

Despite its successes, the Standard Model (SM) has limitations. Several phenom-
ena remain unexplained, such as the origin of neutrino mass. In the SM, neutrinos
are massless. However, experimental results of neutrino oscillation [3-6] indicate that
neutrinos have non-vanishing mass. Another mystery is the observational evidence
from phenomena such as galaxy rotation curves and gravitational lensing, which sup-
ports the existence of dark matter [7].

Moreover, the SM does not fully explain particle-antiparticle asymmetry [10].
Experiments such as Belle [8] and BaBar [9] have studied CP violation in B meson
decay to uncover the imbalance of particles and antiparticles. Another issue is the
fermion mass hierarchy, which leads to unnatural fine-tuning of the Yukawa couplings.
Consequently, many physicists attempt to address these issues by exploring theories
beyond the Standard Model.

One of the intriguing aspects is the quark mass hierarchy. The Particle Data

Group (PDG) provides recent data on quark masses [11]. Using the following tree-
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Table 1.1: Quark masses and their corresponding Yukawa couplings. The values of m,,, mg,
and mg are from MS at u = 2 GeV, m. and my, are from MS at = m, and m; is from
direct measurement. v = 246.22 GeV is used. Data from Ref.[11].

Quark mass Yukawa coupling
m, = 2.16 MeV 1.24 x 107
mg = 4.70 MeV 2.7 x 107°
ms = 93.5 MeV 5.37 x 107*
me = 1.273 GeV 7.31 x 1073
my, = 4.183 GeV 2.4 x 1072
my = 172.57 GeV 0.99

level mass of quark (my),

Mg = —=v (1.1)

where ¢ € {u,d,c,s,b,t} and v is the vacuum expectation value of SM Higgs, one
can obtain the SM Yukawa coupling of quark ¢, denoted as ysM. The list of Yukawa
couplings for the corresponding quark masses is given in Table 1.1. One can see that
the range of Yukawa couplings for each quark is very large.

The seesaw mechanism is a well-known approach to explain the smallness of neu-
trino masses [12-19]. It introduces heavy right-handed neutrinos that mix with left-
handed neutrinos, giving them a small mass. This inspired the construction of a
similar model, which can be applied to other cases. The universal seesaw model
(USM) [20-35], is an extension of the SM that applies a seesaw-like mechanism to
the quark sector to solve the mass hierarchy problem. For example, the small mass
of the up quark can be explained with a tiny ratio of SU(2)g breaking scale and a
vector-like quark (VLQ) with mass parameter My [36]. The corresponding Yukawa

coupling for up quark is given by a seesaw-like formula,

SM Yur, VRYup UR _5
= ~ ~ 10 1.2
Y NGYRENGIT (1.2)

where y,,, and v, are the Yukawa coupling between SM quark and the VLQ partner.

These Yukawa couplings are taken y,, ~ v,, ~ O(1). The top quark mass in the
seesaw model of quark has been studied in Ref [27-29]. From Eq.(1.2), introducing

vector-like quarks (VLQs) into this model is essential.
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VLQs have left- and right-handed components that transform identically under
some gauge group. Using this property, they can mix with SM quarks, resulting in
modified mass matrices that can be diagonalized and generate a tiny seesaw-like mass.
Various studies about the addition of VLQ to SM have been explored, for example,
introducing one down-type VLQ isosinglet [37], one up-type VLQ isosinglet [38, 39],
and both one up-type and down type VLQ isosinglet [40]. The presence of VLQs
also has implications for flavor physics, as they can introduce flavor-changing neutral
currents (FCNCs) [41] and weak-basis invariants have been analyzed to understand
the flavor structures [42, 43]. Effective field theory approaches to VLQs have been
studied to understand their contributions to low-energy observables [36, 44]. A review
of the theory and phenomenology of isosinglet VLQs can be found in Ref.[45].

From the background that has been pointed out above, we aim to study the quark
sector of the universal seesaw model with SU(2);, x SU(2)g x U(1)y’ gauge symmetry,
focusing on the massless case of the two lightest quark families. This model aims to
explain the mass hierarchy of the third family quark by introducing a vector-like
quark (VLQ) partner for each quark. In our model, we introduce SU(2), and SU(2)g
Higgs doublets.

We derive explicitly the Lagrangian for the quark sector, Higgs sector, and kinetic
terms of the gauge fields, starting from the Lagrangian, which is invariant under
SU(2)r, x SU(2)g x U(1)ys gauge symmetry. At each stage of the symmetry breaking,
we present the Lagrangian with the remaining gauge symmetry. Additionally, we
investigate the flavor-changing neutral currents (FCNC) of Higgs (h) and Z-boson in
the interaction with the top, heavy top, bottom, and heavy bottom quark.

1.2 Outline of the Thesis

The outline of this thesis is as follows. In chapter 2, some parts of the Standard
Model (SM) is reviewed. In chapter 3, we reviewed the universal seesaw model. We
introduce the particle contents and the Lagrangian of our model in section 3.3 based
on Ref.[46].

After these chapters, we present our results based on Ref.[46]. Chapter 4 focuses
on the quark sector and Yukawa interactions. We explain the derivation of the La-
grangian of the kinetic terms and Yukawa interactions. Starting with the Lagrangian
which is invariant under SU(2);, x SU(2)g X U(1)ys, in each stage of the symmetry
breaking we present the Lagrangian with the remaining gauge symmtery. The quark

mass eigenvalues and the identification of FCNC within the massive third family
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quarks and their VLQ partners are discussed.

Chapter 5 discusses the Higgs sector of this model. The kinetic terms and Higgs
potential are also derived step by step. In the end, we classify the terms based on
the number of the fields in the term as linear, quadratic, cubic, and quartic, ensuring
a clear understanding of the interactions of the gauge sector. In addition, we also
provide the exact diagonal mass of Z — Z’ bosons and h — H bosons.

The kinetic terms of gauge fields are discussed in Chapter 6. In the final deriva-
tion, we show the difference between our model and SM. In Chapter 7, we presented
our result about the hierarchy of VLQ’s mass parameters, the non-zero vacuum ex-
pectation value of SU(2);, Higgs doublet (vy), and the non-zero vacuum expectation
value of SU(2)r Higgs doublet (vg). In chapter 8 we analyze the interaction between
Higgs and Z-boson with the quarks. This leads to a discussion about flavor-changing

neutral currents in this model.



Chapter 2

Standard Model

In this chapter, the Standard Model (SM) is reviewed. The main part of the review

is the quark sector. For a more comprehensive review, see, e.g., Ref [47, 48]

2.1 Introduction

The SM is based on the gauge group SU(3)c x SU(2)p, x U(1)y. The SU(3)c de-
scribes the strong interaction with gluon as the corresponding gauge bosons. This
gauge group remains unbroken so that gluons are massless. This interaction binds
quarks together to form protons, neutrons, and other hadrons. SU(2) x U(1)y de-
scribes the electroweak interaction, which unifies the electromagnetic and weak in-
teractions. After this electroweak symmetry breaking, the gauge bosons mediating
the weak interactions, W* and Z bosons, become massive. On the other hand, the
gauge boson of the electromagnetic interaction, the photon, remains massless. This
spontaneous symmetry breaking is explained by the Higgs mechanism, which intro-
duces the Higgs field. This electroweak symmetry breaking also leads to a conserved
quantity: electromagnetic charge. The relation between electromagnetic charge (Q),

third component weak isospin (I®), and hypercharge Y is,

Q=Ir+Y. (2.1)

2.2 Particle Contents

The particle contents of the SM according to their transformation properties under
SM gauge groups are shown in Table (2.1). SM categorizes fermions into three gen-

erations, where each successive generation is heavier than the previous one. These
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Table 2.1: The particle content with their quantum numbers under the SM gauge groups.
The index ¢ € {1,2,3} denotes the generation of quarks. The index « € {e, u, 7} denotes
the flavor of charged leptons. The symbols G, W/f, and B, witha € {1,...,8},1 € {1,2,3}
represent the SU(3)¢, SU(2),, and U(1)y corresponding gauge bosons, respectively. The
symbol ® represents the SU(2), Higgs doublet.

[ Tields | SUB)e SU@), Uy |

a7, = ( ZiL ) 3 2 1/6
L
uly 3 1 2/3
di, 3 1 —1/3
Lo = ( "L ) 1 2 —1/2
€L
0 1 1 ~1
+
D= ( (ZO > 1 2 1/2
ae 8 1 0
w! 1 3 0
B, 1 1 0

fermions are called leptons and quarks. Leptons and quarks are both spin 1/2 par-
ticles, but they are distinguished by their interactions. Leptons do not interact with
gluons, so they do not have strong interactions. Quarks carry color charge (red, blue,
green) and interact via the strong interactions. The L and R subscripts denote the
left-handed and right-handed chirality components, respectively.

The left-handed components of both leptons and quarks transform as doublets
under SU(2)y, gauge group, whereas their right-handed components are singlet under
this group. The three generations of leptons consist of the electron, muon, and
tau, which have an electromagnetic charge (), = —1, along with their corresponding
neutrinos which is neutral. In the Standard Model, only left-handed neutrinos exist.
Both component of left-handed quarks carry non-zero electromagnetic charge. The
up-type quarks have @), = 2/3, while the down-type quarks have QQ; = —1/3.

Moreover, SM includes spin-1 vector bosons that mediated the fundamental inter-
actions. Each local gauge symmetry has corresponding gauge bosons whose number

matches the number of the symmetry’s generators, and they transform according to
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the adjoint representations of the corresponding gauge groups. The gauge bosons G,
correspond to the SU(3)¢ gauge group, where a € {1,...,8}, and are called gluons.
The gauge bosons W;f correspond to the SU(2);, gauge group, where I € {1,2,3}.
Lastly, B,, is the gauge boson corresponding to the U(1)y gauge group. The SM also
includes a spin-0 particle known as the Higgs boson which is a part of the SU(2),
Higgs doublet ®. When the neutral component of the Higgs field acquires non-zero
vacuum expectation value (vev), it breaks the SU(2);, x U(1)y symmetry down to
U(1)em- Through this spontaneous symmetry mechanism, the W;{ and B, are mixed

and become the massive W* and Z bosons, and the massless spin-1 photon (7).

2.3 Quark Sector of the Standard Model

The Lagrangian of the SM quark sector which is invariant under SM gauge groups is

as follows,
Lo = Ly + L (2.2)
where,
Lyxin = qiLiv“Duqi + ﬂ%iv“Duuﬁ% + E;W”Dudﬁ% (2.3)
L= —ap (™) Pug, — a (43" @y, — hec.. (2.4)

The covariant derivatives in Eq.(2.3) are defined as (excluding the SU(3)¢ part),

I
D.qp, = ((% +igW,! % + ig’YqBM) qr (2.5)
Dty = (0, + g Y, B,) uy (2.6)
Dudi = (au + ig,YdRBu) 3%7 (2.7)

where g is SU(2)r, gauge coupling, 7/ is the Pauli matrix, ¢’ is U(1)y gauge coupling,
Y € {Y,, Y., Ya,} are the corresponding hypercharge for each quark fields. The
charge conjugation of the Higgs field is defined as ® = ir2®*. In Eq.(2.4), 4™ and
ng are 3 x 3 matrices for up-type and down-type Yukawa matrices, respectively. The
electroweak gauge bosons (WJ and B,,) are not the physical eigenstates we observed.

Through the spontaneously symmetry breaking, W, and W? mix to form the charged
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Wf bosons which are defined as,

1
W =—
V2

Wj’ and B, mix together to form the neutral Z boson and the photon A, with the

(W, FW2). (2.8)

following transformation,

W2\ [ cosfw sinfy Z, (2.9)
B, ~ \ —sinfy cos Oy A, 7 .

where 6y, denotes as weak mixing angle and is called as Weinberg angle. It has the

following expression with the weak gauge coupling ¢ and ¢/,

g : g
cosby = ———, sinfy = ——. (2.10)
92 + g/2 /92 + g/2
Furthermore, the electromagnetic coupling e is related to the gauge couplings g and
g as,

e = gsinfy = g cos by . (2.11)

Therefore, using Egs.(2.8),(2.9),(2.11), and (2.1), the covariant derivatives in Eqs.(2.5),
(2.6), and (2.7) are expressed as follows,

Duqi = (% +ieQq, Ay + 2% (T/VJTJr + W;T*)

V2

Seostry (7 251" wQy, ) Zu) q; (2.12)
Dby = (au +ieQuA, — ico sgew sin’ HwQuZM> Ul (2.13)
D“di — (@L +ieQqA, — icosgew sin? HWQdZ#) 3%, (2.14)
where,
% 0 2 1 T
QQL = 0 _% ) Quzg» Qd:_ga T :§<T +aT ) (215)
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Finally, using Eqs.(2.12),(2.13), and (2.14), the Lagrangian in Eq.(2.3) becomes,

Lgxin = uiiy” du’ + Eiy“(‘?}tdi

2— ool
—e <§u"y“ul — gd“y“cf) A,
9 (Tingi PN RR
-5 (g d, Wi+ v, )

g = i T gi . 27 i 17- i
" Tcost {(uL’y“uL — dLv”dL> — 2sin? Gy, (gu T gd YHd ) } Ly

(2.16)

where we define u* = u} +u}, and d' = di +d},. The first line of Eq.(2.16) is the kinetic
terms of up-type and down-type quarks. The second line details the electromagnetic
interaction between quarks mediated by photon. The third line describes the charged
weak currents, where the left-handed up-type and down-type quarks interact with the
W# bosons. Finally, the fourth line explains the neutral weak currents, mediated by
Z boson.

We define electromagnetic and weak isospin current in the quark sector of SM as

Jhnq and ji  with following expressions,

g = S — ST .17)
i = upytul, — diydy. (2.18)

By using Eqs.(2.17) and (2.18), the Lagrangian in Eq.(2.16) can be written as,

Ly xin = Ei’y“ﬁuui + Eiv“@udi — b Au

9 (T ougi i K —
— E (UL’)/NdLW; -+ dL"Y'u/U,LWM )
g . . .
“ 5 o (]:,’iq — 2sin? ijé‘qu) Z,. (2.19)

2.3.1 Generating Quark Masses

The symmetry breaking SU(2)p, x U(1)y into U(1)en occurs when the neutral com-

ponent of the Higgs field acquires non-zero vev with following form,

_ (7 _ L (0
o (5) w5 (") »
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The Yukawa interaction in Eq.(2.4) becomes,

E%('uk - £rsli\§ss - _%<mu)”ug% - d_ZL(mdy]dg% - h.C., (221>
where,
(M) = —= (yS™) (2.22)
V2
.. v ..
(ma)? = —= (™", (2.23)

S

The mass matrices in Eqgs.(2.22) and (2.23) is diagonalized by changing from the
flavor eigenstate to physical mass eigenstate of quark fields using the following trans-

formations,
= Y (K, )7 (uf), (2.24)
wp = (Kup) 7 (ug), (2.25)

L= D (K ) (7Y, (220)

By = 3" (Kag ) (dR ), (2.27)

J=1

where K, , K,,, Kq,, and Kg, are 3 x 3 unitary matrices. The diagonalization of

quark mass matrices in Eqs.(2.22) and (2.23) reads,

(KL, ) ()7 (K7 = (mge)7 7%, (2.28)
(K}, )7 (ma) 7 (K )" = (mg™#)7767%, (2:29)
where,
my ¢ = diag(muy, me, my), (2.30)
mg™® = diag(ma, ma, my), (2.31)

are the physical up-type and down-type quark masses, respectively. Finally, after
changing from the flavor eigenstate to the mass eigenstate using Eqs.(2.24),(2.25),
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(2.26), and (2.27), respectively, the Lagrangian in Eq.(2.21) becomes,

Lonnss = — (g (mi )" (ufp)” —

TP (m Y3 (dR) — he.

= —(wm)T (e () — (d) (mg™e) (@), (2.32)

—~

3

where by including the Hermitian conjugate terms, we define ™ = u}’ + u} and
dm™ =dy +df.

2.3.2 Charged Currents

Extracting the charged current Lagrangian from Eq.(2.19) as follows,

SM, 9 (g T T
£q7kin D ﬁcl\élq - _E (UL’y#dLW: + dL’}/‘uULW# ) . (233)
Changing from the quark flavor eigenstate to the mass eigenstate using Eqgs.(2.24)
and (2.26), the charged current Lagrangian in Eq.(2.33) becomes,

£ = = (P L )W+ P S )17 )
9 m\J ik (gm Jm\J ik (,m -
= =5 (P (VSRS WE -+ @Y (VE P ) ) s (23
where j, k € {1,2,3}. The mixing matrix in Eq.(2.34) is called Cabibbo-Kobayashi-
Maskawa (CKM) matrix which is defined as,

Viru = K1 K. (2.35)

In Eq.(2.34), the CKM matrix is a general 3 x 3 unitary matrix parameterized by
three mixing angles and six phases. However, we can remove the unphysical phases
of the CKM matrix.

One has the freedom to rephase the quark field in the mass basis, which leaves
the mass terms of quarks in Eq.(2.32) unchanged. We define the following phase

transformations,

(Wi = e (am), 2.36
(]! L (amy 2.37

= =
I3 &3

> b1§>
~— ~— ~— ~—
<. .

<
~—~~ o~ —~
[N}
w
09)
~— Y~ ~— ~—

,
T3
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By applying Eqs.(2.36) and (2.38), the charged current in Eq.(2.34) becomes

g =\ ~ . /\m /\_m . A~ . ~m _
£88 =~ (@Y7 (VAP )W+ [y (VS G W) . (240)

where Vgﬁ/{M is the rephased CKM matrix. Considering the rephasing and the unitarity
of CKM Matrix, the number of parameters of the N, x N, CKM matrix is,

1
Number of mixing angle = §N9(Ng —1) (2.41)

1
Number of physical phase = §(Ng —1)(N, —2) (2.42)

where Ny is the number of generations. In SM with N, = 3, the CKM matrix has

three mixing angles and one physical phase [49, 50].

2.3.3 Weak Neutral Currents

The electromagnetic and weak isospin current in Egs.(2.17) and (2.18) transform into
the expression in mass basis using Eqgs.(2.24)-(2.27) and are rephased using Eqgs.(2.36)-
(2.39). They become,

. 2 ~ i ~Mm\1 1= Tmi
Jna = STETAH(E) — ()i (d7) (2.43)
g = @0 @) — (dp)iv*(dp)’. (2.44)

The weak neutral current Lagrangian extracted from Eq.(2.19) is:

_ g
2 cos Oy

Losin D Lyg = (4 4 — 2sin? Oyt ) Z,. (2.45)
By substituting Eqs.(2.43) and (2.44) into Eq.(2.45), we see that the weak neutral
current interaction does not involve any mixing of quark flavors. In the SM, flavor-
changing neutral currents (FCNCs) are absent at the tree level.

Moreover, the weak neutral current Lagrangian in Eq.(2.45) can be expressed in

the following forms,

SM, g — a a a
£ =  2cos By Zq v (9 = 947°) 4% | Zo, (2.46)

where o € {(@™)", (d™)}; gy and g4 are the vector and axial-vector couplings, re-
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spectively. The definition of these couplings are as follows,

g = (7)" — 20" sin? O, (247
gh = (1), (2.48)
where 73 = 1/2 for a = (™) and 73 = —1/2 for a = (d™)". Q“ is the electromagnetic

charge which is written in Eq.(2.15).



Chapter 3

Universal Seesaw Model (USM)

In this chapter, we explain the Universal Seesaw Model (USM). We begin by intro-

ducing the general framework of the USM. After that, we introduce our model.

3.1 Neutrino and the Seesaw Mechanism

Historically, the Standard Model (SM) includes only left-handed neutrinos and right-
handed anti-neutrinos [51-53]. This was consistent with early experimental observa-
tions, which did not indicate the presence of right-handed neutrinos [54-56]. However,
the discovery of neutrino oscillations, where neutrinos change flavor as they propa-
gate, provided clear evidence that neutrinos have a small but non-zero mass [3-6].
This observation required an extension of the SM, as the original framework could
not accommodate massive neutrinos.

One of the well-known explanations for the tiny masses of neutrinos is the seesaw
mechanism [12-19]. The type I Seesaw mechanism introduces heavy right-handed
neutrinos that is singlet under the SM gauge group, but can mix with the left-handed
neutrinos [19]. The mass matrix for neutrinos is then modified, and the smallness
of the observed neutrino masses is achieved through the large Majorana mass term
for the right-handed neutrinos. The large mass scale of these right-handed neutrinos

leads to a suppression of the neutrino masses, making them small.

3.2 USM: General Framework

The Universal Seesaw Model (USM) extends the seesaw mechanism to explain the

mass hierarchy of all fermions, including quarks and charged leptons. In this model,

14
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each fermion acquires its mass through interactions with heavy singlet fermions, anal-
ogous to the right-handed neutrinos in the Type I Seesaw mechanism. These heavy
singlet fermions are often referred to as Vector Like Fermions (VLFs) because they
have both left-handed and right-handed components that transform identically under
the gauge group. These VLFs are singlet under SM gauge group. The mass terms for
the SM fermions arise from mixing with these heavy VLFSs, leading to a seesaw-like
suppression of their masses.

Additionally, the gauge symmetry in the USM is usually extended to include an
additional gauge group, such as SU(2)g and U(1)p_r, alongside the SU(2);, gauge
group [24]. An additional Higgs field is required to break the new gauge symmetries.
This additional Higgs field is a doublet under the new gauge group SU(2)r, which
is different from the traditional left-right symmetric model that introduces a Higgs
bi-doublet [57, 58]. The spontaneous breaking of this extended symmetry leads to
the mass generation for both the SM fermions and the heavy VLFs.

Our model follows this general framework but focuses on the third family of quarks
to address their mass hierarchy. We also investigate the flavor-changing neutral cur-
rents (FCNCs) in our model.

3.3 USM: The Third Family Quark Framework

We consider an extension of SM with SU(3)¢ x SU(2)r, x SU(2)g x U(1)ys gauge sym-
metry in the massless case of the two lightest quark families. Alongside of the SU(2)y,
SM Higgs doublet (¢), we introduce a SU(2)r Higgs doublet (¢r). Additionally,
the model incorporates one up-type and one down-type isosinglet vector-like quark
(VLQ), labeled as T and B, respectively. The charge convention adopted in this
model is as follows,

Q=I}+1}+Y', (3.1)

where Q, 1 z( R) and Y represent the electromagnetic charge, left (right) weak isospin,
and U(1)y: hypercharge, respectively. The particle contents and their corresponding

charge assignments under the model’s gauge group are detailed in Table 3.1.
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Table 3.1: Quark and Higgs fields with their quantum numbers under the SU(3)c x
SU(2)L, x SU(2)r x U(1)y’ gauge groups, where i € {1,2,3} is the family index.

| Quark and Higgs Fields | SUB)c SU(2), SU®2)r U(1)y

g = ( Zi ) 3 2 1 1/6
¢y = ( Zg ) 3 1 2 1/6
Tror 3 1 1 2/3
Brr 3 1 1 —1/3
+
b = ( X1 ) 1 2 1 1/2
XL
X+
bR = ( n ) 1 1 2 1/2
XR

The Lagrangian of this model (excluding the QCD part) is as follows,
L=Ly+ Ly + Loauge, (3.2)
L, = ¢,iv"Diugt + @i Drudiy + Tin* Dp, T + Bin* D, B

— (V2 a6 Th + Y2, Tudlal + i, 61.Bn + By Sty + hic.)

— Ty MyTr — BLMgBg — h.c., (3.3)
Ly = (D}or) (Drudr) + (Dror) (Druor) — V (6L, dr), (3.4)
]‘ a auv ]' a aur 1 ! v
Egauge - _ZFL/U/FLM - ZFRMVFRM - ZB;WB/M ) (35>

where,

V(¢r, 0r) = 1adhor + 1kdhon + AL(0hor)? + Ae(dhor)? + 2ALr(0)61) (0hor),

(3.6)
Diryuldnr) = (67“ + igL(R)%an(R)# + i!JiYII/BL> Ar(r); (3.7)
Drryu®rL(r) = ((% + igL(R)%an(R)u + igingB,/L) OL(R) (3.8)

Dr, T = (0, +igiY;B),) T, (3.9)

Dp,B = (0, +i91YpB),) B, (3.10)
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F[(/l,ul/ - 8MWLQV - al/WLap - gLeabCWlb/,uWEy> (311>
Fpyp = 0,W5, — O,Wh, — gre™ W5, Wi, (3.12)
B, =0,B, - 0,B,. (3.13)

The Lagrangian in Eq.(3.2) is divided into three parts. The first part is the kinetic
terms of quark doublet and isosinglet VLQs, Yukawa interactions, and mass terms
of isosinglet VLQs, which are contained in Eq.(3.3). The second part is the kinetic
terms and potential of Higgs doublet which are contained in Eq.(3.4). The third part
is the kinetic terms of the gauge fields, which are written in Eq.(3.5).

The first line of Eq.(3.3) is the kinetic terms of quark doublet and isosinglet VLQs
where the definition of the covariant derivatives are written in Eqgs.(3.7), (3.9) and

@ is the Pauli matrix,

(3.10) respectively, where gr(gy is SU(2)y,r) gauge coupling, 7
g1 is U(1)ys gauge coupling and Y” is the corresponding U(1)y: hypercharge. For the
Yukawa interaction part, one can choose in a weak-basis where the Yukawa couplings
of up-type quark doublet (YfL and YfR) are real positive numbers. In contrast, the
Yukawa couplings of down-type quark are general complex vectors as shown in the
second line of Eq.(3.3). The derivation of this weak-basis is briefly explained in
Appendix A. The family index for SM quarks is denoted as i = 1,2, 3, the charge
conjugation of Higgs fields is defined as ¢ L(R) = i7'2¢*L( r)- In the third line of Eq.(3.3),
My and Mp are isosinglet VLQ)s mass parameters that we take as real numbers.
The first two terms of Eq.(3.4) are the kinetic terms of Higgs doublet where the
definition of the covariant derivatives are written in Eq.(3.8). The third term is the
Higgs potential which is shown in Eq.(3.6), containing the mass terms and quartic
interactions of Higgs doublet. The interaction between ¢, and ¢ is also included
in this term. Later ¢ and ¢ acquire non-zero vacuum expectation values (vevs)
denoted as vi and vy, that break SU(2)g and SU(2), respectively. They satisfy the

hierarchy, vg > vy.



Chapter 4

Quark Sector and Yukawa

Interactions

In this chapter, we derived the kinetic terms of quark doublet and isosinglet VLQs,
Yukawa interactions, and mass terms of isosinglet VLQs, as written in Eq. (3.3).
Once the SU(2)r Higgs doublet acquires non-zero vev, we obtain the Lagrangian
which is invariant under SM gauge symmetry. Furthermore, the SM gauge group is
subsequently broken down to U(1)ey after SU(2);, Higgs doublet acquires non-zero
vev. Finally, we obtain the masses of top and bottom quarks, their heavy partners,
7, 7' h,and H. Additionally, the derivation also accounts the flavor-changing neutral
currents (FCNCs) and the CKM matrix to be generated.

4.1 SU(Z)R X U(l)y/ — U(].)Y

In this stage, the neutral scalar component of SU(2)r Higgs doublet acquires non-zero

vev and is expanded around the vev as follows,

(xR 1 V2x4
¢R_<X%>_\/§<v3+hR+z’X;>’ (4.1)

where vp is the non-zero vev. hp is the neutral CP-even state and X?j% is the neutral
CP-odd state. The charged component is denoted as, x7, = %(X}%+ixé). In addition,

we rotate the gauge fields with the following transformation,
B, _ Cf)S 0r —sinfp B, | (1.2)
W]%“ sinfr  cosfg ZRy

18
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where the mixing angle,

/
sinfg = ./ — cosfp = S — (4.3)

Var+ g2 V& + g2

We also define the SM U(1)y gauge coupling as,
g = g\ coslr = grsinfp. (4.4)
After this spontaneously symmtery breaking, the Lagrangian in Eq.(3.3) become,

L, = ¢iv" Dsyipgh + Triy" DswyTr + Brin” Dsau Br
+ Uiy Danptly 4 diiy™ Dswpdiy, + Trin" DsauTr + Brin™ DswyuBr
— I AW, — e,

V2

— . 2 1—
+ ¢ tanfp (CIZL’Y“YZJQZL + gTL”Y“TL — gBL”Y“BL> ZRu

9r ub i TN 2 — P

- { 2cosfp (upnup — dpy"dg) — g’ tanOp <§(uR7“uR + Try"Tr)
I

—g(dﬁﬂ“dﬁ% + BRWBR)> } Zhy

o YUSLEQ;LTR - TLUR T_LMTTR — h.c.

uR \/_
— 1
_ YUSRTL (Eu%(hR + ZX?I)%) — d%x;g) — h.c.
— . L U _
- qZLyZdL¢LBR - BLyéR \/Hi BLMBBR — h.c.
(1 . o
= B, (gt — ixh) + e ) — e (49

where i € {1, 2,3} is the family index and the SM covariant derivatives have following

expressions,

DSM,LL a + ZgL WLM + Zg }/qLB,u> qZLJ (46>

DSMufu = (a,u + %ig/Bu> fua (47)
Dswiufa = (

1
3ng ) fa, (4.8)
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where f, € {uk, Trr} and f; € {d%, BLr}. At this stage, U(1)y hypercharge can
be obtained as following Eq.(3.1), Y = I3} + Y’. In Egs.(4.7) and (4.8), we write
the U(1)y hypercharge of the corresponding fields explicitly. Next, we follow several

steps to reach the Lagrangian invariant under SU(2);, x U(1)y gauge symmetry.
e Step 1: Rotate d% by the following transformation,
3% = (VdR)ij (d/R)]> (49>

where V3, is 3 X 3 unitary matrix, which related to Yukawa coupling parame-

terization as shown in Eq.(A.3),

iyl
. d .- d oy
sin 0% sin ¢ge v

Yarn = | sinf% cos (b‘}%emzﬂf V) =e} Y], (4.10)
;3
cos O%e'"ir
Vi = ( e} ek e}, > : (4.11)

If we multiply Eq.(4.11) by the Hermitian conjugate of Eq.(4.10) from the left,
it can be shown that the terms in Eq.(4.5) which proportional to complex vector
Y, are replaced by a real positive number Yd%{ multiply with 6. Then we can

extract the mass terms from the Lagrangian as follows,

—B_L( Y3 Mg ) ( ()’ ) ~ he. (4.12)

After doing transformation in Eq.(4.9), V4, appears as CKM-like matrix in the

right-handed charged current term,

3
Eq D) ﬁRCC - —% Z u%v“(VdR)ij(d}{)jWgu — h.c. (413)

ij=1

From Eq.(4.12), we can see that the first and second families are decoupled
from the Yukawa coupling. This lead to the fact that we have freedom to do
another U(2) transformation for the right-handed quark fields. This rotation
should keep the third family unchanged.
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e Step 2: Rotate u, and (d%)" by the following transformations,
up = _(Uug)"(ar), (4.14)
()" =D (Wa)"(dp), (4.15)

where U,,, and Wy, are 3 x 3 unitary matrix and written in matrix form as

follows,

0

- U,

Uup = oo, (4.16)
00 1
w0

Wy, = L (4.17)
00 1

with U,,, and W,,, are 2x2 unitary matrices that rotate (u}, u%) and ((d%)*, (d%)?),
respectively. By applying the transformations in Eqs.(4.14) and (4.15) to the
charged current in Eq.(4.13), we further define

Vi = Ul Vi, W (4.18)

As shown in Eq.(B.6), by choosing U, , and Wd . broperly, the unphysical phases

and angles in Vj, are removed and %R has the following matrix form,

1 0 0

3

Vi, =1 0 cos 0% sin H}éei% . (4.19)

o3

) g 3
0 —sinf%e’ 2 cosfhe“ir

The details of the parameterization and the procedure for the removal of un-

physical phases and angles of V;;,, are shown in Appendix B.

e Step 3: Rotate (iz)* and (dj)* by the following transformations

(iiR)* =Y (Wr)*(i)°, (4.20)
B=1
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(dp)* =D (We,)**(dp)°, (4.21)
B=1

where o = {1,2, 3,4}, (ag)* = Tk, and (d)* = Bgr. The 4 X 4 unitary matrices

WTR and WBR are expressed as follows,

— I, 0
WTR< 2 ) (4.22)

0, Wr,

— I

We, = 2 %), (4.23)
0y Wg,

where [, and 0, are the 2 x 2 identity matrix and zero matrix, respectively.
The 2 x 2 submatrices Wy, and Wp, rotate ((ig)?, (ir)!) and ((dy)?, (dk)Y),

respectively by following expressions,

(ar)' = Z(WTR)” (tg)’, (4.24)
(dp)' =Y (Wp,)"(dgY, (4.25)

=3

where i € {3,4}. The explicit matrix form of Wy, and Wp,, are as follows,

o in 6
WTRz( R ) (4.26)
—sinfp, cosfr,
0 in ¢
WBR:( R S ) (4.27)
—sinfp, cosbp,

where the mixing angles have the following expressions,

My . Yo vk Mg . Y3, vk
COS QTR = mu4, SIHQTR = m—iﬁ, COS&BR = m—d4, SIHQBR = m—iﬁ,
Y3 )22 Y3 )22
- \/ SEL S VR \/ Qia % | agy, (4.28)

By using Egs.(4.24) and (4.25), the mass terms in Eq.(4.12) transform into,

Ly D Lonass = =, Tp () — ma, Br(dp)* — h.c. (4.29)
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The right-handed charged current in Eq.(4.13) becomes,

4
L, Lroc = — 9R2 S @)e (VM8 (d) W — hec., (4.30)
a,f=1
where
(VM8 = S (W)™ (Vi) (W, ) o B € {1,2,3,4} (4.31)
ij=1

is 4 x 4 “intermediate” right-handed CKM-like matrix. We call this matrix
intermediate because it is not the final expression of the right-handed CKM-

like matrix. The explicit matrix form of VF¥M is shown in Eq.(D.1).

In addition, we define the right-handed weak isospin current in Eq.(4.5) as
T (1)

Then, by following steps 1 to 3, Eq.(4.32) is transformed into,

2 4
J3r = Z( )’ v (Z1y) )* ()"
i=1 4, k:3
2 4
=3 (R (dp) = Y (o (Zis,) (d)* (4.33)
=1 J,k=3

where the tree-level FCNC couplings are generated with the following defini-

tions,
(Zr)™t = (Wi, (W)™, (4.34)
(Zpp)"* = (W, )" (W, )™, (4.35)

where j,k € {3,4}. Furthermore, Eqs.(4.34) and (4.35) can be expressed ex-

plicitly in 2 x 2 matrix form as follows,

20 in 0 Z
i cos” Ory, sin .TRQCOS T (4.36)
sin O, cos 07, sin® Oz,

sin g, cos0p,, sin® 05,

20 inf 0
Zp, — ( cos* g, sinflp, cosbp, ) . (4.37)
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These tree-level FCNC couplings are generated due to mixing between the third

flavor of up and down quark with their corresponding isosinglet right-handed

VLQ.
After following steps 1 to 3, the Lagrangian in Eq.(4.5) becomes,

L, = ¢ iv" Dsyipgh + Triv" DswyTr + Brin” Dsa, Br
+ ()i Dy () + (df)*iv" Dsag(df)®

4
dr T~ \a af (g1
NG ;1 () Y (Vig "™ (d) P Wi, — h.c

2— 1
—|—g tanGR quL—i-gTL*j/HTL—gBL*YuBL) ZRM

g . / 2~— ~1 o 1 £ T\
52— o o (ST )" - @) ) 2

> (Zry) Y (i)’ ) (hr +ixg) — V2 (Z(VgKM)w(J;g)ﬁ) X;] — h.c.

B=2

<. (Z5,)" (d)? ) (hr —ix%) + V2 (Z(VISKMT)“(%W) XR] — he.

B=2

(4.38)

where i = {1,2,3}, a = {1,2,3,4} and the definition of Wr,, Wg,, mu,, ma,, V<M,
Zr,, and Zpg, are written in Eqgs.(4.26),(4.27),(4.28),(D.1),(4.36), and (4.37) respec-
tively. One can show that Lagrangian in Eq.(4.38) is invariant under SU(2)y, x U(1)y

gauge symietry.
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4.2 SU(2)L X U(l)Y — U(l)em

In this stage, the neutral scalar component of SU(2);, Higgs doublet acquires non-zero

vev and is expanded around vev’s as follows,

X1 1 V2x;
o= X ) == Nl (4.39)
X7, V2 \ wp+hp + X7,

where vy, is the non-zero vev, hy is the neutral CP-even state and X?i is the neutral
CP-odd state. The charged component is defined as, y} = \%(Xi +ix?). In addition,

we rotate the gauge fields with the following transformation,

B, [ cosby —sinfy A, (4.40)
Wgﬂ B sinfy,  cos Oy Ziu 7 '

where the mixing angles are defined as,

/
cos Oy = T sin Oy = S — (4.41)

We also define the electromagnetic U(1),, gauge coupling as,
e =g cosOy = gp sin by . (4.42)
After this breaking, the Lagrangian in Eq.(4.38) becomes

L, = uLw DemuuL + Triy* Dy T + de“DemudiL + B_Liy“DemuBL

+ (@) i7" Doy () + () i7" Do (df)°
— IL AW, — hee,

V2

ar . .
- (2 o) — ctant(i2,)) 2,

Z VCKM)aﬁ(d// )BW-i- — h.e
045 1

IR . , ) 1

4
- (Z(WM%)J) — m, Tii)! — hc
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s (1= (v — AN
=Y, (EUL (Z(WTR) T () > (hy —ixy) —dj (Z(WTR) () ) XL) — h.c.

- TZ;4T_L <§;(ZTR)4j(uR> ) (hg +ixh) — V2 (g;(VEKM)w(J}%)ﬁ> XE] —he
Yar U_LQ_ZL g(WBR)‘” (67’1%)]> ma,Br(dg)” — h.c
— Ui, <i2_L (i(WBR)‘”(d”) ) (hr +ix3) + ui, (i Wy, )% (d) ) L) — h.c.
- WZ:‘B_L <Z4:(ZBR)‘” ()’ ) (hr —ixg) + V2 (24:(‘/}? Y (ag)” > XR] — h.c,
B - (4.43)

where the covariant derivatives are,

Demufqi = (au + gieAu) fus (4.44)
/ L. /
Demp [y = (@ — gzeAu> 1o (4.45)

The left-handed weak isospin current and electromagnetic current are

Jip = gyl — dyydy, (4.46)
. 2 (— i == T ~I \a
Jom = 3 (um“uL + T Ty + ()Y (@) )
1 f— . = - -
— 5 (dd + By B + (@) () ) (447)

where f, € {u}, (i), 1L}, [} € {diL, (J}%)Q,BL}, i€ {1,2,3}, a € {1,2,3,4} and
the right-handed weak isospin current ji, is written in Eq.(4.33). Our main goal is to
obtain the mass eigenvalues of the top and bottom quarks and their heavy partners.
The following steps outline our approach: (the number of counting steps continues

from the previous section)

e Step 4: Rotate d% by following transformation,

dy, = (Va, )" (dp)’, (4.48)

where V;, is 3 x 3 unitary matrix, associated with the parameterization of
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Yukawa couplings as demonstrated in Eq.(A.3),

vl
. d .- d oy
sin ¢ sin e L

Ya, = | sin6? cos gbCLlemgL Y} =el V], (4.49)
;3
cos 04e" L

Vi, = (ef, ef, ef, ). (4.50)

If we multiply Eq.(4.49) by the hermitian conjugate of Eq.(4.50) from the left,
it can be shown that the terms in Eq.(4.43) that proportional to the complex
vector y4, are replaced by the product of a real positive number Ydi and 673,

The mass terms can be extracted from the Lagrangian and written as follows,

Ly Lo == (uf Ty ) ( Y B Vn) ™ Yo (W)™ ) < -
q mass — L

)
0 M, (tR)
. Yd3 vr, WBR 43 Yd3 v, WBR 44 ~/]/% 3
—(@r & )( 0" Y350 ) (E§>

Additionally, an important outcome of the transformation in Eq.(4.48) is that

Va, appears as CKM-like matrix in the left-handed charged current term,
p 3
LN~ i\
Ly Lroc = -5 > ul Ay (Va, )9 (d YW, = hee. (4.52)
ij=1

From Eq.(4.51), we have freedom to do another U(2) transformation to the
left-handed quark fields with keep the third family unchanged.

Step 5: Rotate u’ and (d})" by the following transformations

iy = (0, (i), (4.53)

—
2,

o=

.
I

> (W, ) (dy), (4.54)

j=1

where U, , and WdL are 3 X 3 unitary matrices and written in the matrix form
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as follows,

~ U,

Ui, = Lo, (4.55)
0 01
W 0

WdL = . 0 ’ (456>
0 01

with U,, and W,, are 2 x 2 unitary matrices which rotate (uj,u?) and
((d7)Y, (d})?), respectively. By applying the transformations in Eqgs.(4.53) and
(4.54) to the charged current in Eq.(4.52), we further define

Vi, = Ul Vi, Wa, . (4.57)

By properly choosing (NfuL and de the unphysical phases and angles in V,
are eliminated, resulting in I7dL, which has the same matrix form as Eq.(4.19),
with the R index replaced by L.

e Step 6: Rotate (ag)*, (i)*, (d})*, and (d%)® into the mass basis by the

following transformations,

()" = ;:lu?maﬁ(u?)ﬁ, (4.58)

(i) = ;(KTR)C"%W, (4.59)

@) =3 (R, (4.60)
=

()7 = 3Ry () (4.61)
=

where o € {1,2,3,4}, (i)' = T}, and (d})* = By. The 4 x 4 unitary matrices

Kr,, Krp,, Kp,, and Kp, are expressed as follows,

~ I, 0
KTL = ’ ’ ) (462>
0, Kr,
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Kr, = ( f: 0, ) , (4.63)

0, Kr,,

- L 0

Kg, = > 72 |, (4.64)
0, Kp,

- I, 0

Kg,=| > 7% |, (4.65)
02 Kpg

where I, and 0, are the 2 x 2 identity matrix and zero matrix, respectively.
The 2 x 2 unitary submatrices K7, , Kr,,, Kp,, and Kp, rotate ((ar)?, (ar)*),
((is)?, (@)Y), ((d7)3, (d})*) and ((d%)?, (d%)*) pairs, respectively where the ex-
plicit forms are written in Eqgs.(C.19), (C.20), (C.24), and (C.25).

We denote the top and bottom quarks as the third component of the fields in the

mass basis, while the heavy top and bottom quarks are the fourth component.

We can diagonalize the mass matrices in Eq.(4.51), which are defined as

3 v 3 v 44
M, = ( Yo W)™ Yo, (W) ) , (4.66)
0 My,
3 vr 43 3 vp
M, = (V3 (Won)™ Y, (W)™ : (4.67)
0 maq,
by using the appropriate submatrices in Eqgs.(4.58) - (4.61) resulting in:
KL M Ky, = (m{"®) = diag(my, my), (4.68)
KL MyKp, = (m;*®) = diag(my, my). (4.69)

From this diagonalization process, we obtain,

\/ T(B) + m“(d)R mu(d)L \/ T(B) + mu(d)R + mu(d)L)

M) = 9 9 )
(4.70)
\/ MZ gy + (Mu(@)p — M), )? \/ M3 gy + (M), + M), )?
mt’(b’) = 2 + 2 9
(4.71)

where my@) and my ) are mass of top(bottom) and heavy-top(bottom) exact

mass eigenvalues, respectively. The definitions of m,,, , m,,, mq,, and mg, are
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shown in Eqs.(C.16) and (C.23). The diagonalization procedure is explained in
Appendix C. The mass eigenvalues for ¢ and ¢’ in Eqs.(4.70) and (4.71) agree
with Eq.(10) of Ref.[36].

Moreover, the left-handed and right-handed charged currents in Eqgs.(4.52) and

(4.30), now become

Ly D Loc = Lrce + Lreo

_ 9L Y i (VCKMYaB [ gm By +
= —=— ur eyt (V d7)PWr — h.c.
ﬁaﬁ:l( 7)) dy) Wi,
4
_In WA (VS B (@PWE — e, (4.72)
\/ﬁa,ﬁzl
where
(VERM)E = N (K ) (Vi )Y (K g, )77, (4.73)
3,7=1
4 ~ o~
(VM) = " (KL ) (Vg™ ™M) (K, )" (4.74)
pn=1

are the left-handed and right-handed CKM-like matrices. The matrix forms are
shown in Eqs.(D.3) and (D.5), respectively. However, there are some unphysical
phases which can be eliminated from the left-handed and right-handed CKM-
like matrices. We have the freedom to rephase the quark fields with the following

transformations,
(W) = (Ouy )"0 (W ))7 (4.75)
(dT(R))a = (GdL(m)a(saﬂ(ern(R))B’ (476>
where,
QUL(R) — djag(ew“L(R)l , eiQ“L(Rﬂ , ew“B’ 6i9“4>7 <477>
Oy ) = diag(erimr | e iLme s iay), (4.78)

After rephasing the quark fields, the left-handed and right-handed CKM-like

matrices become the final versions denoted as VCKM and VCKM whose matrix
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forms are as follows,

1 0 0 0
]A}CKM . 0 C(-)f SG% Cop, - SQdL Sép,
L - 3
0 ~Cor, S¢¢  Cor, CodCop, —Cor, Cod Sop,
0 S¢TL SHdL _S¢TL cé’,‘f C¢BL S¢TL c@,‘f S¢BL
1 0 0 0
0 ;8 P
f)CKM o Cod, —594.CBp, € ? S¢d,Spp, € 2
R - il i6 i6
0 CBTR 59% €2 CﬁTR 69313 cﬁBR € _C,BTR CG% SﬁBR €
.5 . .
is 0 0
0 “SBrp 5046 2 TSP, Cod CBp L, € SBry 0% 58p, €
where

Cpd = COS «9%, Spd = sin «9%, Cor, = COS b1,
S¢TL = sin ¢TL’ CQbBL = €08 ¢BL7 S¢’BL = sin ¢BL7

Cga = COS 0%, Spa = Sin 0%, CBp,, = COS Bry
SBTR = sin BT}N CBBR = €08 ﬁBR’ SﬁBR = sin BBRy

3 3
6TR ZQTR_¢TR7 ﬂBR ZGBR _(bBRa 5:adR_&dL'

)

31

(4.79)

(4.80)

(4.81)

The number of C'P violating phase in this model is one. This agrees with the

result in Ref.[30] for the N = 1 case. The details of the rephasing process is

explained in Appendix D.

In addition, the final expression of the left-handed FCNC couplings, which

appears in the left-handed weak isospin current in Eq.(4.46), are defined as

follows,

(2r,)7 = (K7,)°(Kr,)",
(25,)" = (Kp,)*(K5,)",

where i, j € {3,4}. These have explicit matrix form as follows,

cos® ¢, — sin ¢ry, cos ¢,
ZT - )

. — sin ¢, cos ¢, sin? ¢,

( cos® op, —sin¢p, cos P, )
Zp, = .

: —sin¢p, cos gp, sin’ ¢,

(4.84)

(4.85)
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Similarly, for the right-handed weak isospin current from Eq.(4.33), the inter-

mediate right-handed FCNC couplings transforms into the final expressions as,

(Zr)" = Y (K™ (Zr) " (Kr)Y, (4.86)
(Z8)7 = Y (KL, " (Zpe)" (Kpa)", (4.87)

where i,j € {3,4}. These can be expressed in matrix form as follows,

2 o
2y, — | cos” By, sin BTQR cos Br, ’ (4.88)
— sin Bz, cos Br, sin” Br,
2 o .
Z, - | cos” B, sin .BBQR cos Bp, . (4.89)
— sin Bp,, cos Bg,, sin” Bg,,

with BTR = QTR — (bTR and ﬁBR = QBR — (bBR'

Finally, we obtain the expression of the Lagrangian for the quark and Yukawa

interaction after following all steps as follows,

4
Eq - Z (’&m)aiﬂyuDemH<ﬁm>a + Z (dm)ai,yMDemu(dm)a
a=1

=1

ol

——”’(22(@) <vwmwﬁwwﬂv++hc)

<2COS€ ]3L — etan ew(jem)) ZLH
g Trmya s af(gm
- 7% (Z (@) oy (V™M) P (dg) W, + h~C>

- 3@5;)) } Zn

|
—N
K
=)
=
|
Q\
—
v
B
>
=y
7N
(5
a
=
[\
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B \/_§ [Z Z <W<VSKM d1ag)ak(dr£)k o W( dlachKM)ka(dm)a> XZr + h.c.

(1= Zp, )y 2, ) (d7)H (A7) + (e 8(1 = Zp,))" (dR)H(d7)') b

(@ (1 — Zz,) dwvaKW(dmw) xh + he]

~

£ 05 (0 - Z5,)mi e 25, (@) FR) — (Zm,mi 01 — 25,))"(@5)H( )

—((1 = Zr,)m 8 20, ) ¥ (@ F(0R)' + (Zr,m dlag(l—ZTL))’“i(ﬁ%)’“(ﬁ?)i> iXR;
(4.90)

where we define 4" = 4}’ + 4 and dm = dp + 627];} As mentioned before, the top
and bottom quarks are the third component of the fields in the mass basis, while the

heavy partners are the fourth component,

(W7r)* = tory,  (@FR)" = thm)y,  (dim)’ =buw, (dig)" = Vim. (4.91)

The left-handed, right-handed weak-isospin, and electromagnetic current in Eq.(4.90)

now have following final expressions,

Jsp = i (@ )y (ag)' + li)) (@7) iy (Zr, )" (af )

- Zi; () (dy) = 124::3 (dP)y*(Zp,)  (d7Y, (4.92)
Jar = 22; ()" (4)" + l}: (wg)' " (Zr,)" ()

- 22: (dg)'" (dR)’ + 24: (dR)y"(Zp,)" (dR Y, (4.93)
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[GLRN NG

o
]em -

4
~ ~m o 1 7 mya
D @myet (@) — 3 D (dm)yeat(dm)”, (4.94)
a=1 a=1

where the definitions and matrix forms of FCNC couplings are shown in Eqgs.(4.82)-
(4.89). It should be noted that the Lagrangian written in Eq.(4.90) can be expressed
in the mass eigenstates of the Higgs and Z bosons. We will discuss this further in

chapter 5.



Chapter 5
Higgs Sector

In this chapter, we derived the kinetic terms and potential of Higgs, which are con-
tained in Eq.(3.4). In the same way as in chapter 4, we derive it step by step from
the SU(2)g x U(1)ys breaking into U(1)y and finally SU(2), x U(1)y breaking into
U(]->em~

5.1 SU(Z)R X U(l)Y/ — U(l)y

This stage occurs after the SU(2)gr Higgs doublet acquires non-zero vev and is pa-
rameterized as written in Eq.(4.1). Additionally, there is mixing between B, and
Wf_—’w into B, and Zp,, following the transformation shown in Eq.(4.2). We will an-
alyze the kinetic terms and potential separately. Furthermore, we classify the terms
based on the number of the fields in the term as linear, quadratic, cubic, and quar-
tic. The gauge fields inside the covariant derivatives are not counted as fields in this

classification.

5.1.1 Kinetic Terms

The kinetic terms in Eq.(3.4) become,

L D Liin = (D§M¢L)T(DSM;L¢L)
—ig'Yy tan 0 Zp, { (Dsuuor) o1, — ¢} (Do)}
+ ¢V} tan® 0r 2 Zp, ) 61,
_ RV
+ (DSMXR)(DSM;LXE) +1 il

2
9RVE,
A

{Wi"(Dsmuxz) — Wr" (Dsmuxi)}

_|_

ng“Wg{u

35
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1 1 IRVR ’
_(a“hR)Q + 2 (a“XgR B 2cosfOp ZR”)

W Dswpxg) + We" (Dswuxh)}

gRg
2

_ v
+ Z_{WW(DSM;LXE) — Wi (DswmuX) }hr + i RhRW Wi,

gR COS 293

‘H? cos 0 Ze Xt (DsmuXr) — Xr(DsmuX7) }

grvR (cos20k —
4 cosOpr

(W ,uXR + W}guxg)aﬂxg)% (W ,uXR W}EuXE)aMhR

1 _
+ ) (W ruXr T WR;LXE)Z]%

2
z VY2 Jr hpZ™Z
+ 20089 ————{X%(0"hr) — (0"X}H)hr} Zr. + (200891% VRhRZ R Z Ry,

g%(cos20R) —
4cosbp

2
g 1 _
+ ( Toos o Zrn i+ WE"WRO (k) + 1)

{(W RuXR — WﬁuXE)iXR (W, ruXr T WﬁuXE)hR}ZI%

2 2
95 v, cos”20p R
+ 7 (WRHWRM + 2cos? Op ZfEZRM> (XRXR)’ (5'1)
where
Denp¢r = (8 + ZgLWLu + ig'YyB ) oL, (5.2)
DsvipXt = (0 +ig'Bu)x (5.3)

are the definition of SM covariant derivatives for ¢, and 7}, respectively.

5.1.2 Higgs Potential

The Higgs potential which is written in Eq.(3.6) now becomes,

V(ér, ¢r) = (12 + ArvR)dhér + (o) o)’

+ 20 rvR(OLOr)hr + 2\ Lr(GL¢r) (XEXE + %(h% + (x%)2)>

+ hr(phvr + Arv})
2

h B 1
+ 7’%(#% + 3Agv7) + (U5 + AgvR) (xRXE + §<x?z)2>
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-+ 1 2 3\2
+ 20RhRAR | XpXR + §(hR + (&)%)

+\r (XEXE + %(hfz + (X%V)) : (5.4)

5.2 SU2)L x U(l)y = U1)em

This stage occurs after SU(2)y, Higgs doublet acquires non-zero vev as parameterized
in Eq.(4.39). Similar to what happens in SM, there is a mixing between B, and W},
into A, and Z;,,, following the transformation shown in Eq.(4.40).

5.2.1 Kinetic Terms

At this stage, it can be shown that the first line of Eq.(5.1) yields similar results to the
breaking of SU(2)g x U(1)ys when substituting R — L, Oz — Oy, and Dsy — Dep,.
After computing all terms, the kinetic terms of the Higgs in Eq.(5.1) become,

EH 2 ‘Ckin - (ngXZ)(Dem,uXL) (DemXR>(Dem#XJ]5)

ILUL (vp+p - —p + A —
+1 9 WL (Dempxy) — Wy (DemuXL)}+TWL WLH

.JRVUR +p D — W*M D + g]%”]%w*ﬂw—i—
+1 9 {WR ( emuXR)_ R ( emMXR)}+ 4 R Ry

1 1 3 grLur ’
5(8 hL) B aMXL - Zru

2 cos Oy,
1(5 hR) 1 (@X?jg—&ZR )2
2 2 2cosfp M
- 1g’tan OrZR, {—UL({?“X?L) + ﬂZ } + 1v%g’2 tan® OpZh 2R,
2 2cos by F 8
= W D) + Wi (D))

9 _ -
— XA (Dewix) + Wi (Dewx )}

2
g B _ giv _
+ Z_L{W;#(DemuXL) - WL#(DemuXJLr)}hL + L2 LhLWL HWIM

2
_ — gpv _
+ 7'_ {W+M emuXR) - WRM(Dem;LXJ]«gL)} hR + R2 RhRWRMWEM

_gL cos 20y B B
7 coS 0W {XZ<DemuXL) — X7 (DemuXZ_)}Zz
gR cos 20p

2 cos O {X+(DemuX;z) - X;z(DemuXE})lefz
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2
givr [ cos20y — 1 T R,
+ 4 ( cos Oy (WLMXL + WL,uXL)ZL

2
gpvr [cos20r — 1 B B
+ R4 ( cos GR ) (W;%F,LLXR + WR;LX};)ZI/’{’

gL _ _ gL - _
+ 7<WL+;LXL + WLqu)aMX% - Z?(WZFMXL - WLMXJLF)E)MhL

_ _ .g _ _
+ gTR(WJJ{MXR + WRuXE)auX:sR - ZTR(WJJ{MXR - WRMXJ}E)aMhR

2
L {xi@um)—(auxi)m}zw( gL )thLZzZLu

2 cos Oy 2 cos Oy
2
9gr 9r
o U Ounn) ~ @) 2ot (5285 ) onhaZizn,

— e tan QW{XE(Dem,uX]}) - X}}(DEHIHXJ}%)}Z/[f
1 . -

—i59 tan Or{x] (Demux1) = Xz (DempX[)} 2

— QERvRe tan Oy (W}J{MX;% + W]%LXJ]%) 7z

gr _ -
- ?ULg/tan Or(W/ Xz +WrX1)Zk

1
+g 3 tan 0p {(9,h1)X} — (O,x3)he } 2t

1 1
+ 4’5 tan g I vph Zp 2% + vpg? = tan® Ophr Zp, 2%
2 cos Oy neL 1 wZR
2 (cos 20y — 1 .
al Toos 0o WG = Wi int + (Wi + Wi} 2t
2
gn(cos20p — 1 a B ’ B -
3( 2 LWk X — Wik + (Wit + Wi i) 22

IR - -

—ige tan Oy x5 (W;{NXR - WR;LXE) Zr,
.gr — -

— Z;g/ tan QRX% (W[—LXL - WL;},X;) ZZ
g . —

— ERe tan Oy hp (W;{MXR + WR,LLXE) Zy,

gr _ _
— 7g'tan Orhr, (WELXL + WLHXJLF) A

2 2
g _ g _
L (W) (00 + ) + L2 (W) ((? + B3
g% W-‘r,uw— +. - g2Rw+,LLW— +. -
+ 5 Ve WX Xy + 5 R WRXRXR
g7 cos® 20y,

g% cos®20p
2 2 cos? Oy X

2 2cos20p Xr
- 9" -
+ e* tan® O\ EX R 21, 2t + T tan® Or X\, X§ ZruZly

ZXZZLng + X]_%ZRMZJI%
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g cos 20 cos 20w _
— 2R tan Oy R(ZXRXR)ZL#Z — —g tan g WXfoZL#Z}‘%
Cos 2 cos Oy

+ ﬁ;ZL ZHOG)P+hT) + n_ L1
4 2cos? Oy, HTEVAL L 4 2cos?0p
2
1
+ o5t 0 Zi, 2y (X1)” + 1) (5.5)

ZruZi((XR)* + IR

where,

Demqu(R) = (0u + Z'eAu)XZ(R)- (5.6)

5.2.2 Higgs Potential

At this stage, the Higgs potential in Eq.(5.4) becomes,

NL2 MRQ )‘L4 )‘R4 )‘LR22

(¢L7¢R)—_UL+7 R+4 L+4 U+ —— 5 VRUL
+ hy(pivg + Apvd 4+ Aprvavr) + hr(Ukvr + AUy + ALRURVT)
2 P

h h
-+ hL<2)\LRURUL)hR + 7[1(#% + 3)\LU% + )\LRU?{) + TR('M% + 3)\31)12% -+ )\LRU%)
1
+ (2 + Apv? 4+ Aorvd) | XXk + §(Xi)2>
1
o+ ) (i + 500°)
B 1 - 1
+ 2uy, {AL (XLXI + —(hQL + (xi)z)) + ALk (XRXE + 5(% + (X%V)) } hi
B B 1
200 {n (X + 508+ 00%) + dar (Xt + 508 + 00 f e
-t Loy 332 ’ -t 1o 332 i
+ AL\ XX+ §(hL +(x7)) | +Ar | XrXR T §(hR +(xz))
+ 2R (XLXI (h2 + (x}) )) (XRXR (h% + (X?z’%)2)) : (5.7)

where p? and p% are negative. The minimization conditions of the potential are,

vr(pg, + Apvi + Arrug) = 0, (5.8)
UR(/L?QL + )‘RUI%L + )\LR’UIQJ) =0. (59)
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The expressions for the non-zero vevs can be obtained as follows,

ALRHE — ArKT, ALRHT — ALk
o \/ Aedp — A2, e U Medp — A2p (5.10)

where the vev’s are taken to be positive. It can be shown that the linear terms of
the Higgs fields and the quadratic terms of X%( R) X%( ) Will vanish by using Eqgs.(5.8)
and (5.9).

5.3 Boson Mass

We collect the quadratic terms from kinetic terms Eq.(5.5) and Higgs potential
Eq.(5.7) below,

Lu D Lanaa = (DiuXr)(DempX1) + (DénXg) (DemuXr)

.gLvur, +u - —p + g%U% —pyas+
+1 9 WL (Dempxr) — Wi (DemuXL)}+TWL WLH

gRUR +p —p + T
{W (DemuXR) WR (DemuXR>}+TWR WRM

1 1 gr VR ’ g ’
= A ¢ | = Zwvp tand VAYA
2(200s6’w> L L“+2{<20086’R> i g VL MATR et

g'v
Ltano vz
Ty 2 a RZCOSHW Bp
1

( MX%)Q + §(auXR)

_|_

1 gLvr 1 grvr g'vg
2 cos Oy L,u(auX?ji) 2 cos O ZR;L<8M 3 ) - T tan eRZRu(a XL)

1
+ 5(8,/%) + 5(0uhR)

h? h?
— hL(QALRURUL)hR - 7L(2)\L’UI2J) - 7}%(2)\31}%{) (511)

From Eq.(5.11), we obtain the masses for W, and Wy as follows,

My, = %UL, (5.12)
My, = %UR. (5.13)

Since there is mixing between Z; and Zi as well as hy, and hg, we need to diagonalize

the mass matrices to obtain the mass eigenstates for the Z bosons and the Higgs
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bosons. In line with that, the Nambu-Goldstone bosons 3 and x% also mix.

5.3.1 7 and 7' Boson Mass

We define the following transformation from the Z; and Zp basis into the mass

Zrw \ cosf) sinf Zy (5.14)
Zr, )\ —sind cos Z, . '

From Eq.(5.11), the mass matrix in the Z; and Z basis is given by,

eigenstates,

gLv 2 1./ gLv
M2Z — (2C£SGLW) 59 vL taneRZcésHLW ) (5 15)
1 1 : ’
29'vL tan Orzliis (FE540)% + (3¢'vs tan Op)

The matrix M% can be diagonalized as,
OLMZ0, = diag(M2, M2,), (5.16)

where O is the mixing matrix defined in Eq.(5.14). The exact mass eigenvalues and

mixing angles are as follows,

M M 2MZ, (2 — %, M2 \°
Mz =""r 14 (A +13) WL—\/l s (CR SWSR)+(c%2+t%V)2< WL) ,

2c5, Mg, Mg, iy Mg,
(5.17)
M? M2 IM2, /(2 _ g2 &2 M2\ 2
M2, = 2r L1 4 (2 +13) WL+\/1— WL<R WR)+(c2+t2)2( WL) ,
2c2, Mg, Mg, A W\ MR,
(5.18)
ZCRS%SWZ—z -
tan 26 = N -~ 0<0<—, (5.19)
sty — 5% (shy cos 20 + ¢}y ch) & 4
R
where,
cr = coslpr, sgp =sinfr, cw = cosby, sy =sinby, ty = tanby. (5.20)

When My, > My, , the masses of the Z and Z’ bosons are approximately given by,

M2 M2
M2~ W () Wi 242 5.21
Z C%/V ( MVQVR Srlw | » ( )
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M2 M2
M2, ~ Wr (1 W 242 ) 5.22
Z 2 ( + MI%VRSR W ( )

5.3.2 Higgs Boson Mass

We define the transformation from the h; and hpr basis into the mass eigenstate as

( hr, ) : ( cqsqzﬁ sin ¢ ) ( h > (5.23)
hr —sing cos¢ H

The mass matrix of the Higgs in the hy and hg basis are is given by,

2)\LU2 2>\LRURUL
M2 = ~ ; : (5.24)
2)\LR’UR’UL 2>\R’UR

follows,

By defining the mixing matrix in Eq.(5.23) as Oy, we can diagonalize M), as,
OFM; 0y, = diag(mj, my), (5.25)

which yieds the exact mass eigenvalues,

m; = ALvi + Agvy — \/()\LU% — ArV%)? + 4N2 putos, (5.26)

m3; = A\ + Agvy + \/()\Lv% — Arv%)? + 4N2 puivd. (5.27)

Additionally, the mixing angle in Eq.(5.23) is given by,

2\
tan 2¢ = LRURUL

0<|g| <~ (5.28)

B

)\RUIQ;L — )\LU%7

Furthermore, the mass eigenvalues and mixing angle can be approximated as follows,

)\2
2N (1 - SEE )2 5.29
m3 ~ 2Agv%, (5.30)
2\
fan 26 ~ T;Rz—; (5.31)

if we ignore the correction of O (v? /v%).
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5.4 x; and x3 Mixing

From Eq.(5.11), we extract the following form,

1 1
£quad ) ‘Cx = 5(8@(%)2 + 5(({9@(3’%)2
1 )
Il Z1(0) -

L 1 JRVR
2 cos Oy

2 cosfp

/
v
ZRM((')“X;”%) — gTL tan HRZRM(a"Xz).

(5.32)

By changing into the mass eigenstate using Eq.(5.14) and writing in terms of the

diagonal mass eigenvalues (Mz, M), Eq.(5.32) can be rewritten as,

1 1
Equad D) £X — 5(8#)(2)2 + §(a,LLXZ’)2
— Mz (0"X2)Zu — Mz(9"x2)Z,, (5.33)
where,
3 :
X1, cosa  sina Xz
<3>:( . >< ) (5.34)
Xr —sina cosa Xz
cosa = Mz cosb , (5.35)
\/M%00820+ M2, sin* 0
le sin 6

sin v =

(5.36)

\/M%cos29—|— M2, sin* 0

Therefore, the quadratic terms in Eq.(5.11) can be written in terms of the mass

basis of the Z bosons, Higgs bosons, and Nambu-Goldstone bosons,

Ly D *Cquad = (ngxz — ZMWLWg_) (Dem,uxz + ZMWLWE—#)
+ (ngX;% - iMWRWg_) (DemeE + Z.MWRWEM)

1 1
+ 5 (aIJ«XZ - MZZ/J,)Z + 5 (8“)(2/ — MZ,Z;/L)Q
1 1 1 1
+3 (0,h)* — Em,%hz +3 (0,H)? - 5quHz, (5.37)

where the covariant derivatives of y, and yg are given in Eq.(5.6). We have shown
explicitly that x3 and x3 are mixed in this model. From Eq.(5.37), it is shown clearly
that the degrees of freedom Yz and xz become the longitudinal components of the

massive Z and Z’ bosons, respectively.



Chapter 6

Kinetic Terms of the Gauge Fields

In this chapter we derive the kinetic terms of the gauge fields starting from Lagrangian
in Eq.(3.5).

6.1 SU(2)r x Ul)y — U(l)y

At this stage, the kinetic terms of the gauge fields change from the B), and W, basis
into B, and Zg, basis. Following the transformation in Eq.(4.2), the Lagrangian in
Eq.(3.5) becomes,

1 a apy 1 v
Loange = — ZFL;WFLM - ZB’“’BM

SO, — DIV @ — W)

—i(0,Wg, — 0,Wg ) (grcosOrZy + g BY)W "
+i(O"WRY = W) (grcosOrZr, + g'B,)Wg,

— {(gR cosOpZp, + g'B,,)Wgu(gR cosOrZ} + ¢ B )YWi"

—(grcosOrZr, + ¢ B,)W4 (gr cos Op ZY, + g’B”)Wg“}
1

— ZFERWFS’: +iWgr, Wi, (gr cos OrF)" + g B"™)
+ SOV, — Wi W (W W), (61)
where,
B, = 8,8, — 0,B,, (6.2)
Ff,, = 0.WL, = 0,Wi, — gue™ WL, Wi, (6.3)
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FO

ZRrpv

= 0,7y — 00 Zp,. (6.4)

6.2 SU(2), x U1y = Ul)em

At this stage, there is a mixing between B, and WE# into A, and Zj, following
the transformation shown in Eq.(4.40). Additionally, we express the fields in the
diagonal basis of Z and Z" where the transformation is shown in Eq.(5.14). Thus,
the Lagrangian in Eq.(6.1) becomes,

1 , 1 , 1 }
‘Cgauge = _ZF%LWF%M - ZFg/ungg — ZFHVF#
— 5 (D, — D) (DU - D)
1 —Vv v -
—5@%W£—DJ@U@WWR—DV%ﬂ

2
I _ 2
L (- wp ) = (W wp)?)
2
2
+ i {gr cos by cos OF"™ + g1, cos Oy sin OF 4 + e (Wp, W)
+i{—(gr cos O sinf + e tan Oy cos 0)F )™

+(gr cos O cos O — e tan Oy sin ) Fi” + eF*} (WeWi)

+ (W W)W - W) = (Wi - W)

(6.5)
where,
FY. = 0,72, — 0,7,
Fy,, = 02, — 0,7,
F,., =0,A, —0,A,,
DHW;{V = (DGHWW;{V) —i(etan Oy Zy,, — gr cos QRZRM)W;{V,
D W} = (Dem,W7,) + igr cos Oy Z,, W, ,
DempGy = (9, +ieA,) G, (6.6)

with G, € {Wji,, W} }.



Chapter 7

Hierarchy of VLQ’s Mass

Parameters, vy, and vp

In this chapter, we discuss about the hierarchy of VLQ’s mass parameters, vy, and
vg. From Eqs.(4.70) and (4.71), we have the exact mass eigenvalues of top and
bottom quarks, as well as the heavy top and bottom quarks, respectively. One of the
motivations for the universal seesaw model in the quark sector is to explain the mass
hierarchy of quarks. The hierarchy of VL(Q’s mass parameters (Mr and Mpg), vy, and

vg is important in our model. We give the analytical and numerical analysis.

7.1 Analytical analysis

The exact mass eigenvalue of the top quark in Eq.(4.70) can be expressed as follows,

\/M% + meR + m%L + 2my,, My, \/M% + m?m + m%L — 2My, Moy,
¢ = -
2 2

m

~ | e |, (7.1)

,/M%—i—m?m

From the first line to the second line of Eq.(7.1), we apply the condition m,, < my,.
The second line of Eq.(7.1) can then be rewritten in terms of Yukawa couplings, using
Eq.(C.16), as follows,
Y R
vz Yoo

3 12,2 '
M2+ (YuR; 2] V2

(7.2)
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Assuming Y} =Y ~ O(1) and that the factor inside the parentheses is O(1), we
can approximate the top quark mass as m; ~ vy. This implies that My < vg. To
determine the hierarchy between My and vg for the large top quark mass, the ratio

My /vg can be derived from Eq.(7.2) as follows,

M Y3y3 1 1
— = Y SM)2 (Y3 )2’ (7.3)
v V2 W) ()

where y7™ is the SM Yukawa coupling of top quark and Y} > y?™. If we further

S

require that the Yukawa couplings are in the perturbative region, y?™ < YfL,YfR <1,

the upper and the lower limit of the ratio My /vg is given by

M 1 1
0< L < — | — 1. (7.4)

~oor T V2\ (@Y)?
If we take yP™ = 0.9912, we find that the upper limit of the ratio My /v is < 0.0944.
This demonstrates how the seesaw mechanism accounts for both the top quark mass
and the hierarchy between M7 and vg.
Similarly, in the bottom sector, by applying the condition my4, < my,,, the bottom

quark mass can be expressed as follows,

Y3 v
dp YR

V2 ng’L“L
/ M2+ YEE;%% V2

Assuming Y} = Y} =~ O(1) and that the factor inside the parentheses is much

(7.5)

my =

smaller than O(1), we can derive the light bottom quark mass. This implies Mp > v,

allowing us to express Eq.(7.5) as follows,

3 V3

~ 76
1 2My (7.6)

To determine the hierarchy between Mp and vg for the light bottom quark mass, the
ratio Mp/vgr can be obtained from Eq.(7.6) as follows,
Mg Y. Y5 1

- ) 77
UR V2 M .7)

where 5™ is the SM Yukawa coupling of bottom quark. If we further require that

the Yukawa couplings are in the perturbative region, Yd?’L de?}% < 1, the upper limit of
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the ratio Mp/vg is given by
Mp - 1 1

w2y
If we take yi™ = 2.4 x 1072, the upper limit of the ratio Mp/vg is < 29.46. Equality

holds when the Yukawa couplings Yd?’L = ngR = 1. This demonstrates how the seesaw

(7.8)

mechanism accommodates the bottom quark mass and the hierarchy between Mp
and vg. Therefore, when all Yukawa couplings Y7 , Y}, Y2 and Y} are O(1),
the hierarchy among the three scales is My < vg < Mp. If we include the vy, the
hierarchy has two possibilities depending on the numerical inputs: either v, < My <
vp K Mp or My < v < vp < Mp.

To summarize, by using the hierarchy that we discussed before, from the exact
mass eigenvalues in Eqs.(4.70) and (4.71) we can obtain the approximate form as

follows,

’URY3 Y3 VL

m?pprox ~ = UR™ UL , (79)
2/ (V32 + M3
02
P e[SV )2+ M3, (7.10)
URYdS YdS vy,
approx , "7 dr”dp & 7.11
; T (7.11)
miPPRX ~ M (7.12)

Our results in Eqgs.(7.9) and (7.10) agree with Eqs.(7) and (8) in Ref.[28], as well
as FEqgs.(3.19) and (3.17) in Ref.[29], respectively. While our results in Eqgs.(7.11)
and (7.12) agree with Eqs.(14) and (15) in Ref.[28], as well as Eq.(3.9) in Ref.[29],

respectively.

7.2 Numerical analysis

We start by analyzing the constraints in the top sector, as shown in Fig (7.1a). We
consider an asymmetric left-right model with g, # gr. By assuming ggr ~ 1 and
using the value of ¢’ ~ 0.357, we obtain 0p with Eq.(4.4). Additionally, we assume
Y2 ~ Y2 ~ 1. The following constraints are used [11]: (1) the top quark mass
obtained by the direct measurement is m; = 172.57 GeV; (2) the lower bound for
the heavy top quark mass is set to be my > 1310 GeV; (3) the lower bound for the

Z' boson mass is set to be Mz > 5150 GeV. Using the exact mass eigenvalue for
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Top quark mass my =172.57 GeV

Lower bound for my =1310 GeV

Lower bound for My, =5 TeV constrained by Mz,
Mr=1942.3 GeV

Mr (GeV)

ve (TeV)
(a)

Bottom gquark mass m, =4.183 GeV

Allowed region for my > 1390 GeV

Lower bound for Mw, =5 TeV constrained by Mz
Ms = 293.74 TeV

Mg (TeV)

8 9
vgr (Tev)

(b)

Figure 7.1: Constraints on vg and VLQ’s mass parameters of different sectors. (a)
Top sector. (b) Bottom sector. These figures are taken from Figure 1 in Ref.[46].

the Z’' boson mass in Eq.(5.18), we compute the lower bound for Wx boson mass as
My, 2 5 TeV. Consequently, we find the constraint for vg using Eq. (5.13), yielding
vr 2 10 TeV. At vg = 10 TeV, My is 942.3 GeV as shown by the black dot in Fig
(7.1a). Using these vg and Mp values, we further calculate the heavy top quark mass
with Eq.(4.71) and obtain my = 7.13 TeV.

Next, we analyze the constraints in the bottom sector, as depicted in Fig (7.1b).
Here, we also assume Y ~ Y} o~ 1. The constraints are [11]: (1) the SM bottom
quark mass we use is the running mass at bottom mass m, = 4.183 GeV; (2) the
lower bound for the heavy bottom quark mass is set to be my > 1390 GeV; (3) the

constraint for vg 2 10 is derived from the lower bound for the Z’ boson mass. For
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the bottom sector, at vg = 10 TeV, Mp is 293.74 TeV as indicated by the black dot
in Fig (7.1b). Using these vy and Mp values, we further calculate the heavy bottom
quark mass with Eq.(4.71) and obtain my = 293.82 TeV. This result indicates that
my ~ Mp.

From the above facts, the mass parameter of the top partner VLQ (M) is smaller
than vy but could be larger or smaller than v; depending on other parameters. On
the other hand, in the bottom sector, the mass parameter of the bottom partner
VLQ (Mp) is significantly larger compared to vg. This explains the mass hierarchy
problem, where the smallness of the bottom quark mass is suppressed by the large
mass of the bottom VLQ through a seesaw mechanism. Mathematically, our choice of
numerical input satisfies the following hierarchy: (1) for the top sector: v, < My <
vg; (2) for the bottom sector: v, < vp < Mp.

Using our chosen numerical inputs, one can compute the masses in the approxi-
mation form given in Eqs.(7.9), (7.10), (7.11) and (7.12) and obtain m;**"* = 172.58
GeV, miPP" = 7.13 TeV, mp™" ™ = 4.19 GeV, and my™" = 293.74 TeV. These
values are very close to the exact mass eigenvalues formula. For the rest of our nu-
merical analysis, we will use vgp = 10 TeV. This vg = 10 TeV is also used in Ref.[34],

although unlike this paper, they considered the model with left-right symmetry where
gr = gr.



Chapter 8
Flavor-changing Neutral Current

In this chapter, we discuss flavor-changing neutral currents (FCNCs) in this model.

8.1 Higgs FCNC

In this section, we discuss the interaction between Higgs and quarks in our model.

From Eq.(4.90), we extract the interactions between h; and hgr with quarks, given by

£45 Lo = =2 3 (2, T g+ (2, )
kz 3

H(Z, g ) (A (AR + (™ 2, ) () (A7) | B

- Z (1= Zr, i 2, g ) ()

(L~ 20, FTTFGEY + (1 — Zo, i 25, T )
+(Zpamy 5 (1 = Z5,))" ()4 (dL)'] B (8.1)

where Zr,,Zp,, Zr,, Zp,,m meE - and mgiag are given in Eqs.(4.84),(4.85),(4.88),
(4.89), (4.68), and (4.69), respectively. By transforming h; — hg basis into h — H
mass eigenstate with Eq.(5.23), the Lagrangian in Eq.(8.1) transforms into,

ﬁhH _ {COS¢ Z |:ZTL diag kzm(ag)z_i_( diag Z ) ( %)k(azz)z

k,i=3

(2, i) (AR + (my ™ 2, ) (dp (A7) |

o1
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. 4
-T2 S [( 2 w2, T (R) + (Zrmi (1~ 2r,) TR @)

b

(1= Zp, )my ™ Zp,) " (A7) (dR)' + (Zpmy " (1 ZBL))’“'(CZ?)’“(J?)’}

. 4
- {S“”f’ > | Enmi @ ag) + (i 2, ) g ()

~

+(Zp,my ) (A (dR) + (my ™ Zp, ) (d7)*( Z‘)}

FO S (1~ 2 e, VTR VR + (51 — Z0,) T g

o

(8.2)

(L= 2, )my 2, (A7 F(IR) + (B (1~ 25,))" (d) (07

where h and H denote the Higgs and the heavy Higgs, respectively. In this discussion,

we will focus on the interaction of the Higgs with the quarks in our model.

8.1.1 Top Sector

We collect the interaction terms between Higgs with top quark (¢) and heavy top
quark (') from Eq. (8.2)

[ cos sin .
Lyg D Ly = — v—(b cos® gp, my — U—¢ (sm2 ¢r, cos® Brmy
L R

— sin ¢, €oS 7, sin Sy, cos Br,my )] tth

[coso . sin
¢ sin ¢, cos ¢, my + ¢

(sin o1, COS O, sin? Brymy
UR

— sin® ¢, sin Py, cos ﬁTRmtﬂ (tpthy + tht)h

[coso . sin
¢ sin ¢, cos ¢, my +

(sin o1, COS O, cos? Brymy

L VL
— cos® ¢, sin By, cos ﬁTRmtr)} (thtr + tpth)h

sin ¢
v

[cos o .
? sin? pry iy —

(0052 Gr, sin® Br,my
— sin ¢, cos o7, sin Br, cos Br,my)] T't'h,  (8.3)
where we substitute the elements of Z7, and Z7, in Eqgs.(4.84) and (4.88), respec-

tively. Then, we approximate the mixing angles using Eqs.(C.26) and (D.13). Ad-
ditionally, by using the hierarchy in the top sector that is v, < My < vg, and the
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approximation for the mixing angle ¢ in Eq.(5.31), we derive the interaction between

the Higgs and the top-sector quarks as follows,

m
Ly ~ — cos gf)—t

1 )\LR M% U%
UL

—) tth — cos ¢

Mz 1 )‘ﬂﬁ
AR m%Rv%

+ " UQ) (tpthy + tht)h

UR R

MT VL )\LR - = myr Vg, M% )\LR .7
— — 1+ —| (t}t trty)h — —_— — — | t't'h.
CosgmeR UR ( N AR (letr + talL) cos ¢ m? AR

(8.4)

In this expression, we also assume that Y, ~ Y? ~ 1. From Eq.(8.4) we extract
useful informations regarding our model. Higgs-top quark coupling receives a small
correction, while Higgs-heavy top quark coupling receives an overall suppression of
O (vp/vg) . Another significant point is that the tree-level FCNC interaction is sup-
pressed. The Higgs FCNC of ¢tz and tgt} types are more suppressed by a factor of
O (vy/vg) compared to the t,t}, and Tt type.

8.1.2 Bottom Sector

In the same way as in the top quark sector, from Eq. (8.2), we collect the interaction
between Higgs with the bottom quark sector. By expressing Zp, and Zp, in terms

of their elements, we obtain,

[cos ¢ sing ,
Loy D Ly = — | —— cos? OB, MY — (sm2 b8, cos? Bepmu
L UL UR
—sin¢p, cos ¢, sin fp, cos fr,my )] bbh
[cos ¢ . in . .
+ ’ ¢ sin ¢, cos g, My + (sindp, cosdp, sin’ B, my
| UL
— SiIl2 ¢BL sin BBR COS ﬁBRmb)} (BLb/R + hC)h
[cos o . sin .
+ ’ ¢ sin ¢, cos pp, My + ¢ (sm ®B, COS Pp, cos? Brpm
| UL
— cos® ¢, sin Bp,, cos BBRmbr)} (b bg + h.c.)h
[coso . sin .
— ¢ sin® OB, My — ¢ (COS2 B, sin? Bpmy
L VL

—sin ¢, cos ¢p, sin Bp,, cos Bp,my)| B0 . (8.5)

By using the approximations for the mixing angles in Eqs.(C.26), (D.13), and (5.31),

and considering the hierarchy in the bottom sector v, < vg < Mp, we obtain the
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interaction between the Higgs and bottom-sector quarks as follows

A 2 _ , A 2 _ _
Loy = — cos o2 ( . %”—L) bbh — cos p— 2 (1 4 ALR YL ) (bLbl, + Biybr )R

vy, R V% Mg, My, Ar M3
v, [ ALR U123 = T 4 My, ALR Y 771
B ZEE L TR )y bpb Yh — 1— b'b'h. 8.6
UR()\R—FM%)(LR—’— RL) COS¢mb' AR ( )

Similar to the top sector, the interaction between the Higgs and the bottom quark
pairs receives a small correction compared to the SM. The interaction between the
Higgs and the heavy bottom quark pairs is suppressed by a factor O(v;/Mp). The
Higgs FCNC of b, bg and bpb, types are suppressed by a factor O(vy/vg). On the
other hand, the Higgs FCNC of lBLbQLz and B}sz type is not suppressed. This is because

we assume Y} ~ 1.

8.2 Z FCNC

In this section we discuss the interaction between the Z boson and quarks. We begin
by extracting the interaction terms between Z; — Zp and quarks from Eq.(4.90),

which reads as follows,

9 . .
£q - EZZ/ T |:2 COSLHW (ng> — etan 6W(]5m)j| ZLM
9dr . ] 1
a {2 cosfp (J3r) — 9’ tanbr (jé‘m - 5(]&))} ZRp- (8.7)

Here j&; , jbr, and j¥ are defined in Eqs.(4.92)-(4.94), respectively. Next, we change
the basis from Z; — Zg basis to the Z — Z' basis using Eq.(5.14), which yields

Lz =— {2 P (g1 cosf — etanOpsinb) b, — %ﬁ}
_ COSGGW (sin Oy cos @ — tan O sin H)jé‘m} Z,
! : . grcosf
- {2 cos Oy (grsinf + e tan O cos 0) 3, + m]gR
_ CO:QW (sin By sin @ + tan O cos Q)jé‘m} Z,. (8.8)

In this discussion, we will focus on the interaction between SM Z-boson with quarks.

We expressed the Z-boson interaction in terms of vector and axial-vector couplings
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as follows,
g 4
zZ __ L m\a al _ aB b ~m B
Lyz DLy, = —maz; (@) {(gv)u (9a)a” }(u )" 2y
g 4
_ L I v i af aB_ 5 m BZ
oy 2 |0~ @Y |7 (59
where,
1 (6%
(gv)a? = 5 ((51,)" = (k1)) — 26Qu0°7, (8.10)
1 (0]
(QA)ffﬁ = 5 ((KJTL)QB + (KJTR) B) ) (811>
« ]' (7 o (6%
()" = —5 (55,)°% = (15,)") — 26", (8.12)
« ]' (e} «
(94)5" = —3 (k)" + (KBg)™") (8.13)
k) = (cos @ — sin Oy tan O sin 0) (224 8.14
L TL
(i) sin@RcosﬁR( )" (8.15)
kg, ) = (cos @ — sin Oy tan O sin ) (24P, 8.16
L By,
of _ sin By sin 0 all yap g 17
(K5e) sin@RcoseR( B)" (8.17)
k = sin? Oy cos @ — sin Oy tan O sin 6. (8.18)

The matrix forms of 4 x 4 unitary matrices Z%E,Zgli,z%g, and ZEIIL are given as

follows,
L, 0 I O L, 0 I 0
Z%ILI _ 2 2 ’Z%g _ 2 2 ;ZEli _ 2 2 722111{ _ 2 2
0, Zp, 0y Zr, 0y Zp, 0y Zp,

(8.19)

where I, and 0, are 2 x 2 unit matrix and zero matrix respectively. The 2x 2 submatrix
Zr., Zp,, Zr,, and Zp,, are given in Eqs.(4.84),(4.85),(4.88),(4.89) respectively and
Q. = 2/3, Qg = —1/3 are the electric charge of up-type and down-type quarks

respectively.
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8.2.1 Up Sector

In this part, we analyze the interaction between Z-boson with the up sector in our

model. From Eq. (8.9), it reads as,

z z _ 9L sy 11 115 famy1
L3420 L7 T cos O {(u )y [(gv)u (gA)w](u )

+am)2y" {(gv)?f - (%)3?75] (@) + 19" [(gv)f’f’ - (9A)i375]t
+y [(gv)?f - (gA)ffﬂ t'+ iy [(gv)?f’ - (gA)i‘fv"’} t

+o )2 = i’} 2 (820
where the vector coupling (gy ), and axial-vector coupling (g4), are defined in Eqs.(8.10)-

(8.11) respectively. By using the definition of kr, , k7, and x which are written in
Eqgs.(8.14),(8.15), and (8.18) respectively, we obtain

2
(FLTL)H _ (FLTL)ZQ = cosf (1 — sin Oy tan 0RO (%)) ; (8.21)
VR
1 9o _ Sinfwcost (vf
(HTR> - <H}TR) - Sin QR CoS ORO ('U]Q%) 9 <822>
2
(K, )* = cos (1 — sin Oy tan 0O (;}—5)) ; (8.23)
R
53 sinfy cosf vi\ M2
=—0|% 24
(7s) sin 0p cos Op (U%{) m2 (8.24)
34 43 : 07\ '\ M, Mr
(kr, )”* = (kry )™ = cosb (1 — sin Oy tan 0O (—2>) — (8.25)
UR muR
34 43 sinby cosd vi\ Mr
()™ = (K1) ™ = sin O cos QRO (v%) My (8.26)
2 2 M2
(k) = cos 6 (1 — sin Oy tan 0RO (2—5)) %, (8.27)
R UR
u  sinfy cosf vy
=—0|(% 2
(K1) sin 0 cos Op (1)12%) ' (8.28)
2
Kk = cos @ (sin2 Ow — sin Oy tan 0,0 (%)) . (8.29)
R

The suppression due to the small mixing angle 0 is represented as O(v?/v%). The
exact form of the mixing angle 6 is given in Eq.(5.19). From Eqgs.(8.25) and (8.26),
the k7, and kr,, which are related to the Z-boson FCNC process with the top and
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heavy-top quarks are suppressed by O(vpMy/vy) and O(vi My /v}), respectively.
This indicates that the Z-mediated FCNC process in the up sector is suppressed
within our model. In addition, the interaction between Z-boson and heavy top quark
is also suppressed. Moreover, the deviation of the SM-like terms in (xk7, )" and k,

with ¢ € {1,2,3} are suppressed by a factor O(v? /v%).

8.2.2 Down Sector

In this part, we analyze the interaction between Z-boson and the down sector in our

model. From Eq. (8.9), we extract,

Jo Y g— {(cimw[(gv);l—<gA>;w5]<dm>1

 2cos Ow

~

@ (a2 = | @+ 5 () — i
F ()t |94 520 (00— (08

()t - ]y} 2 (5:30)
where the vector coupling (gy )4 and axial-vector coupling (g4 )q are defined in Eqgs.(8.12)-

(8.13) respectively. By using the definition of kp, , k5, and x written in Eqgs.(8.16),(8.17),
and (8.18) respectively, we get

2
(KJBL)H _ (“BL)QQ = cos (1 — sin Oy tan 0O <Z—§>) , (8.31)
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2
Kk = cosd (sin2 Oy — sin Oy, tan 0O (%)) . (8.39)

YR
The FCNC process in the down sector is suppressed, similar to the up sector. As
shown in Eqs.(8.35) and (8.36), the kp, and kg, are suppressed by factor O(vy,/Mp)
and O(v? JugMg), respectively. In addition, the interaction between Z-boson and
heavy bottom quark is also suppressed. Furthermore, the deviation of the SM-like

terms in (kp, )" and &, with i € {1,2,3} are suppressed by a factor O(v? /v%).



Chapter 9
Summary

We have presented a systematic analysis of the quark sector of the universal seesaw
model. We derived the Lagrangian of the model, including the quark sector, Higgs
sector, and kinetic terms of the gauge fields. We start by writing the Lagrangian which
is invariant under SU(2), x SU(2)r x U(1)y,. After SU(2)r Higgs doublet acquires
non-zero vev, we obtain the Lagrangian, which is invariant under SM gauge symmetry.
Furthermore, the SM gauge group is broken into U(1).,, after SU(2);, Higgs doublet
acquires non-zero vev. In the gauge interactions sector, we classify the terms based
on the number of fields, such as linear, quadratic, cubic, and quartic interactions.
Additionally, without fixing the gauge, we found that the massless Nambu-Goldstone
bosons mix to form yz and xz. We have clearly shown that the degrees of freedom
Xz and xz become the longitudinal components of the massive Z and Z’ bosons,
respectively.

Our model focuses on the third family of quark sector. Within this framework, we
explain the hierarchy between the top and bottom quark masses by mixing with the
heavy Vector-Like Quarks (VLQs). We use the direct measurement of the top quark
mass and the running mass of the bottom quark. Additionally, the lower bounds
on the heavy top and heavy bottom quark masses also serve as constraints. The
lower mass limit of the Z’-boson, which is linked to the "Wz boson mass, imposes a
significant constraint on vg. By setting gr and the Yukawa couplings equal to 1, the
lower limit of v in this model is 10 TeV. We found that the heavy top quark mass is
in the order of vg (my = 7.13 TeV) and the heavy bottom mass is in the order of Mp
(my = 293.82 TeV). We confirmed that the hierarchy of VLQ’s mass parameters, vy,
and v in our model is vy, < My < vp < Mp.

Moreover, the presence of VLQs in the model induces the flavor-changing neutral
currents (FCNCs) at the tree level. In the SM, the FCNC processes at tree-level

29
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are absent. In our model, we have shown that the Z-boson mediated FCNC process
is suppressed for both (up and down) sectors. The deviations from the SM values
are suppressed by O(v? /v%), which result from the small mixing in the lighter mass
eigenstate Z from Zg. On the other hand, Higgs mediated FCNCs of the byb} and

_ .
Urbr type are not suppressed when Y =~ 1.
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Appendix A

Weak-basis of Yukawa interaction

In this appendix, we show how to obtain the Yukawa interaction which is written in

Eq.(3.3). We start from the general Yukawa interaction terms,

Lym = —E%LGELTR - TL?JZ;(ZBEQE — T, MrTR — hc.
— 4}Y4, 61.Br — Bryli Olds — BuMpBr — h.c. (A1)

The Yukawa couplings are general complex vectors in C* with following parameteri-

zation,

1

. . Zau
sin 9%(1{) sin @ e "L

. .2

7 o o . u u 10y, 3
Yuppy = Yurmy = | sin QL(R) cos QSL(R)e L(R) YuL(R)7 (A.2)
- 3
’LO[U

cos 92(3)6 L(R)

- 1

- nd . d g
sin GL(R) sin (;SL(R)e L(R)

. . 2
v — — 3 d d rag 3
Yarpy = Yo SINOF ) cos O e L [ Yy, s (A.3)
i 3

d ’LC%dLR
cos QL(R)e (B)

where Yu3L(R) and Y;’L(R) are real positive numbers. Define following weak-basis trans-

formation (WBT) as follows,

e_io‘f‘Rq}é. (A.5)

—~
=
5
~—
~.
I

Applying this WBT into Eq.(A.1), we obtain

Lyn = _(qlL)i(y;L)iéLTR - TL(y;R)i*éL(q;%)i — T MyTr — hec.



— (4,)'v, #.Br — Bryi, dk(ak)’ — BLMpBg — h.c., (A.6)
where

(W, )| = Yh, e e, (A7)
(U) = e “en (A.8)

are real vectors. On the other hand, y} and g} remain complex vectors with the
redefined phases.

Next we write the (y;L)i Yukawa coupling explained above as,

3 U 3 (7
sin 67 sin ¢}
(i)' = | sinffcosoy |V,
cos 0}

=e} V) (A.9)

u

and defining another WBT,
(42)" = (V)" (a)’, (A.10)

where in general V,,, is 3 x 3 unitary matrix which formed by three orthonormal

vectors with the third column is chosen as e}, in Eq.(A.9),

Vi, = ( e} eY e} ) . (A.11)

which leads the product (V| )7 (y,, )" = 673V} .

For the (y,,.)" Yukawa coupling can be derived similarly by changing L — R
in Eq.(A.9) - (A.11). For the down-sector, product Eq.(A.11) and the down-type
Yukawa coupling yield down-type Yukawa coupling in another basis. For example,
(Vi ) (ya, ) = (yj, ). Therefore, the Lagrangian in Eq.(A.6) become,

Ly = =Y (d])P0rTr — Y2 Trokh(dh)® — ToMrTr — hec.
—(¢})"(yiy,) oL Br — B_L(yél/R)i*ﬂz(qyz)i — ByMgBg — h.c. (A.12)

and it has form the Yukawa couplings of up-type quark doublet (Y;> and Y;} ) are
real positive numbers while the Yukawa couplings of down-type quark are general

complex vectors as written in Eq.(3.3).



Appendix B

Parameterization of Vj;, and Vj,

In this appendix, we explain more details of how to parameterize and remove the

unphysical phases of V, and V;, . Both V;, and V;, have the following form

V:(Vl V2 V3>7 (B-l)

where the third column is related to either yq, or y4, and is parameterized by

sin @ sin et
vy = | sinfcos¢pe? | . (B.2)
cos fe'es
Since V is a unitary matrix, the column vector satisfy vi - vi = 0;; and has matrix
Yy ’ y i J J

form as follow,
V= (au, g, a3) Ria(9) R23(0)(0, 6, 0) Ria () (p, 0, 0), (B.3)

where (a1, a, a) = diag(e™1, e ¢'3); (0, 6,0) = diag(1, e, 1);(p, 0,0) = diag(e”, e, 1)

and

cos¢ sing 0 1 0 0
Ria(¢p) = —sing cos¢p 0 |, Res(@)=1| 0 cosf sinf |,
0 0 1 0 —sinf cos#d

cosa  sina 0
Ryp(a) =| —sina cosa 0 |. (B.4)
0 0 1



We have the freedom to rotate V' by U(2) transformations from the both sides. As
shown in Eqs.(4.18) and (4.57), we can remove the unphysical phases and angles in
Eq.(B.3) by following,

vV =Uvw, (B.5)

where U and W are 3 x 3 unitary matrices which have following expressions,

~ Q-
UT - (07 737 O)R;21(¢)(—Q1, —Qa, 0)7

W = (=p, 0, 0) Ry (2)(0,~5,0)(0, =3, 0). (B.6)
Thus we obtain,
1 0 0
V=10 cos @ sinfe’s | . (B.7)

. ;3 v
0 —sinfe'2 cosfes



Appendix C

Diagonalization of quark mass

matrix

In this appendix, we derive the exact mass eigenvalues of the top-bottom SM quarks
and the heavy VLQ partners, as well as the matrices used for the diagonalization
procedure. We will show the diagonalization procedure for the top sector. The
bottom sector can be done similarly because the form of M, is the same as M;. We
start from Eq.(4.66), explicitly writing the (Wr,)* and (Wr,,)* values,

_YjLYSRvaR y3 wp Mr —my
Mt = 2y UL /2 My = 1 2 , (Cl)
O mu4 O mu4

where my, and my, in Eq.(C.1) are not mass eigenvalues but are defined as follows,

33
Y, Y. vLug _3ULMT

ur " uR
my, = = .
7 ’ uL\/§
mu4

The top quark mass matrix in Eq.(C.1) can be diagonalized by bi-unitary transfor-

(C.2)

my, =
! 2my,,

mation, which gives,
K}LMtKTR = (mfiag) = diag(m, my). (C.3)

Initially, we transform M into a real symmetric matrix by multiplying it on the left

side by an orthogonal matrix S;, which yields

M; - StMt, (C4)



where,

S, = < cos ¢y, —singg, > ‘ (C.5)

sin g, cos ¢y
M} becomes a real symmetric matrix with the following expression

Mi _ ( —1My, COS O, —1my, sin ¢, ) (C.6)

—My, SIN ¢y My, SIN Ggy + My, COS G,

if the mixing angle satisfies the following condition:

m
tan o, = — (C.7)

mu4 — mtl
Then, a real symmetric matrix can be diagonalized by multiplying from both sides

another 2 x 2 orthogonal matrix R; and its transpose,

R, MR} = diag(—ms, my), (C.8)
where,
R — CO'S Or,  Singr, ‘ (C.9)
—sin¢g, cos Pry,

The minus sign inside the diagonal matrix on the right-hand side of Eq.(C.8) arises
because the determinant of the top quark mass matrix M, is negative. Since m, is
lighter than mj, we assign the minus sign to m;. However, we could eliminate the
minus sign by multiplying Eq.(C.8) by —73 on the right side, where 73 is the third

component of the Pauli matrices. The mixing angle can then be obtained as:

2
tan 267, = o I‘;gtj TR (C.10)
The eigenvalues of Eq.(C.8) can be computed using the following equation,
A% — (trM})\ + detM}, = 0. (C.11)
After performing the calculations, we obtain
. 3 PN L 1 TP ST TS
N = my — Vmi, 4 (M, —my,)? N Vmi, 4 (my, + mtl)Q. (C.13)

2 2



We can also equivalently express the explicit mass eigenvalues in the following form,

- \/MYQ“ + (muR B muL)2 + \/MIQ“ + (muR + muL)2

= C.14
my 92 2 ) ( )
g = VML i =0, )7 I (1 )" (C.15)
2 2
where,
_yv3 VR _v3 YL
muR = YURE, muL = YULE (Cl6>
Finally, we can summarize all the matrix transformations explained above as,
Rt StMt R?(—Tg) - diag(mt, mt/). (Cl?)

Additionally, the product of two orthogonal matrices is also an orthogonal matrix.

Then we can define O, as,

(C.18)

Oy = R.S, ( cos¢r, sinop, >

—singr, cosdry

with ¢, = ér, — ¢1;. Hence, by comparing Eq.(C.17) and Eq.(C.3) we obtain the

expression for the mixing matrices as follows.

K}, = < cosgr,  sinda, ) , (C.19)

—singr,  cosdry
K, — c?s Or, —sin¢r, -1 0 N e c?s Or, —sin¢r, (C.20)
sin ¢,  cos ory, 0 1 —singr,  cosor,
For the bottom sector, we can derive the results similarly by replacing ¢ with b, T’

with B, and v with d. Thus, we write the mass eigenvalues and the mixing matrices

for the bottom sector as follows,

- \/M% + (de _ mdL>2 + \/M% + (de + mdL)2

= 21
my 9 9 ) (C )
my = \/M]23 + (de - mdL>2 + \/Ml%’ + (de + mdL)Q’ (022>

2 2
where,
My = Y3 — v L (C.23)

R dR\/ﬁ’ May, = dLE’



KEL : < CO§ ¢p, singp, ) ’ (C.24)
—singp, cos¢p,
Ky — cos ¢p, —singp, -1 0 —CoSQp, —sSingg, (C.25)
" sin ¢BR CcOosS ¢BR 0 1 —sin ¢BR COs ¢BR ‘ '

While the approximate masses are already written in Eqgs.(7.9)-(7.12), the approxi-
mate mixing angles are given as follows,

2
. muLMT . muLmuRMT
singp, ~ ———————, cos¢r, =1, singr, ~ —o———, cosor, =1
Mz +m2 (MZ +m2,)?
2

. mq . mg, Md

sin ¢p, ~ — ML’ cos¢pp, ~ 1, singp, ~ WR, cos ¢p, ~ 1. (C.26)
B B

Using the approximate angles, one can write the approximate form for the matrices
as follows,

1 o muLMT 1 _miLmuRMT
i MZ+m2 (Mi+m2 )2
KT My, Mp ) KTR =~ m2 o, M
b _QuL 2 1 — R 1
—L £
Mz+mi (MT+m%R)2
(C.27)
m2 mq
(0 -1
~ B ~ B
KBL - Map 1 ) KBR — m(ziLde . (C28)
Mp




Appendix D

CKM Matrices

In this appendix, we will discuss CKM-like matrices in this model and the rephasing of
the CKM-like matrices. CKM-like matrix, which appears for the first time in Section

4, is an “intermediate” right-handed CKM-like matrix which has explicit form as

follows,
1 0 0 0
of g
0 C Sgd Co, €' 72 Sgd Sp, €' 2
ORM _ % 0% “05p 0% 0By D.1
R B iad iag ia3 ’ ( ' )
0 —cop, SpL€" 2 Cor,CoiCop,€ R Cop Cod Sop € %
i2dn o o
0 —sg;,Spa€" "2 Sop CaCop € R Sgp CoiSgp € R
where,

— d — «in A4 —
Cga = cosblp,  Sga =sinbp, cp, = coslry,

=sinfp,. (D.2)

Tr

Sor, = sin O, , Cop,, = COS 05, S0z,

After Step 6 is done, we have the final expression of the left-handed CKM-like matrix
and right-handed CKM-like matrix, which are defined in Eq.(4.73) and Eq.(4.74),
respectively. The matrix forms of the left-handed CKM-like matrix and right-handed

CKM-like matrix are as follows,

1 0 0 0
; A A
Cpd SgdChpy €' 2 —SgdSgy €72
VCKM o 07 3 07 ¢, 07295, (D 3>
L - . Yd iad iad ) :

0 —cop, Sgd e 2 Cor, CoiCop, € ‘L —Cop CodSgp € L

3

«@
d

0 i— - iagL iagL
S¢TL SQdL e 8¢TL CG% C¢BL e Sd)TL CQ% S¢BL e



where

_ d
Coa = cost,

— «in 4 —
Sps = sinbly, ¢y, = cosor,

Spr, = SINPT,, Chpp = COSPB,, Sy, =SiNQp,. (D.4)
and
1 0 0 0
(13 ()13
i dR i dR
0 Cod —S8gd Cgy €' 2 Sgd Sp, €' 2
CKM R R R R R
VR - _(xg ias i3 ? (D'5>
1= d . d
0 Cpr,%04€ 2 CprCodChp,€ ‘F —Cpp,CoiSpp € 'R
ii ia ia
0 —Spp, Sga€" > —8pr CoaCpp € R Spp CodSpp € R
where
Cpa = cos0%,  spu =sinfk, ¢z, = cosf
04 — R 04 — R Bryp — Tr>
S8r, = SN PBry,  Cpy, =08 BBy,  Spy, =sinfpy,
Bry =01y — 0155 BBr =B, — OB (D.6)

Recall the mass terms in the diagonal mass basis (including the massless two lightest

quark fields) as follows,

(D.7)

We have the freedom to rephase the quark fields with following transformations,

(U?(R))a = (euum)a(saﬂ(aﬂm)ﬁa (D.8)
(d?(R))a = (edL(R))adaﬁ(dT(R))Bv (D'9>
where 0,,, , = diag(e " rtm P urime e eifus) and Odyny = diag(edeWl LePnma | gifay etas).

One can show that Eq.(D.7) is invariant under transformation in Eq.(D.8)-(D.9).
We apply this rephasing transformation into the £,. The left-handed and right-

handed CKM-like matrices are rephased and become,

]A}LCKM — G,ELVLCKMedLJ ]}(R;KM - QLRV‘%KMQCIR’ (D10>

By choosing proper phase and phase difference, we could rephase the left-handed and



right-handed CKM-like matrices and they become following matrix forms,

1 0 0 0
POKM _ 0 Co¢ S04 Con,, — S04 Sén, 7 (D.11)
0 —Cor, Sgd Cor, CodCop,  —Cor Cod Sop,
0 sd’TL 89% _S¢>TL 09% C¢BL S¢TL CQ% S¢BL
1 0 0 0
5 ¥
A — i) ()
PCKM _ 0 Co, . S69,Chp, € S04, 588y, © (D.12)
2 70 70 ) ’
0 cﬁTR S@% €2 CBTR 0951? C,BBR € _CﬂTR 09% SBBR €
.5 . .
s 0 0
0 5By 5046 2 T Spr, Cod CBp, € Spry 04,58, €

where we redefine the phase difference as 6 = o} — ;) . Therefore, in this model, we
have one CP violating phase ¢ and in our choice, it is included in the right-handed
CKM-like matrix as shown in Eq.(D.12).

Moreover, the mixing angle (7, and g, can be expressed in the approximate

form as,

Mo My

. Mmag
R cos By, =~ N sin Bpg,, ~ U
/ 2 / 2 B
Mz + mg . Mz + mg .

sin B, ~ cos fp, ~ 1.

(D.13)



