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Abstract

This thesis deals with locally adaptive Bayesian smoothing methods to estimate the
non-stationary trend of quantile and boundary. The underlying idea of the proposals
is based on trend filtering which is one of the smoothing methods in nonparametric
statistics. All proposed models are constructed by assuming asymmetric Laplace or
truncated normal distribution as a working likelihood, and are adopted shrinkage
priors such as horseshoe prior to achieve locally adaptive shrinkage. We first sum-
marize technical background of selected topics in Chapter 2. The Bayesian quantile
trend filtering methods for time series and spatial data are established in Chapters
3 and 4 respectively. In Chapter 5, we propose the Bayesian boundary trend filter-
ing by introducing the approximation of truncated normal likelihood. Finally, we
conclude this thesis and discuss several future works in Chapter 6.
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Chapter 1

Introduction

This thesis deals with the Bayesian smoothing methods for different statistics such as
quantiles (Chapter 3 and 4) and boundaries (Chapter 5) of time series or spatial data.
Smoothing or trend estimation is an important issue in investigating characteristics
of data, and such methods have been applied in various scientific fields such as
astronomical spectroscopy (e.g. Politsch et al., 2020), biometrics (e.g. Faulkner et al.,
2020), bioinformatics (e.g. Eilers and De Menezes, 2005), economics (e.g. Yamada,
2022; Daouia et al., 2016) and environmetrics (e.g. Brantley et al., 2020; Tibshirani
et al., 2011) among others. To focus on the smoothing of data, we consider the
sequence model yi = θi + εi (i = 1, . . . , n), where yi is an observation, θi is a
true trend and εi is a noise. Let n be a sample size, and y = (y1, . . . , yn)⊤ and
θ = (θ1, . . . , θn)⊤. For estimating underlying trends θ, the ℓ1 trend filtering (Kim
et al., 2009; Tibshirani, 2014) is one of the popular methods that can flexibly capture
local abrupt changes in trends, compared with spline methods, and it is formulated
by the minimizer of the following penalized problem:

θ̂ = argmin
θ∈R

ℓ(y − θ) + λ∥D(k+1)
n θ∥1, (1.1)

where ℓ(·) is a quadratic loss, D(k+1)
n is a (n−k−1)×n difference operator matrix of

order k + 1, and λ > 0 is a tuning constant. The ℓ1 trend filtering is known to be a
special case of the generalized lasso proposed by Tibshirani and Taylor (2011). Fur-
thermore, fast and efficient optimization algorithms for trend filtering have also been
proposed (e.g. Ramdas and Tibshirani, 2016). Due to such advantages in terms of
flexibility and computation, extensions of the original trend filtering to spatial data
(Wang et al., 2015) and functional data (Wakayama and Sugasawa, 2023, 2024) have
been considered. However, the majority of existing studies focus on estimating mean
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trends with a homogeneous variance structure, and these methods may not work well
in the presence of outliers or data with heterogeneous variance. Additionally, we are
often interested in estimating quantiles rather than means. Recently, by replacing
the loss function ℓ(·) with the check loss function, Brantley et al. (2020) proposed
a quantile version of trend filtering (QTF). Theoretical properties of quantile trend
filtering have been shown by Madrid Padilla and Chatterjee (2022).

The main difficulty in applying the optimization-based trend filtering as consid-
ered in Brantley et al. (2020) is that uncertainty quantification for trend estimation
is not straightforward. Moreover, the frequentist formulation includes tuning param-
eters in the regularization, but the data-dependent selection of the tuning parameter
is not obvious, especially with quantile smoothing.

A reasonable alternative is to employ a Bayesian formulation for trend filtering
by introducing priors. In general, the Bayesian formulation for trend filtering is
based on the model:

yi = θi + εi, εi ∼ f(·), D(k+1)
n θ ∼ π(·), (i = 1, . . . , n), (1.2)

where ε1, . . . , εn are independent errors following the working likelihood f , and π

correspond to the prior density functions. A simple Bayesian counterpart that cor-
responds to penalized square loss is a combination of the Gaussian likelihood on f

and Laplace prior distribution on π (e.g. Roualdes, 2015). The resulting posterior
mode is the same as that of the solution of the problem (1.1). To achieve locally
adaptive smoothing, Faulkner and Minin (2018) proposed a more flexible Bayesian
trend filtering via global-local shrinkage priors. Kowal et al. (2019) also considered
a Bayesian formulation based on a dynamic shrinkage process under Gaussian like-
lihood to estimate the mean trend. To estimate quantile trends, assuming a more
flexible probability distribution called extended asymmetric Laplace distribution in
(1.2), Barata et al. (2022) also proposed the extended dynamic quantile linear model.
The Bayesian approach has some advantages: 1) capable of full probabilistic uncer-
tainty quantification through posterior distribution, 2) flexible shrinkage by using
global-local shrinkage priors (Carvalho et al., 2010), and 3) estimating regularization
parameters from Markov chain Monte Carlo method.

The remainder of the thesis is organized as follows.

• Chapter 2: Technical background.
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We summarized the common fundamentals throughout this article. Under
the linear regression model, we introduce mean or quantile estimation and
Bayesian inference including a brief introduction to global-local shrinkage pri-
ors. Mathematical formulation of trend filtering is also described.

• Chapter 3: Calibrated variational Bayesian inference for quantile smoothing.

In this chapter, we provide fast Bayesian quantile trend filtering for time series
data. To induce locally adaptive Bayesian inference on trends, we introduce
general shrinkage priors, and to quickly compute the posterior distribution, we
develop calibrated mean-field variational Bayes approximations, which guar-
antee that the frequentist coverage of credible intervals obtained from the
approximated posterior is a specified nominal level. Simulation and empirical
studies show that the proposed algorithm is computationally much more ef-
ficient than the Gibbs sampler and tends to provide stable inference results,
especially for high/low quantiles. This chapter is based on Onizuka et al.
(2024a).

• Chapter 4: Locally adaptive Bayesian spatial quantile smoothing.

Spatial trend estimation under potential heterogeneity is an important prob-
lem in extracting spatial characteristics and hazards such as criminal activity.
In this chapter, we propose a Bayesian quantile trend filtering method to es-
timate the non-stationary trend of quantiles on graphs and apply it to crime
data in Tokyo between 2013 and 2017. By modeling multiple observation
cases, we can estimate the potential heterogeneity of spatial crime trends over
multiple years in the application. To induce locally adaptive Bayesian infer-
ence on trends, we introduce general shrinkage priors for graph differences.
Introducing so-called shadow priors with multivariate distribution for local
scale parameters and mixture representation of the asymmetric Laplace dis-
tribution, we provide a simple Gibbs sampling algorithm to generate posterior
samples. The numerical performance of the proposed method is demonstrated
through simulation studies. This chapter is based on Onizuka et al. (2024b).

• Chapter 5: Locally adaptive Bayesian boundary smoothing.

Estimating boundary curves has many applications such as economics, cli-
mate science, and medicine. Bayesian trend filtering has been developed as
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one of the locally adaptive smoothing methods to estimate the non-stationary
trend of data. This study develops a Bayesian trend filtering for estimating
the boundary trend. To this end, the truncated multivariate normal work-
ing likelihood and global-local shrinkage priors based on the scale mixtures of
the normal distribution are introduced. In particular, well-known horseshoe
prior for difference leads to locally adaptive shrinkage estimation for bound-
ary trend. However, the full conditional distributions of the Gibbs sampler
involve high-dimensional truncated multivariate normal distribution. To over-
come the difficulty of sampling, an approximation of truncated multivariate
normal distribution is employed. Using the approximation, the proposed mod-
els lead to an efficient Gibbs sampling algorithm via the Pólya-Gamma data
augmentation. The proposed method is also extended by considering a nearly
isotonic constraint. The performance of the proposed method is illustrated
through some numerical experiments and real data examples. This chapter is
based on Onizuka et al. (2024).

Some concluding remarks are given in Chapter 6. In particular, the results and
contribution of the thesis are summarized.
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Chapter 2

Technical background of selected
topics

2.1 Mean and quantile estimation in frequentist
and Bayesian perspective

Let yi be a response variable and xi be a covariate variable. In this section, we
consider the following regression problem:

yi = f(xi) + εi, i = 1, . . . , n,

where εi (i = 1, . . . , n) is an independent and identically distributed error term.
For simplicity, we assume linear regression model f(xi) = x⊤

i β, where β ∈ Rk is an
unknown parameter. Moreover, it is re-expressed by

y = Xβ + ε, (2.1)

where y = (y1, . . . , yn)⊤, X ∈ Rn×k is a covariate matrix, and ε = (ε1, . . . , εn)⊤.

2.1.1 Frequentist methods

First, if we assume E[εi] = 0 (i = 1, . . . , n) in (2.1), then E[yi] = f(xi), which f is
mean of data yi. For estimating f(xi) = x⊤

i β, the ordinary least squares estimate β̂
is defined by

β̂ = argmin
β∈Rk

∥y −Xβ∥22,

where ∥y −Xβ∥22 =
∑n

i=1(yi − x⊤
i β)

2 is the quadratic loss function.
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Next, for conditional cumulative distribution function F (yi | xi) of yi, the con-
ditional pth quantile is defined by

Qyi|xi(p) = inf
yi∈R

{yi | F (yi | xi) > p},

where p ∈ (0, 1) is a quantile level. When f(xi) = x⊤
i β is pth quantile of yi, which

means f(xi) = Qyi|xi(p), quantile regression proposed by Koenker and Bassett Jr
(1978) to estimate pth quantile of y under the regression model (2.1) is given by
solving the following optimization problem:

β̂ = argmin
β∈Rk

ρp(y −Xβ).

where ρp(·) is the check loss function defined by

ρp(r) =
n∑

i=1

ri{p− 1(ri < 0)}. (2.2)

2.1.2 Bayesian inference

As a natural Bayesian model to estimate the mean of y under (2.1), it is often
assumed that εi ∼ N(0,σ2) (i = 1, . . . , n), where σ2 is a scale parameter. Then, the
conditional distribution of y is represented by

p(y | β, σ2) =
1√

(2πσ2)n
exp

{
− 1

2σ2
∥y −Xβ∥22

}
.

The term in the exponential function is similar to the quadratic loss in the frequentist
method. To obtain the posterior distribution, we assume the prior distribution π(β)
and π(σ2) such as Gaussian prior and inverse-gamma prior for β and σ2, respectively.

In Bayesian quantile regression, the asymmetric Laplace distribution AL(p,σ2)

is often assumed for the error term εi (Yu and Moyeed, 2001). The asymmetric
Laplace distribution has the following probability density function

fAL(p)(x) =
p(1− p)

σ2
exp

{
−ρp

( x

σ2

)}
, (2.3)

where p is a fixed constant which characterizes the quantile level, σ2 is a scale
parameter, and ρp(·) is a check loss function defined by (2.2). As well as the Gaussian
assumption for mean estimation, the term in the exponential function corresponds
to the scaled check loss in the frequentist method. The prior distributions for β and
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σ2 are also assumed.

2.2 Bayesian shrinkage
In the regression model (2.1), the shrinkage estimation of β under sparsity is usually
considered. As a famous frequentist method, the lasso estimator is given by the
following penalized minimization:

β̂ = argmin
β∈Rk

{
∥y −Xβ∥22 + λ∥β∥1

}
,

where λ is a tuning parameter and ∥ · ∥1 is a L1 norm. From this formulation, the
Bayesian lasso (Park and Casella, 2008) is proposed by

p(y | β, σ2) =
1√

(2πσ2)n
exp

{
− 1

2σ2
∥y −Xβ∥22

}
,

π(β | σ2,λ∗) =
k∏

j=1

λ∗

2σ
exp

(
−λ

∗|βj|
σ

)
,

where π(β | σ2,λ∗) is the Laplace distribution with scale parameter σ. When σ and
λ∗ are fixed, the MAP (maximum a posteriori) estimator is equal to the frequentist
lasso estimator β̂ with tuning parameter λ∗ = 2σλ. The Laplace prior leads to
the shrinkage toward zero due to the density mass at zero. For efficient sampling,
the scale mixture representation of the Laplace prior π(β | σ2,λ∗) is also given as
follows:

π(βj | σ2,λ∗, τj) ∼ N(0,σ2τ 2j ), π(τ 2j | λ∗) ∼ Exp(λ2/2) (j = 1, . . . , k).

As the other way to induce shrinkage toward zero, the spike-and-slab prior which
has the point mass at zero and heavy-tail is considered. Recently, as a normal scale
mixture distribution, the global-local shrinkage priors to induce shrinkage toward
zero are also considered:

βj | λj, τ ∼ N(0,λ2jτ
2), λj ∼ π(·), τ ∼ π(·),

where λj is a local parameter that leads to individual (coordinate-wise) shrinkage
and τ 2 is a global parameter that leads to common shrinkage. One of the global-
local shrinkage priors is horseshoe prior proposed by Carvalho et al. (2010), which
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assumes

λj ∼ C+(0, 1), τ ∼ C+(0, 1).

Global-local shrinkage priors for non-Gaussian data have also been developed in
recent years (e.g. Datta and Dunson, 2016; Hamura et al., 2022b, 2024).

2.3 Trend filtering
Let yi = θi + εi (i = 1, . . . , n) be a sequence model, where yi is an observation, θi
is a true trend and εi is a noise. The estimate of ℓ1 trend filtering (Kim et al., 2009)
is given by solving the optimization problem

θ̂ = argmin
θ∈Rn

∥y − θ∥22 + λ∥D(k+1)
n θ∥1, (2.4)

where y = (y1, . . . , yn)⊤, θ = (θ1, . . . , θn)⊤, λ > 0 is a tuning constant, and D(k+1)
n is

a (n− k − 1)× n difference operator matrix of order k + 1, which is defined by

D(1)
n =

⎛

⎜⎝
1 −1

. . . . . .
1 −1

⎞

⎟⎠ ∈ R(n−1)×n, D(k+1)
n = D(1)

n−kD
(k)
n . (2.5)

Depending on the different order k, we can express various smoothing such as piece-
wise constant, linear, quadratic, and so forth (see e.g. Tibshirani, 2014). The trend
filtering is also called the fused lasso for k = 0.

Brantley et al. (2020) proposed quantile trend filtering, defined as the optimiza-
tion problem

θ̂p = argmin
θ∈Rn

ρp(y − θ) + λ∥D(k+1)
n θ∥1, (2.6)

where θ̂p is pth quantile trend, λ > 0 is a tuning constant and ρp(·) is a check loss
function given in (2.2). To solve the problem (2.6), Brantley et al. (2020) proposed a
parallelizable alternating direction method of multipliers (ADMM) algorithm, and
also proposed the selection of smoothing parameters λ using a modified criterion
based on the extended Bayesian information criterion.
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Chapter 3

Fast and locally adaptive quantile
smoothing using calibrated
variational approximations

3.1 Introduction
In this study, we provided a Bayesian quantile trend filtering method. To construct
a fast and efficient algorithm, we employed the asymmetric Laplace distribution as
a working likelihood (Yu and Moyeed, 2001; Sriram et al., 2013) and two types of
shrinkage priors; Laplace (Park and Casella, 2008) and horseshoe (Carvalho et al.,
2010) priors. From the data augmentation strategies of asymmetric Laplace dis-
tribution by Kozumi and Kobayashi (2011) and the shrinkage priors, we construct
an efficient Gibbs sampling algorithm and a mean-field variational Bayes (MFVB)
algorithm. The variational Bayes method has the following several characteristics:
1) it gives the quick calculation of point estimates, 2) the MFVB algorithm tends
to provide narrower credible intervals than that of Gibbs sampling (e.g. Blei et al.,
2017). Moreover, in the general Bayesian framework under the assumption of the
true sampling distribution or the working likelihood, the (possibly) misspecified
model such as asymmetric Laplace likelihood may produce invalid credible inter-
vals. To overcome such problems, we proposed a new simulation-based calibration
algorithm for the credible intervals of the variational posterior distribution. It is
expected to give valid credible intervals for the MFVB posterior distribution fast.
We showed the performance of the proposed methods through simulation studies
and real data examples.

The remainder of the chapter is structured as follows: In Section 3.2, we formu-
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late a Bayesian quantile trend filtering method and provide Gibbs sampling and vari-
ational Bayes algorithms. In Section 3.3, we describe the main proposal of this study,
a new calibration algorithm for approximating posterior distribution with variational
Bayes approximation. In Section 3.4, we illustrate simulation studies to compare the
performance of the proposed methods. In Section 3.5, we apply the proposed meth-
ods to real data examples. Concluding remarks are presented in Section 3.6. Addi-
tional information on the proposed algorithms and numerical experiments are pro-
vided in the Appendix 3.7. R code implementing the proposed methods is available
at the GitHub repository (https://github.com/Takahiro-Onizuka/BQTF-VB).

3.2 Bayesian quantile trend filtering
3.2.1 Bayesian formulation and shrinkage priors for differ-

ences

To conduct Bayesian inference of the quantile trend corresponding to the frequentist
model (2.6), we often use the following model:

yi = θi + εi, εi ∼ AL(p,σ2), i = 1, . . . , n, (3.1)

where θi and σ2 are unknown parameters, p is a fixed quantile level, and AL(p,σ2)

denotes the asymmetric Laplace distribution with the density function (2.3). Al-
though the model assumes that a single variable is observed at each point i, multiple
observations per grid point often appear in practice. Therefore, following Heng et al.
(2023), this study considered the following model which accounts for multiple ob-
servations per grid point:

yij = θp(xi) + εij, εij ∼ AL(p,σ2), i = 1, . . . , n, j = 1, . . . , Ni, (3.2)

where θp(x) is a p-th quantile in the location x, n is the number of locations data
are observed, and Ni is the amount of data for each location xi. It is a natural
generalization of the sequence model (3.1). Note that the model (3.2) is a nonpara-
metric quantile regression with a single covariate, and the proposed approach can
easily be generalized for additive regression with multiple covariates. For simplicity
in notation, we denoted θp(xi) = θi for the remainder of the chapter.

The model (3.2) for the likelihood corresponds to the loss function in frequentist
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method (2.6), and then shrinkage priors on differences are introduced to induce the
smoothness of the trends which corresponds to the penalty term in the frequentist
method. For Bayesian model, we define the (k+1)th order difference operator D as

D =

(
Ik+1 O

D(k+1)
n

)
, (3.3)

where Ik+1 is (k + 1) × (k + 1) identity matrix, O is zero matrix and D(k+1)
n is

(n − k − 1) × n standard difference matrix given in (2.5). We consider flexible
shrinkage priors on Dθ, and the priors are represented by

Dθ | τ 2,σ2, w ∼ Nn(0,σ
2W ) with W = diag(w2

1, . . . , w
2
k+1, τ

2w2
k+2, . . . , τ

2w2
n),

where w = (w1, . . . , wn) represents local shrinkage parameters for each element in
Dθ and τ 2 is a global shrinkage parameter. Since the D is non-singular matrix, the
prior of θ can be rewritten as

θ | τ 2,σ2, w ∼ Nn(0,σ
2(D⊤W−1D)−1). (3.4)

Note that since (Dθ)i = θi ∼ N(0, w2
i ) for i = 1, . . . , k+1, wi (i = 1, . . . , k+1) is not

related to shrinkage of difference. For this reason, we assumed the conjugate inverse
gamma distribution IG(awi , bwi) for w2

i . As mentioned in Section 2.2, introducing
the specific priors for wi (i = k + 2, . . . , n) and τ , various degrees of shrinkage
can be expressed. In particular, for i = k + 2, . . . , n, we considered two types of
distribution; wi ∼ Exp(1/2) and wi ∼ C+(0, 1), which were motivated from Laplace
or Bayesian lasso prior (Park and Casella, 2008) and horseshoe prior (Carvalho et al.,
2010), respectively. Regarding the other parameters, we assigned σ2 ∼ IG(aσ, bσ)

and τ ∼ C+(0, Cτ ). The default choice of hyperparameters is aσ = bσ = 0.1 and
Cτ = 1.

Remark 3.2.1. Tibshirani (2014) extend the difference matrix (2.5) for the situ-
ation where data is observed at an irregular grid, and we also apply the adjusted
difference operator to the proposed method. We assume that the locations of data
x = (x1, . . . , xn) have the ordering x1 < x2 < · · · < xn and xj+1−xj is not constant.
Note that this issue is related to nonparametric quantile regression. When the lo-
cations x ∈ Rn are irregular and strictly increasing, an adjusted difference operator
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for k ≥ 1 is defined by

D(x,k+1)
n = D(x,1)

n−k diag

(
k

xk+1 − x1
, . . . ,

k

xn − xn−k

)
D(x,k)

n

where D(x,1)
n = D(1)

n . It is a natural generalization of (2.5) because D(x,k+1)
n = D(k+1)

n

for x1 = 1, x2 = 2, . . . , xn = n (see also Heng et al., 2023). Then, the matrix D for
our model is also given by

D =

(
Ik+1 O

D(x,k+1)
n

)
,

where O is a zero matrix.

3.2.2 Gibbs sampler

We first derived a Gibbs sampler which is one of the Markov chain Monte Carlo
(MCMC) methods. For the simple computation of the posterior distribution, the
stochastic representation of the asymmetric Laplace distribution (Kozumi and Kobayashi,
2011) is utilized. For εij ∼ AL(p,σ2), we have the following stochastic expression:

εij = ψzij +
√
σ2zijt2uij, ψ =

1− 2p

p(1− p)
, t2 =

2

p(1− p)
,

where uij ∼ N(0, 1) and zij | σ2 ∼ Exp(1/σ2) for i = 1, . . . , n and j = 1, . . . , Ni.
From the above expression, the conditional likelihood function of yij is given by

p(yij | θi, zij,σ2) = (2πt2σ2)−1/2z−1/2
ij exp

{
−(yij − θi − ψzij)2

2t2σ2zij

}
. (3.5)

Under the prior (3.4), the full conditional distributions of θ and zi are given by

θ | y, z,σ2, γ2 ∼ Nn

(
A−1B, σ2A−1

)
,

zij | yij, θi,σ2 ∼ GIG

(
1

2
,
(yij − θi)2

t2σ2
,
ψ2

t2σ2
+

2

σ2

)
, i = 1, . . . , n, j = 1, . . . , Ni,

respectively, where

A = D⊤W−1D +
1

t2
diag

(
N1∑

j=1

z−1
1j , . . . ,

Nn∑

j=1

z−1
nj

)
,

B =

(
1

t2

N1∑

j=1

(
y1j
z1j
− ψ

)
, . . . ,

1

t2

Nn∑

j=1

(
ynj
znj
− ψ

))⊤
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and GIG(a, b, c) denotes the generalized inverse Gaussian distribution. The full
conditional distribution of the scale parameter σ2 is given by

σ2 | y, θ, z, w, τ 2 ∼ IG

(
n+ 3N

2
+ aσ,ασ2

)
,

where N =
∑n

i=1 Ni is the number of observed values and

ασ2 =
n∑

i=1

Ni∑

j=1

(yij − θi − ψzij)2

2t2zij
+

1

2
θ⊤D⊤W−1Dθ +

n∑

i=1

Ni∑

j=1

zij + bσ.

By using the augmentation of the half-Cauchy distribution (Makalic and Schmidt,
2015), the full conditional distribution of the global shrinkage parameter τ 2 is given
by

τ 2 | θ, w, σ2, ξ ∼ IG

(
n− k

2
,

1

2σ2

n∑

i=k+1

η2i
w2

i

+
1

ξ

)
, ξ | τ 2 ∼ IG

(
1

2
,
1

τ 2
+ 1

)
,

where ξ is an augmented parameter for τ 2. For i = 1, . . . , k + 1, we assumed the
prior IG(awi , bwi) for wi, and then the full conditional distribution of wi is given by

w2
i | θ,σ2 ∼ IG

(
1

2
+ awi ,

η2i
2σ2

+ bwi

)
, i = 1, . . . , k + 1.

The full conditional distribution of local shrinkage parameter wi (i = k + 2, . . . , n)
depends on the choice of the prior, either Laplace or horseshoe prior.

- (Laplace-type prior) For Laplace-type prior, we set τ 2 = 1 and assume wi |
γ2 ∼ Exp(γ2/2) for i = k + 2, . . . , n. Then we have (Dθ)i ∼ Lap(γ). Noting
that γ ∼ C+(0, 1), sampling from the standard half-Cauchy prior is equivalent
to γ2 | ν ∼ IG(1/2, 1/ν) and ν ∼ IG(1/2, 1) using the augmentation technique
(Makalic and Schmidt, 2015). Hence, the full conditional distributions of wi,
γ2 and ν are, respectively, given by

w2
i | θ,σ2, γ2 ∼ GIG

(
1

2
,
η2i
σ2

, γ2
)
,

γ2 | w, ν ∼ GIG

(
n− k − 3

2
,
2

ν
,

n∑

i=k+2

w2
i

)
, ν | γ2 ∼ IG

(
1

2
,
1

γ2
+ 1

)
.

- (Horseshoe-type prior) For Horseshoe-type prior, we assume wi ∼ C+(0, 1)

for i = k + 2, . . . , n. By using the representation w2
i | νi ∼ IG(1/2, 1/νi) and
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νi ∼ IG(1/2, 1), the full conditional distributions of wi and νi are, respectively,
given by

w2
i | θ,σ2, τ 2, νi ∼ IG

(
1,

1

νi
+

η2i
2σ2τ 2

)
, νi | wi ∼ IG

(
1

2
,
1

w2
i

+ 1

)
.

3.2.3 Variational Bayes approximation

When the sample size is large, the MCMC algorithm presented in Section 3.2.2 can
be computationally intensive due to the large number of parameters that need to
be sampled. To reduce the computational resources required, the variational Bayes
approximation (e.g. Blei et al., 2017; Tran et al., 2021) of the joint posterior is often
considered, which is the method to approximate an intractable posterior distribution
by using a simpler probability distribution. Since the variational Bayes method does
not require sampling from the posterior distribution like MCMC, and it searches for
an optimal variational posterior by using the optimization method. In particular,
we employed the mean-field variational Bayes (MFVB) approximation algorithms
that require the forms of full conditional distributions as given in Section 3.2.2.

The variational distribution q∗(θ) ∈ Q is defined by the minimizer of the Kullback-
Leibler divergence from q(θ) to the true posterior distribution p(θ|y)

q∗ = argmin
q∈Q

KL(q∥p(· | y)) = argmin
q∈Q

∫
q(θ) log

q(θ)

p(θ | y)dθ. (3.6)

If θ is decomposed as θ = (θ1, . . . , θK) and parameters θ1, . . . , θK are mutually
independent, each variational posterior can be updated as

q(θk) ∝ exp(Eθ−k
[log p(y, θ)]) = exp

(∫
q(θk) log p(y, θ)dθ−k

)
, k = 1, . . . , K,

where θ−k denotes the parameters other than θk and Eθ−k
[·] denotes the expectation

under the probability density given parameters except for θk. Such a form of approx-
imation is known as the MFVB approximation. If the full conditional distribution
of θk has a familiar form, the above formula is easy to compute. According to the
Gibbs sampling algorithm in Section 3.2.2, we used the following form of variational
posteriors:

q(θ, z, σ2, τ 2, ξ) = q(θ)q(z)q(σ2)q(τ 2)q(ξ),
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where

q(θ) ∼ Nn(A
−1B, (E1/σ2A)−1), q(zij) ∼ GIG

(
1

2
,αzij , βzij

)
,

q(σ2) ∼ IG

(
n+ 3N

2
+ aσ,ασ2

)
, q(τ 2) ∼ IG

(
n− k

2
,ατ2

)
,

q(ξ) ∼ IG

(
1

2
, E1/τ2 + 1

)
.

(3.7)

For i = 1, . . . , k+1, we assume the prior IG(awi , bwi) for wi, and then the variational
distribution of wi is given by

q(w2
i ) ∼ IG

(
1

2
+ awi ,

1

2
Eη2i

E1/σ2 + bwi

)
.

The variational distributions of the other parameters depended on the specific choice
of the distributional form of π(wi) (i = k+2, . . . , n), which are provided as follows:

- (Laplace-type prior) The variational distributions for w2
i (i = k+2, . . . , n),

γ2 and ν are given by

q(w2
i ) ∼ GIG

(
1

2
,αw2

i
, Eγ2

)
,

q(γ2) ∼ GIG

(
n− k − 3

2
, 2E1/ν ,

n∑

i=k+2

Ew2
i

)
, q(ν) ∼ IG

(
1

2
, E1/γ2 + 1

)
,

- (Horseshoe-type prior) The variational distributions for w2
i and νi (i =

k + 2, . . . , n) are given by

q(w2
i ) ∼ IG(1,αw2

i
), q(νi) ∼ IG

(
1

2
, E1/w2

i
+ 1

)
,

To obtain the variational parameters in each distribution, we update the pa-
rameters by using the coordinate ascent algorithm (e.g. Blei et al., 2017). The two
proposed variational algorithms based on the above variational distributions are
given in Algorithm 1 and 2. Note that we set ϵ = 10−4 as the convergence criterion
in the simulation study, ei is a unit vector that the ith component is 1, d⊤i is the ith
row of difference matrix D, and Kc(·) is the modified Bessel function of the second
kind with order c in Algorithms 1 and 2.
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Algorithm 1 — Variational Bayes approximation under Laplace prior.
Initialize: Ezij , E1/zij , E1/wi , E1/σ2 , Eγ2 , E1/ν > 0 (j = 1, . . . , Ni, i = 1, . . . , n). Set
E1/τ2 = 1, E1/ξ = 0 under Laplace prior.

1. Cycle the following:

(i) A← 1

t2
diag

⎛

⎝
N1∑

j=1

E1/z1j , . . . ,
Nn∑

j=1

E1/znj

⎞

⎠+D⊤Ŵ−1D,

B ← 1

t2
(C − ψ1n) , C ←

⎛

⎝
N1∑

j=1

y1jE1/z1j , . . . ,
Nn∑

j=1

ynjE1/znj

⎞

⎠
⊤

,

Ŵ−1 ← diag(E1/w2
1
, . . . , E1/w2

k+1
, E1/τ2E1/w2

k+2
, . . . , E1/τ2E1/w2

n
),

Eθi ← (A−1B)i, Eθ2
i
← e⊤i (E

−1
σ2 A

−1 +A−1BB⊤A−1)ei,

Eη2
i
← d⊤i (E

−1
σ2 A

−1 +A−1BB⊤A−1)di (i = 1, . . . , n),

ασ2 ← 1

2t2

n∑

i=1

Ni∑

j=1

(
y2ijE1/zij − 2ψyij + ψ2Ezij − 2(E1/zijyij − ψ)Eθi + Eθ2

i
E1/zij

)

+
1

2

k+1∑

i=1

Eη2
i
E1/w2

i
+

1

2

n∑

i=k+2

Eη2
i
E1/w2

i
E1/τ2 +

n∑

i=1

Ni∑

j=1

Ezij + bσ,

Eσ2 ← 2ασ2

n+ 3N + 2aσ − 2
, E1/σ2 ← n+ 3N + 2aσ

2ασ2
,

αzij ←
1

t2
(y2ij − 2yijEθi + Eθ2

i
)E1/σ2 , βzij ←

(
ψ2

t2
+ 2

)
E1/σ2 ,

Ezij ←
√
azijK3/2(

√
azij bzij )√

bzijK1/2(
√
azij bzij )

,

E1/zij ←
√
bzijK3/2(

√
azij bzij )

√
azijK1/2(

√
azij bzij )

− 1

azij
(j = 1, . . . , Ni, i = 1, . . . , n),

E1/w2
i
← (1 + 2awi)/(Eη2

i
E1/σ2 + 2bwi) (i = 1, . . . , k + 1)

(ii) αw2
i
← E1/σ2Eη2

i
, Ew2

i
←
√αw2

i
K3/2(

√
αw2

i
Eγ2)

√
Eγ2K1/2(

√
αw2

i
Eγ2)

,

E1/w2
i
←

√
Eγ2K3/2(

√
aw2

i
Eγ2)

√aw2
i
K1/2(

√
aw2

i
Eγ2)

− 1

αw2
i

(i = k + 2, . . . , n),

Eγ2 ←

√
2E1/νKn−k−1/2(

√
2E1/ν

∑n
i=k+2 Ew2

i
)

√∑n
i=k+2 Ew2

i
Kn−k−3/2(

√
2E1/ν

∑n
i=k+2 Ew2

i
)
,

E1/γ2 ←

√∑n
i=k+2 Ew2

i
Kn−k−1/2(

√
2E1/ν

∑n
i=k+2 Ew2

i
)

√
2E1/νKn−k−3/2(

√
2E1/ν

∑n
i=k+2 Ew2

i
)

,

E1/ν ←
1

2(E1/γ2 + 1)
.

2. For iteration ℓ in step 1 and convergence criterion ϵ > 0, if |E(ℓ)
θi
−E(ℓ−1)

θi
| < ϵ,

stop the algorithm.
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Algorithm 2 — Variational Bayes approximation under horseshoe prior.
Initialize: Ezij , E1/zij , E1/wi , E1/τ2 , E1/σ2 , E1/ξ2 , E1/νi > 0 (j = 1, . . . , Ni, i =
1, . . . , n).

1. Cycle the following:

(i) Same update as (i) in Algorithm 1.

(ii) αw2
i
← E1/νi +

1

2
E1/σ2E1/τ2Eη2i

,

E1/w2
i
← 1

aw2
i

, E1/ν2i
← 1

2(E1/w2
i
+ 1)

(i = k + 2, . . . , n),

ατ2 ←
1

2

n∑

i=k+2

Eη2i
E1/w2

i
E1/σ2 + E1/ξ, E1/τ2 ←

n− k

2ατ2
,

E1/ξ ←
1

2(E1/τ2 + 1)
.

2. For some iteration ℓ in step 1 and convergence criterion ϵ > 0, if |E(ℓ)
θi
−

E(ℓ−1)
θi

| < ϵ, stop the algorithm.

3.3 Calibrated variational Bayes approximation
The main proposal of this study is described below. When we use the mean field
variational Bayes method, the posterior credible intervals are calculated based on
the quantile of the variational posterior. In the proposed model, the variational
distribution of the parameter of interest θi is represented by the normal distribution
N(µi,Σii), where the mean µi and variance Σii are defined in Section 3.2.3. Although
the variational approximation provides the point estimate quickly, the corresponding
credible interval tends to be narrow in general (e.g. Wand et al., 2011; Blei et al.,
2017). Additionally, it is well-known that the credible interval can be affected by
model misspecification, as addressed by Sriram et al. (2013) and Sriram (2015) in
the Bayesian linear quantile regression. Hence, if the asymmetric Laplace working
likelihood in the proposed model is misspecified, the proposed model would not have
been able to provide valid credible intervals even if we use the MCMC algorithm.

As presented in the previous subsection, the conditional prior and likelihood of
θ were given by (3.4) and (3.5), respectively. Here we add a common (non-random)
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scale parameter λ, and then replace (3.4) and (3.5) with

p(yij | θi, zij,σ2) = (2πt2λσ2)−1/2z−1/2
ij exp

{
−(yij − θi − ψzij)2

2t2λσ2zij

}
,

p(θ | σ2, τ, w) = (2πλσ2)−n/2|D⊤W−1D|1/2 exp
(
− 1

2λσ2
θ⊤D⊤W−1Dθ

)
,

respectively. Based on these representations, the variational posterior of θ is given
by

q(θ) ∼ Nn(µ,λΣ).

The constant λ in the likelihood and conditional prior controls the scale of the
variational posterior. Indeed, it is natural that the scale of the posteriors was de-
termined by the scale of the likelihood and prior. If the scale parameter λ is given
locally for each θi (i.e. λi), then the variational posterior of θi is also given by
q(θi) ∼ Nn(µi,λiΣii) for each i. We used the formulation to calibrate credible in-
tervals after the point estimation. The proposed calibration algorithm is given in
Algorithm 3.

Algorithm 3 is similar to the calibration method for general Bayes credible regions
proposed by Syring and Martin (2019), but the proposed algorithm drastically differs
from the existing calibration method in that it computes variational Bayes posteriors
for B times while the calibration method by Syring and Martin (2019) runs MCMC
algorithms for B times. Thus, the proposed algorithm is computationally much
faster than the existing calibration algorithm. Further, compared with the Gibbs
sampler presented in Section 3.2.2, steps 3 and 4 in Algorithm 3 can be parallelized
so that a significant reduction of computational costs can be attained with the
proposed method.

After we obtain the optimal value of λ using Algorithm 3, we use q(θ) ∼
Nn(µ∗,λΣ∗) as the calibrated variational posterior distribution. We then construct
the calibrated credible interval of θi (i = 1, . . . , n) by calculating the quantile of the
marginal distribution of Nn(µ∗,λΣ∗). Here we used the residual bootstrap method
(e.g. Efron, 1982) to obtain bootstrap samples in Algorithm 3. Since this algorithm
is based on such semiparametric bootstrap sampling, robust uncertainty quantifica-
tion can be expected even if the asymmetric Laplace assumption is violated.

Remark 3.3.1. In Algorithm 3, we employed the residual bootstrap using 50%
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Algorithm 3 — Calibration of variational posterior.
For calibration of variational posterior at the quantile level p, we set the monotoni-
cally increasing sequence 1 = λ1 < λ2 < . . . and run the following four steps:

1. Estimate the variational posterior for p-th quantile trend filtering q(θ) ≈
Nn(µ∗,Σ∗) using the observed data y = (y1, . . . , yn).

2. Run the variational algorithm and estimate the variational posterior for 0.5-th
quantile q(θ) ≈ Nn(µ50%,Σ50%) using the observed data y.

3. Generate B bootstrap samples y(1), . . . , y(B) based on the residuals y − µ50%,
and calculate the variational posteriors as Nn(µ(1),Σ(1)), . . . , Nn(µ(B),Σ(B))
using bootstrap samples y(1), . . . , y(B).

4. Regarding {µ(1), . . . , µ(B)} as B posterior samples, for i = 1, . . . , n, evaluate
the empirical coverage probability

ĉα,i(λℓ) =
1

B

B∑

b=1

1{µ(b)
i ∈ Cα(µ

∗
i ,λℓΣ

∗
ii)},

where Cα,i(µ∗
i ,λℓΣ

∗
ii) is 100(1−α)% credible intervals under N(µ∗

i ,λℓΣ
∗
ii) (ℓ =

1, 2, . . . ). Then, selecte the optimal value λ̂ so that

λ̂i = argminλ{ĉα,i(λ)− (1− α)},

and q(θi) ∼ Nn(µ∗
i , λ̂iΣ

∗
ii) is the calibrated variational posterior distribution.

quantile trend estimate as a fitted value when we estimated any quantile level. At
first glance, it might seem like it is better to use bootstrap sampling based on residue
y−µp, where µp is p-th quantile trend estimate. However, since we aim to re-sample
from the empirical distribution of the original dataset y, the use of a 50% quantile
trend estimated as a fitted value in residual bootstrap is reasonable in practice. This
is the critical point of Algorithm 1.

To show the theoretical results of Algorithm 3 is not easy as well as the algorithm
by Syring and Martin (2019) because it needs to evaluate the approximation errors of
both bootstrap and variational approximations. We confirm the proposed algorithm
through numerical experiments in the next section.

3.4 Simulation studies
We illustrate the performance of the proposed method through simulation studies.
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3.4.1 Simulation setting

To evaluate the performance of the proposed methods, we considered the following
data-generating processes (see also Faulkner and Minin, 2018; Brantley et al., 2020):

yi = f(xi) + ε(xi), i = 1, . . . , 100,

where f(x) is a true function and ε(x) is a noise function. First, we assumed the
following two true functions:

- Piecewise constant (PC)

f(x) = 2.5 · I(1 ≤ x ≤ 20) + I(21 ≤ x ≤ 40)

+ 3.5 · I(41 ≤ x ≤ 60) + 1.5 · I(61 ≤ x ≤ 100)

- Varying smoothness (VS)

f(x) = 2 + sin(4x− 2) + 2 exp(−30(4x− 2)2).

Since the scenario (PC) has three change points at x = 21, 41, and 61, we aim
to assess the ability to capture a jumping structure. The second scenario (VS) is
smooth and has a rapid change near x = 50, which is reasonable to confirm the
shrinkage effect of the proposed methods and the adaptation of localized change.
As noise functions, we considered the following three scenarios that represented the
heterogeneous variance and various types of model misspecification.

(I) Gaussian noise: ε(x) ∼ N(0, (1 + x2)2/16).

(II) Beta noise: ε(x) ∼ Beta(1, 11− 10x).

(III) Mixed normal noise: ε(x) ∼ xN(−0.2, 0.5) + (1− x)N(0.2, 0.5).

For each scenario, simulated true quantile trends are summarized in Figure 3.5 of
the Appendix 3.7. True quantile trends were computed from the quantiles of point-
wise noise distributions. We next introduce the details of simulations. We used the
two MCMC methods (denoted by MCMC-HS and MCMC-Lap), two non-calibrated
variational Bayes methods (denoted by VB-HS and VB-Lap), and two calibrated
variational Bayes methods (denoted by CVB-HS and CVB-Lap), where HS and
Lap are the horseshoe and Laplace priors, respectively. Note that we implemented
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CVB without parallelization although the bootstrap calibration steps in CVB can be
parallelized. To compare with the frequentist method, we used the quantile trend fil-
tering based on the ADMM algorithm proposed by Brantley et al. (2020), where the
penalty parameter of Brantley’s method was determined by the extended Bayesian
information criteria. The method can be implemented using their R package in
https://github.com/halleybrantley/detrendr. For the order of trend filtering,
we considered k = 0 for (PC) and k = 1 for (VS). Note that k = 0, 1 express
the piecewise constant and the piecewise linear, respectively. We generated 7,500
posterior samples by using the Gibbs sampler presented in Section 3.2.2, and then
only every 10th scan was saved (thinning). As criteria to measure the performance,
we adopted the mean squared error (MSE), mean absolute deviation (MAD), mean
credible interval width (MCIW), and coverage probability (CP) which are defined
by

MSE =
1

n

n∑

i=1

(θi − θ̂i)2, MAD =
1

n

n∑

i=1

|θi − θ̂i|,

MCIW =
1

n

n∑

i=1

θ̂97.5,i − θ̂2.5,i, CP =
1

n

n∑

i=1

I(θ̂2.5,i ≤ θ∗i ≤ θ̂97.5,i),

respectively, where θ̂100(1−α),i represent the 100(1 − α)% posterior quantiles of θi
and θ∗i are true quantiles of y at location xi. Additional simulation results under a
different true function are provided in the Appendix 3.7.

3.4.2 Simulation results

We show the simulation results for each scenario. Note that the point estimates of
the variational Bayes method were the same as those of the calibrated variational
method because the difference between them was only the variance of the variational
posterior distribution. Hence, we omitted the results of the CVB-HS and CVB-Lap
in Tables 3.1 and 3.3. The frequentist quantile trend filtering by Brantley et al.
(2020) is denoted by “ADMM”.

Piecewise constant. We summarized the numerical results of the point estimate and
uncertainty quantification in Tables 3.1 and 3.2, respectively. From Table 3.1, we
observed that the point estimates of the MCMC-HS method performed the best in
all cases, and the frequentist ADMM method performed the worst in terms of MSE
and MAD. For uncertainty quantification, it was shown that the MCMC methods
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have reasonable coverage probabilities for center quantiles such as 0.25, 0.5, and 0.75

except for the case of beta distributed noise, while the MCMC methods for extremal
quantiles such as 0.05 and 0.95 appear to be far away from the nominal coverage
rate 0.95. The MCIW of the VB-HS and VB-Lap methods tended to be shorter
than that of the MCMC therefore, the corresponding coverage probabilities were
extremely underestimated. However, the CVB-HS and CVB-Lap methods could
quantify the uncertainty in almost all cases including extremal quantiles. We also
show one-shot simulation results under the Gaussian noise in Figure 3.1. As shown
in the figure, the credible intervals of CVB-HS are similar to those of MCMC-HS
for 0.25, 0.50, and 0.75 quantiles. Furthermore, the calibrated credible intervals by
CVB-HS are wider than those of the MCMC for extremal quantiles.

Table 3.1: Average values of MSE and MAD based on 100 replications for piecewise
constant with k = 0. The minimum values and second smallest values of MSE and
MAD are represented in bold and italics respectively.

MSE MAD
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.046 0.013 0.009 0.013 0.046 0.168 0.083 0.069 0.083 0.168
VB-HS 0.094 0.033 0.026 0.034 0.053 0.198 0.133 0.112 0.132 0.182

MCMC-Lap 0.105 0.050 0.040 0.050 0.106 0.263 0.173 0.154 0.172 0.266
VB-Lap 0.091 0.042 0.033 0.038 0.059 0.213 0.155 0.139 0.149 0.191
ADMM 0.384 0.040 0.045 0.102 0.304 0.357 0.147 0.168 0.190 0.343

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.004 0.003 0.004 0.007 0.020 0.026 0.027 0.040 0.056 0.109

VB-HS 0.001 0.006 0.009 0.014 0.020 0.014 0.039 0.058 0.082 0.112
MCMC-Lap 0.013 0.015 0.015 0.019 0.038 0.078 0.081 0.086 0.102 0.156

VB-Lap 0.059 0.009 0.011 0.014 0.019 0.083 0.060 0.072 0.086 0.106
ADMM 0.793 0.003 0.011 0.101 0.442 0.437 0.041 0.085 0.164 0.411

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.089 0.036 0.029 0.039 0.102 0.235 0.136 0.123 0.141 0.250

VB-HS 0.247 0.080 0.067 0.085 0.125 0.316 0.209 0.190 0.216 0.275
MCMC-Lap 0.191 0.094 0.078 0.095 0.204 0.365 0.240 0.217 0.242 0.379

VB-Lap 0.137 0.079 0.069 0.079 0.126 0.282 0.213 0.201 0.215 0.273
ADMM 0.315 0.183 0.123 0.170 0.236 0.386 0.271 0.266 0.284 0.351

Varying smoothness. The results for the (VS) scenario are reported in Tables 3.3
and 3.4. From Table 3.3, the MCMC-HS method also performed well relative to the
other methods in terms of point estimation, while the variational Bayes methods
under horseshoe prior also provided comparable point estimates. Different from the
(PC) scenario, the MCMC methods had slightly worse coverage probabilities. In
particular, the MCMC-HS and MCMC-Lap under the mixed normal noise, which
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Table 3.2: Average values of MCIW and CP based on 100 replications for piecewise
constant with k = 0. The CP values above 90% are represented in bold.

MCIW CP
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.549 0.447 0.412 0.437 0.543 0.757 0.950 0.970 0.943 0.761
CVB-HS 1.034 0.620 0.471 0.596 1.015 0.929 0.924 0.904 0.920 0.922
VB-HS 0.117 0.205 0.221 0.205 0.117 0.189 0.477 0.611 0.462 0.187

MCMC-Lap 0.775 0.764 0.785 0.759 0.762 0.806 0.923 0.960 0.926 0.800
CVB-Lap 1.039 0.822 0.606 0.792 0.990 0.926 0.952 0.910 0.953 0.941
VB-Lap 0.404 0.562 0.596 0.556 0.408 0.568 0.852 0.907 0.871 0.607

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.113 0.137 0.186 0.245 0.295 0.975 0.959 0.940 0.916 0.676
CVB-HS 0.282 0.202 0.207 0.360 0.640 0.992 0.938 0.864 0.894 0.926
VB-HS 0.034 0.069 0.094 0.099 0.063 0.805 0.682 0.573 0.405 0.167

MCMC-Lap 0.377 0.326 0.326 0.309 0.390 0.952 0.927 0.902 0.807 0.756
CVB-Lap 0.281 0.305 0.307 0.385 0.407 0.908 0.929 0.899 0.889 0.835
VB-Lap 0.214 0.274 0.307 0.296 0.264 0.855 0.916 0.899 0.827 0.676

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.871 0.730 0.696 0.730 0.863 0.797 0.943 0.972 0.947 0.784
CVB-HS 1.536 0.926 0.780 0.942 1.577 0.929 0.931 0.919 0.928 0.955
VB-HS 0.177 0.318 0.342 0.316 0.177 0.212 0.453 0.518 0.434 0.206

MCMC-Lap 1.129 1.135 1.135 1.125 1.097 0.830 0.940 0.963 0.942 0.795
CVB-Lap 1.573 1.155 0.891 1.159 1.572 0.947 0.960 0.920 0.962 0.954
VB-Lap 0.548 0.778 0.818 0.770 0.556 0.575 0.852 0.897 0.851 0.595
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Figure 3.1: One-shot simulation results under piecewise constant and Gauss noise.
The order of trend filtering is k = 0 for all methods.
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is a relatively high degree of misspecification, appeared to be far from the nominal
coverage rate of 0.95. Although the MCIW of the variational Bayes methods without
calibration also tended to be shorter than that of MCMC, the calibrated variational
Bayes dramatically improved the coverage even under the mixed normal case. We
also show one-shot simulation results under the Gaussian noise in Figure 3.2.

Finally, we assessed the efficiency of posterior computation. To this end, we
calculated the raw computing time and effective sample size per unit time. The
latter is defined as the effective sample size divided by the computation time in
seconds. Note that the effective sample size for the variational Bayes methods
(VB and CVB) was 7,500 since i.i.d. samples could be drawn from variational
posterior distributions. The values averaged over 100 replications of simulating
datasets are presented in Table 3.5. The results show that the proposed algorithm
provides posterior samples much more efficiently than the MCMC algorithm. Such
computationally efficient property of the proposed method is a benefit of a novel
combination of variational approximation and posterior calibration.

Table 3.3: Average values of MSE and MAD based on 100 replications for varying
smoothness with k = 1. The minimum values and second smallest values of MSE
and MAD are represented in bold and italics respectively.

MSE MAD
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.068 0.034 0.017 0.019 0.041 0.179 0.119 0.097 0.104 0.156
VB-HS 0.133 0.026 0.020 0.025 0.056 0.229 0.119 0.105 0.117 0.180

MCMC-Lap 0.064 0.039 0.026 0.028 0.057 0.194 0.138 0.122 0.128 0.188
VB-Lap 0.097 0.052 0.027 0.028 0.058 0.209 0.143 0.121 0.128 0.190
ADMM 0.177 0.075 0.031 0.035 0.097 0.237 0.163 0.123 0.137 0.230

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.004 0.004 0.004 0.007 0.014 0.042 0.037 0.046 0.058 0.092

VB-HS 0.101 0.005 0.006 0.009 0.020 0.107 0.044 0.053 0.069 0.106
MCMC-Lap 0.006 0.005 0.006 0.009 0.022 0.054 0.046 0.057 0.072 0.115

VB-Lap 0.022 0.005 0.006 0.010 0.021 0.067 0.043 0.056 0.072 0.113
ADMM 0.204 0.057 0.011 0.018 0.094 0.171 0.100 0.068 0.088 0.199

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.147 0.130 0.077 0.055 0.090 0.253 0.214 0.181 0.172 0.230

VB-HS 0.167 0.062 0.047 0.056 0.114 0.279 0.181 0.162 0.178 0.258
MCMC-Lap 0.108 0.085 0.061 0.060 0.112 0.255 0.198 0.180 0.188 0.265

VB-Lap 0.147 0.106 0.072 0.066 0.114 0.274 0.206 0.186 0.194 0.263
ADMM 0.195 0.088 0.057 0.066 0.138 0.284 0.202 0.174 0.192 0.287
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Table 3.4: Average values of MCIW and CP based on 100 replications for varying
smoothness with k = 1. The CP values above 90% are represented in bold.

MCIW CP
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.498 0.476 0.447 0.444 0.446 0.730 0.890 0.930 0.903 0.728
CVB-HS 1.010 0.592 0.496 0.572 1.097 0.911 0.935 0.936 0.937 0.956
VB-HS 0.124 0.196 0.209 0.195 0.118 0.206 0.505 0.584 0.518 0.215

MCMC-Lap 0.545 0.571 0.562 0.553 0.524 0.760 0.897 0.929 0.914 0.756
CVB-Lap 1.335 0.890 0.602 0.821 1.240 0.961 0.960 0.937 0.977 0.968
VB-Lap 0.207 0.326 0.369 0.348 0.227 0.346 0.705 0.788 0.726 0.364

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.162 0.178 0.213 0.241 0.260 0.931 0.941 0.925 0.898 0.713
CVB-HS 0.445 0.259 0.209 0.347 0.724 0.927 0.950 0.884 0.935 0.969
VB-HS 0.051 0.085 0.103 0.104 0.065 0.502 0.656 0.606 0.487 0.219

MCMC-Lap 0.251 0.248 0.282 0.306 0.304 0.953 0.952 0.942 0.903 0.736
CVB-Lap 0.522 0.362 0.268 0.458 0.673 0.968 0.976 0.923 0.969 0.954
VB-Lap 0.108 0.164 0.199 0.201 0.136 0.723 0.874 0.854 0.756 0.368

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.600 0.636 0.654 0.655 0.666 0.692 0.838 0.874 0.876 0.743
CVB-HS 1.271 0.854 0.747 0.850 1.540 0.909 0.926 0.927 0.934 0.961
VB-HS 0.172 0.286 0.303 0.284 0.178 0.211 0.490 0.558 0.496 0.226

MCMC-Lap 0.727 0.755 0.765 0.768 0.755 0.753 0.885 0.907 0.891 0.749
CVB-Lap 1.780 1.214 0.891 1.249 1.972 0.963 0.942 0.924 0.969 0.979
VB-Lap 0.279 0.400 0.458 0.455 0.324 0.330 0.647 0.711 0.677 0.394
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Figure 3.2: One-shot simulation results under varying smoothness and Gauss noise.
The order of trend filtering is k = 1 for all methods.
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Table 3.5: Average values of raw computing time and effective sample size per unit
time based on 100 replications for all scenarios.

(PC) Piecewise constant
Computation time (second) ESS (per second)

(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 33 32 32 32 33 13 39 45 40 13
CVB-HS 13 9 11 9 12 603 869 699 867 613

MCMC-Lap 37 36 36 36 37 12 81 109 82 13
CVB-Lap 12 9 9 7 11 662 848 862 1120 687
(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 32 32 32 32 33 13 61 59 41 13
CVB-HS 8 7 9 8 10 1006 1089 874 991 792

MCMC-Lap 37 37 37 37 37 11 79 126 74 12
CVB-Lap 6 5 8 4 6 1306 1654 894 1791 1287

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 32 31 31 32 32 13 35 40 35 13
CVB-HS 16 11 12 10 15 493 724 606 731 497

MCMC-Lap 36 36 36 36 36 13 78 98 79 14
CVB-Lap 15 12 9 9 13 513 634 807 883 586

(VS) Varying smoothness
Computation time (second) ESS (per second)

(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 32 32 32 32 32 13 31 37 35 14
CVB-HS 12 8 11 8 13 620 897 679 923 575

MCMC-Lap 36 35 35 35 36 13 53 72 65 13
CVB-Lap 16 13 11 11 15 471 588 684 713 519
(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 33 33 33 33 33 12 48 45 38 14
CVB-HS 9 7 10 7 11 861 1118 780 1075 699

MCMC-Lap 36 36 36 36 36 11 78 105 69 12
CVB-Lap 11 6 9 6 9 740 1202 813 1181 879

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 32 32 32 32 32 14 25 30 30 15
CVB-HS 14 10 13 10 16 555 756 593 779 481

MCMC-Lap 36 36 36 36 36 14 36 49 51 14
CVB-Lap 22 20 17 19 23 359 392 463 412 335
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3.5 Real data analysis
We apply the proposed method to two real data examples.

3.5.1 Nile data

We first applied the proposed methods to the famous Nile river data (Cobb, 1978;
Balke, 1993). The data contains measurements of the annual flow of the river Nile
from 1871 to 1970, and we found an apparent change point near 1898. We con-
sidered k = 0 and compared the three methods, that is MCMC-HS, CVB-HS, and
ADMM. We generated 60,000 posterior samples after discarding the first 10,000
posterior samples as burn-in, and then only every 10th scan was saved. For the
Bayesian methods, we adopted (a, b) = (1, 3) as hyperparameters in the inverse
gamma prior to σ2. The resulting estimates of quantiles and the corresponding 95%
credible intervals are shown in Figure 3.3. In terms of point estimation, the horse-
shoe prior appears to capture the piecewise constant structures well, and the point
estimates of CVB-HS and ADMM are comparable for all quantiles. For uncertainty
quantification, the lengths of credible intervals of the MCMC-HS and CVB-HS are
comparable for 25%, 50%, and 75% quantiles, while the CVB-HS method has wider
credible intervals than those of the MCMC method, especially for extremal quan-
tiles such as 5% and 95% (see also Table 3.6). This is consistent with the simulation
results in Section 3.4.2. In Table 3.7, we provided the effective sample size per unit
time of the proposed algorithm and MCMC, which showed significant improvement
of computational efficiency by the proposed method. Hence, we could conclude that
the proposed algorithm performs better than the MCMC for this application, in
terms of both qualities of inference and computational efficiency.

Table 3.6: Average lengths of credible intervals for real data examples.

Nile data (Section 3.5.1) Munich rent data (Section 3.5.2)
0.05 0.25 0.5 0.75 0.95 0.1 0.3 0.5 0.7 0.9

MCMC-HS 0.10 0.10 0.10 0.11 0.14 0.98 0.88 0.93 0.90 0.95
CVB-HS 0.23 0.12 0.10 0.10 0.21 2.33 1.37 1.15 1.30 1.88
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Figure 3.3: Point estimates and 95% credible intervals for Nile data.

Table 3.7: Effective sample size per unit time for real data examples.

Nile data (Section 3.5.1) Munich rent data (Section 3.5.2)
0.05 0.25 0.5 0.75 0.95 0.1 0.3 0.5 0.7 0.9

MCMC-HS 4 7 7 6 5 4 7 7 6 5
CVB-HS 47619 52632 47619 55556 48780 4029 6233 1943 6124 2949
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3.5.2 Munich rent data

The proposed methods can also be applied to multiple observations with an irregular
grid. We used Munich rent data (https://github.com/jrfaulkner/spmrf) which
includes the value of rent per square meter and floor space in Munich, Germany
(see also Rue and Held, 2005; Faulkner and Minin, 2018; Heng et al., 2023). The
data has multiple observations per location and an irregular grid. Let the response
y = (y1, . . . , yn) be the rent and the location x = (x1, . . . , xn) be the floor size.
At the location xi, the response yi has multiple observations per location, that is,
yi = (yi1, . . . , yiNi)

⊤ ∈ RNi . Furthermore, the difference xj+1 − xj is not always
constant, therefore the floor spaces are unequally spaced. This is a different situa-
tion from the example in Section 3.5.1. The data contains N =

∑n
i=1 Ni = 2, 035

observations and the floor space (or location) has 134 distinct values. We applied
the third-order adjusted difference operator defined in Remark 3.2.1 to the proposed
Bayesian quantile trend filtering methods (i.e. MCMC-HS and CVB-HS with k = 2).
Since Brantley’s quantile trend filtering method (Brantley et al., 2020) cannot be
applied to the data with multiple observations per location, we applied the quantile
smoothing spline method by Nychka et al. (2017) as a frequentist competitor. The
method could be implemented by using qsreg function in R package fields. The
details of the method are provided in Nychka et al. (1995) and Oh et al. (2004), and
the smoothing parameter was chosen by using cross-validation. For these methods,
we analyzed the five quantile levels such as 10%, 30%, 50%, 70% and 90%. For the
Bayesian methods, we generated 60,000 posterior samples after discarding the first
10,000 posterior samples as burn-in, and then only every 10th scan was saved.

The results of the point estimate and credible interval are shown in Figure 3.4.
The frequentist smoothing spline method is denoted by “Spline” in Figure 3.4. The
CVB-HS and Spline methods gave comparable baseline estimates, while the MCMC-
HS method provided slightly smoother point estimates than the other two methods,
especially for the large floor size. These decreasing trends mean that the houses with
small floor sizes have a greater effect on their rent. Such a trend was also observed
in the Bayesian mean trend filtering by Faulkner and Minin (2018). Compared with
the MCMC-HS, the CVB-HS method has a wider length of 95% credible intervals
for large values of floor size. The phenomenon appears to be reasonable because the
data are less in such regions. Additionally, two Bayesian methods provided almost
the same results for the center quantile levels such as 30%, 50%, and 70%, while the
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credible intervals of CVB-HS were wider than those of the MCMC-HS, especially for
extremal quantile levels such as 90% and 10% (see also Table 3.6). This indicates
that the MCMC-HS method possibly underestimated extremal quantile regions. We
again computed the effective sample size per unit time of the proposed algorithm and
the MCMC, and the results are given in Table 3.7. From the results, we concluded
that the proposed algorithm performs better than the MCMC for this application,
in terms, not only of the quality of inference but also of computational efficiency.
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Figure 3.4: Point estimates and 95% credible intervals for Munich rent data.

3.6 Concluding remarks
This study proposed a quick and accurate calibration algorithm for credible inter-
vals using a mean-field variational Bayes method. The proposed CVB method can
reasonably calibrate credible intervals with possible model misspecifications. In nu-
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merical experiments, it was shown that the proposed method worked especially well
in the inference for high/low quantile levels. We also showed that the computa-
tional efficiency of the proposed CVB methods is higher than the MCMC versions
in terms of the efficient sample size and computation time. If computation time is
not a concern, then MCMC-based methods may be capable of providing accurate
point and interval estimates. However, the estimation of low/high quantiles tends
to be unstable, and if the model is misspecified, the estimation of other quantile
points will also be unstable. The method of Syring and Martin (2019) could also
be used in such cases, but the proposed CVB method is capable of parallel compu-
tation and is thus much more computationally efficient. Finally, as the drawback
of the variational posterior approximations, the proposed CVB method may not
accurately reflect prior beliefs about parameters. It was observed that the CVB-HS
and Spline had remarkably similar results in terms of the trajectories of the trends
in the Munich rent example. We believe this is due to the variational approximation
of the posterior distribution. However, the proposed method still has the advan-
tage of providing point estimation results comparable to those of the optimization
method and of allowing the quick and accurate evaluation of uncertainty under finite
samples.

Furthermore, it may be more suitable to use a skewed distribution as a variational
distribution of the quantile trends which can provide asymmetric credible intervals.
However, when a different variational distribution was adopted, the mean-filed ap-
proximation algorithm used in this chapter was no longer applicable, therefore a
detailed investigation extends the scope of this study.

3.7 Appendix
This section provides algorithm details and additional information on simulation
study and real data examples.

3.7.1 Full conditional distributions in Gibbs sampler

We provide the details of the full conditional distributions.

• The full conditional distribution of θ.

p(θ | τ 2, w, z, σ2, y) ∝
n∏

i=1

Ni∏

j=1

exp

(
−(yij − θi − ψzij)2

2t2σ2zij

)
exp

(
− 1

2σ2
θ⊤D⊤W−1Dθ

)
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∝ exp

{
− 1

2σ2
(θ − A−1B)⊤A(θ − A−1B)

}
,

which is Nn(A−1B, σ2A−1), where

ai =
Ni∑

j=1

1

zij
, bi =

Ni∑

j=1

(yij − ψzij)
zij

, c =

(
N1∑

j=1

y1j − ψz1j, . . . ,
Nn∑

j=1

ynj − ψznj

)⊤

A = D⊤W−1D +
1

t2
diag

(
N1∑

j=1

z−1
1j , . . . ,

Nn∑

j=1

z−1
nj

)
,

B =

(
1

t2

N1∑

j=1

(
y1j
z1j
− ψ

)
, . . . ,

1

t2

Nn∑

j=1

(
ynj
znj
− ψ

))⊤

.

• The full conditional distributions of zij for i = 1, . . . , n and j = 1, . . . , Ni.

p(zij | θi, y, σ2) ∝ (zij)
−1/2 exp

(
−(yij − θi − ψzij)2

2t2σ2zij

)
exp

(
−zij
σ2

)

∝ (zij)
−1+1/2 exp

{
−1

2

(
(yij − θi)2

t2σ2

1

zij
+

(
ψ2

t2
+ 2

)
1

σ2
zij

)}
,

which is GIG (1/2, (yij − θi)2/(t2σ2), (ψ2/t2 + 2) zij/σ2).

• The full conditional distribution of σ2.

p(σ2 | θ, τ 2, w, y, z)

∝
n∏

i=1

Ni∏

j=1

(σ2)−1/2 exp

(
−(yij − θi − ψzij)2

2t2σ2zij

)
× (σ2)−n/2 exp

(
− 1

2σ2
θ⊤D⊤W−1Dθ

)

×
n∏

i=1

Ni∏

j=1

(σ2)−1 exp
(
−zij
σ2

)
× (σ2)−1−aσ exp

(
− bσ
σ2

)

∝ (σ2)−1−(3N+n)/2+aσ

× exp

{
− 1

σ2

(
n∑

i=1

Ni∑

j=1

(yij − θi − ψzij)2

2t2zij
+

1

2
θ⊤D⊤W−1Dθ +

n∑

i=1

Ni∑

j=1

zij + bσ

)}
,

which is IG ((3N + n)/2 + aσ,ασ2), where

ασ2 =
n∑

i=1

Ni∑

j=1

(yij − θi − ψzij)2

2t2zij
+

1

2
θ⊤D⊤W−1Dθ +

n∑

i=1

Ni∑

j=1

zij + bσ.
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• The full conditional distribution of τ 2.

p(τ 2 | θ,σ2, w) ∝ |W |−1/2 exp

(
− 1

2σ2
θ⊤D⊤W−1Dθ

)
(τ 2)−1−1/2 exp

(
− 1

τ 2ξ

)

∝ (τ 2)−1−(n−k)/2 exp

{
− 1

τ 2

(
n∑

i=k+2

η2i
2σ2w2

i

+
1

ξ

)}
,

which is IG
(
(n− k)/2,

∑n
i=k+2 η

2
i /(2σ

2w2
i ) + 1/ξ

)
.

• The full conditional distribution of ξ.

p(ξ | τ 2) ∝ exp

(
− 1

τ 2ξ

)
ξ−1−1/2 exp

(
−1

ξ

)

∝ ξ−1−1/2 exp

{
−1

ξ

(
1

τ 2
+ 1

)}
,

which is IG (1/2, 1/τ 2 + 1).

• The full conditional distributions of w2
i for i = 1, . . . , k + 1.

p(w2
i | θi,σ2) ∝ (w2

i )
−1/2 exp

(
− η2i
2w2

i σ
2

)
(w2

i )
−1−awi exp

(
−bwi

w2
i

)

∝ (w2
i )

−1−(1/2+awi ) exp

(
−
(
η2i
2σ2

+ bwi

)
1

wi

)
,

which is IG (1/2 + awi , η
2
i /2σ

2 + bwi).

The full conditional distributions of wi for i = k+2, . . . , n and their argumenta-
tion parameters are derived separately for Laplace-type and horseshoe-type priors.

Laplace-type

For i = k + 2, . . . , n, we assume w2
i ∼ Exp(γ2/2).

• The full conditional distributions of wi for i = k + 2, . . . , n.

p(w2
i | θi, γ2) ∝ |W |−1/2 exp

(
−1

2

n∑

i=1

η2i
σ2w2

i

)
exp

(
−γ

2

2
w2

i

)

∝ (w2
i )

−1+1/2 exp

(
−1

2

(
η2i
σ2

1

wi
− γ2w2

i

))
,

which is GIG (1/2, η2i /σ
2, γ2).
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• The full conditional distribution of γ2

p(γ2 | w, ν2) ∝
n∏

i=k+2

(
γ2

2

)
exp

(
−γ

2

2
w2

i

)
(γ2)−1−1/2 exp

(
− 1

γ2ν

)

∝ (γ2)−1+(n−k−1−1/2) exp

(
−1

2

(
γ2

n∑

i=k+2

w2
i +

2

ν

1

γ2

))
,

which is GIG
(
n− k − 3/2, 2/ν,

∑n
i=k+2 w

2
i

)
.

• The full conditional distribution of ν.

p(ν | γ2) ∝ exp

(
− 1

γ2ν

)
ν−1−1/2 exp

(
−1

ν

)

∝ ν−1−1/2 exp

(
−
(

1

γ2
+ 1

)
1

ν

)
,

which is IG (1/2, 1/γ2 + 1).

Horseshoe-type

For i = k + 2, . . . , n, we assume wi ∼ C+(0, 1).

• The full conditional distributions of wi for i = k + 2, . . . , n.

p(w2
i | θi) ∝ (w2

i )
−1/2 exp

(
− 1

2σ2
θ⊤D⊤W−1Dθ

)
(w2

i )
−1−1/2 exp

(
− 1

w2
i νi

)

∝ (w2
i )

−1−1 exp

(
−
(

η2i
2τ 2σ2

+
1

νi

)
1

w2
i

)
,

which is IG (1, η2i /(2τ
2σ2) + 1/νi).

• The full conditional distributions of νi for i = k + 2, . . . , n.

p(νi | w2
i ) ∝ exp

(
− 1

w2
i νi

)
ν−1−1/2 exp

(
− 1

νi

)

∝ ν−1−1/2
i exp

(
−
(

1

w2
i

+ 1

)
1

νi

)
,

which is IG (1/2, 1/w2
i + 1).

3.7.2 Variational distributions

We summarize the derivations of variational distributions.
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• The variational distribution of θ.

q(θ) ∝ exp

(
Ez,τ2,w,σ2

[
− 1

2t2σ2

n∑

i=1

Ni∑

j=1

(
−(yij − θi − ψzij)2

2t2σ2zij

)
+

(
− 1

2σ2
θ⊤D⊤W−1Dθ

)])

∝ exp

(
−1

2
(θ − A−1B)⊤(E1/σ2A)(θ − A−1B)

)
,

which is Nn(A−1B, (E1/σ2A)−1), where

A = D⊤Ŵ−1D +
1

t2
diag

(
N1∑

j=1

E1/z1j , . . . ,
Nn∑

j=1

E1/znj

)
,

B =

(
1

t2

N1∑

j=1

(
y1jE1/z1j − ψ

)
, . . . ,

1

t2

Nn∑

j=1

(
ynjE1/znj − ψ

)
)⊤

Ŵ−1 = diag(E1/w2
1
, . . . , E1/w2

k+1
, E1/τ2E1/w2

k+2
, . . . , E1/τ2E1/w2

n
),

E1/w2
i
= Ew2

i
[1/w2

i ], E1/τ2 = Eτ2 [1/τ
2],

E1/σ2 = Eσ2 [1/σ2], E1/zij = Ezij [1/zij]

• The variational distributions of zij for i = 1, . . . , n and j = 1, . . . , Nj.

q(zij) ∝ exp

(
Eθ,τ2,w,σ2

[
log(zij)

−1/2 +

(
−(yij − θi − ψzij)2

2t2σ2zij

)
+
(
−zij
σ2

)])

∝ (zij)
−1/2 exp

(
−1

2

{
Eσ2

[
1

σ2

]
Eθ

[
(yij − θi)2

t2

]
1

zij
+

(
ψ2

t2
− 2

)
Eσ2

[
1

σ2

]
zij

})
,

which is GIG
(
1/2,αzij , βzij

)
, where

αzij =
1

t2
E1/σ2(y2ij − 2yijEθ + Eθ2), βzij =

(
ψ2

t2
− 2

)
E1/σ2 ,

Eθi = Eθi [θi] = (A−1B)i, Eθ2i
= Eθi [θ

2
i ] = e⊤i (E

−1
σ2 A

−1 + A−1BB⊤A−1)ei,

where ei is a unit vector that the ith component is 1.

• The variational distribution of σ.

q(σ2) ∝ exp

(
Eθ,τ2,w,z

[
log(σ2)−N/2 +

n∑

i=1

Ni∑

j=1

(
−(yij − θi − ψzij)2

2t2σ2zij

)

+ log(σ2)−n/2 −
(

1

2σ2
θ⊤D⊤W−1Dθ

)
+ log(σ2)−N

−
n∑

i=1

N∑

j=1

zij
σ2

+ log(σ2)−1−aσ − bσ
σ2

])
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∝ (σ2)−1−(n+3N)/2−aσ exp
(
−ασ2

σ2

)
,

which is IG ((n+ 3N)/2 + aσ,ασ2), where

ασ2 =
n∑

i=1

Ni∑

j=1

1

2t2

{(
y2ij − 2yijEθi + Eθ2i

)
E1/zij − 2ψ (yij − Eθi) + ψ2Ezij

}

+
1

2

(
k+1∑

i=1

Eη2i
Ewi +

n∑

i=k+2

Eη2i
E1/τ2E1/w2

i

)
+

n∑

i=1

N∑

j=1

Ezij + bσ,

Eη2i
= d⊤i (E

−1
σ2 A

−1 + A−1BB⊤A−1)di.

• The variational distribution of τ 2.

q(τ 2) ∝ exp

(
Eθ,σ2,w,ξ

[
log |W |1/2 − 1

2σ2
θ⊤D⊤W−1Dθ + log(τ 2)−1−1/2 − 1

τ 2ξ

])

∝ (τ 2)−1−(n−k)/2 exp

{
−
(
1

2
E1/σ2

n∑

i=k+2

Eη2i
E1/w2

i
+ E1/ξ

)
1

τ 2

}
,

which is IG
(
(n− k)/2, E1/σ2/2

∑n
i=k+2 Eη2i

E1/w2
i
+ E1/ξ

)
, where E1/ξ = Eξ[1/ξ]

• The variational distribution of ξ.

q(ξ) ∝ ξ−1−1/2 exp

(
−Eτ2

[
1

τ 2

]
1

ξ
− 1

ξ

)

∝ ξ−1−1/2 exp

{
−
(
E1/τ2 + 1

) 1
ξ

}
,

which is IG
(
1/2, E1/τ2 + 1

)
.

• The variational distributions of w2
i for i = 1, . . . , k + 1.

q(w2
i ) ∝ exp

(
log(w2

i )
−1/2 − Eθ,σ2

[
η2i

2w2
i σ

2

])
(w2

i )
−1−awi exp

(
−bwi

w2
i

)

∝ (w2
i )

−1−(1/2+awi ) exp

(
−
(
1

2
Eη2i

E1/σ2 + bwi

)
1

wi

)
,

which is IG
(
1/2 + awi , Eη2i

E1/σ2/2 + bwi

)
.

The variational distributions of wi for i = k + 2, . . . , n and their argumentation
parameters are derived separately for Laplace-type and horseshoe-type priors.

40



Laplace-type

In Laplace-type prior, we set τ 2 = 1. For i = k + 2, . . . , n, we assume w2
i ∼

Exp(γ2/2).

• The variational distributions of wi for i = k + 2, . . . , n.

q(w2
i ) ∝ exp

(
log(w2

i )
−1/2 − Eθ,σ2

[
η2i

2w2
i σ

2

]
− Eγ2

[
γ2

2
w2

i

])

∝ (w2
i )

−1+1/2 exp

(
−1

2

(
Eη2i

E1/σ2
1

wi
+ Eγ2w2

i

))
,

which is GIG
(
1/2, Eη2i

E1/σ2 , Eγ2

)
.

• The variational distributions of γ2.

q(γ2) ∝ exp

(
log(γ2)n−k−1 − γ2

2

n∑

i=k+2

Ew[w
2
i ] + log(γ2)−1−1/2 − 1

γ2
Eν

[
1

ν

])

∝ (γ2)−1+(n−k−1−1/2) exp

(
−1

2

(
γ2

n∑

i=k+2

Ew2
i
+ 2E1/ν

1

γ2

))
,

which is GIG
(
n− k − 3/2, 2E1/ν ,

∑n
i=k+2 Ew2

i

)
, where E1/ν = Eν [1/ν].

• The variational distributions of ν.

q(ν) ∝ exp

(
−Eγ2

[
1

γ2

]
1

ν

)
ν−1−1/2 exp

(
−1

ν

)

∝ ν−1−1/2 exp

(
−
(
E1/γ2 + 1

) 1
ν

)
,

which is IG
(
1/2, E1/γ2 + 1

)
, where E1/γ2 = Eγ2 [1/γ2].

Horseshoe-type

For i = k + 2, . . . , n, we assume wi ∼ C+(0, 1).

• The variational distributions of wi (i = k + 2, . . . , n).

q(w2
i ) ∝ exp

(
log(w2

i )
−1/2 − 1

2
Eθ,τ2,σ2

[
1

σ2
θ⊤D⊤W−1Dθ

]
+ log(w2

i )
−1−1/2 − Eνi

[
1

νi

]
1

w2
i

)

∝ (w2
i )

−1−1 exp

(
−
(
1

2
Eη2i

E1/τ2E1/σ2 + E1/νi

)
1

w2
i

)
,

which is IG
(
1, Eη2i

E1/τ2E1/σ2/2 + E1/νi

)
, where E1/νi = Eνi [1/νi].
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• The variational distributions of νi (i = k + 2, . . . , n).

q(νi) ∝ exp

(
−Ew2

i

[
1

w2
i

]
1

νi

)
ν−1−1/2
i exp

(
− 1

νi

)

∝ ν−1−1/2
i exp

(
−
(
E1/w2

i
+ 1
) 1

νi

)
,

which is IG
(
1/2, E1/w2

i
+ 1
)

.

3.7.3 Additional information on simulation studies
Smooth Gaussian process

In Section 4 of the main manuscript, we provided simulation results under (PC)
piecewise constant and (VS) varying smoothness. In this subsection, we provide
simulation results under the smooth Gaussian process (denoted by (GP)) as a true
data-generating scenario. The plots of simulated true quantiles are shown in Figure
3.5. The additional description and results under (GP) are as follows.

(GP) Smooth Gaussian process

f ∼ GP(µ,Σ), Σi,j = σ2
f exp{−(tj − ti)

2/(2ρ2)}.

The scenario (GP) generates observations from the Gaussian process with squared
exponential covariance function (see also Faulkner and Minin, 2018). We set µ = 2,
σ2
f = 1 and ρ = 10. The function f was generated with the same random number

seed for all scenarios (Gaussian, Beta, and Mixed normal noise functions). The
aim of the scenario (GP) is to test the ability of the proposed methods to handle a
smoothly varying function with no local change. To this end, we consider k = 2 in
this scenario.

The results are represented in Table 3.8. The raw computing time and effective
sample size per unit time are also reported in Table 3.9. Note that the simulation
is conducted without parallel computation as well as those of Section 4 in the main
text.

Multiple observations

We provide simulation results under multiple observations per location. The set-
ting of simulation is as follows. Data was simulated by the equation (5) in the
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Table 3.8: Average values of MSE, MAD, MCIW and CP based on 100 replications
for Gaussian process with k = 2. The minimum values and second smallest values
of MSE and MAD are represented in bold and italics respectively. The CP values
above 90% are represented in bold.

MSE MAD
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.084 0.020 0.016 0.019 0.040 0.187 0.109 0.099 0.107 0.153
VB-HS 0.174 0.024 0.019 0.023 0.048 0.243 0.118 0.107 0.117 0.168

MCMC-Lap 0.093 0.021 0.017 0.020 0.043 0.195 0.110 0.100 0.108 0.159
VB-Lap 0.048 0.019 0.017 0.020 0.048 0.170 0.107 0.100 0.110 0.171
ADMM 0.050 0.024 0.023 0.026 0.049 0.174 0.120 0.115 0.123 0.172

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.004 0.003 0.005 0.007 0.014 0.041 0.037 0.048 0.062 0.092

VB-HS 0.009 0.004 0.006 0.008 0.017 0.037 0.041 0.054 0.067 0.101
MCMC-Lap 0.003 0.003 0.005 0.007 0.015 0.039 0.036 0.048 0.061 0.096

VB-Lap 0.003 0.003 0.005 0.007 0.018 0.030 0.036 0.049 0.063 0.104
ADMM 0.004 0.004 0.006 0.009 0.017 0.040 0.039 0.055 0.069 0.103

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.169 0.064 0.037 0.041 0.089 0.278 0.177 0.150 0.158 0.234

VB-HS 0.205 0.087 0.043 0.047 0.106 0.309 0.196 0.159 0.169 0.254
MCMC-Lap 0.171 0.067 0.037 0.040 0.094 0.282 0.178 0.149 0.158 0.242

VB-Lap 0.100 0.043 0.035 0.041 0.103 0.250 0.164 0.149 0.160 0.252
ADMM 0.106 0.056 0.046 0.053 0.111 0.259 0.187 0.170 0.183 0.261

MCIW CP
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.510 0.478 0.462 0.458 0.414 0.738 0.906 0.935 0.908 0.723
CVB-HS 1.267 0.616 0.486 0.599 1.161 0.950 0.943 0.921 0.941 0.980
VB-HS 0.145 0.217 0.232 0.216 0.124 0.221 0.546 0.610 0.538 0.235

MCMC-Lap 0.520 0.494 0.478 0.470 0.422 0.748 0.913 0.944 0.916 0.720
CVB-Lap 1.534 0.864 0.589 0.792 1.226 0.994 0.996 0.972 0.991 0.982
VB-Lap 0.185 0.291 0.309 0.289 0.182 0.333 0.721 0.777 0.713 0.330

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.161 0.179 0.214 0.244 0.233 0.948 0.946 0.923 0.891 0.693
CVB-HS 0.490 0.272 0.214 0.350 0.725 0.991 0.962 0.885 0.933 0.972
VB-HS 0.045 0.087 0.109 0.111 0.066 0.474 0.674 0.621 0.507 0.215

MCMC-Lap 0.161 0.182 0.221 0.252 0.239 0.956 0.950 0.936 0.902 0.692
CVB-Lap 0.608 0.377 0.271 0.459 0.737 0.993 0.990 0.951 0.981 0.977
VB-Lap 0.069 0.119 0.149 0.154 0.102 0.770 0.855 0.808 0.697 0.307

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.674 0.740 0.706 0.680 0.628 0.693 0.905 0.937 0.901 0.728
CVB-HS 1.652 0.921 0.746 0.847 1.650 0.966 0.939 0.929 0.934 0.976
VB-HS 0.203 0.329 0.348 0.317 0.193 0.218 0.515 0.609 0.559 0.236

MCMC-Lap 0.693 0.758 0.725 0.702 0.646 0.710 0.913 0.946 0.916 0.724
CVB-Lap 1.909 1.145 0.878 1.134 1.783 0.993 0.995 0.981 0.993 0.985
VB-Lap 0.274 0.425 0.452 0.421 0.275 0.324 0.693 0.769 0.697 0.333
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Figure 3.5: Simulated true quantile trends.

44



Table 3.9: Average values of raw computing time and effective sample size per unit
time based on 100 replications for GP scenarios.

Computation time (second) ESS (per second)
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 32 32 32 32 32 14 38 44 41 15
CVB-HS 13 8 11 8 13 575 943 692 980 576

MCMC-Lap 35 35 35 35 35 13 56 69 59 14
CVB-Lap 20 17 17 12 16 378 442 431 627 475

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 32 32 32 32 32 13 48 45 42 14
CVB-HS 9 7 8 7 11 859 1144 907 1113 714

MCMC-Lap 35 35 35 35 35 11 73 88 59 13
CVB-Lap 30 8 12 8 10 257 915 639 997 728

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 32 32 32 32 32 15 36 42 39 15
CVB-HS 15 10 14 9 16 503 732 526 849 487

MCMC-Lap 35 35 35 35 35 14 51 59 53 14
CVB-Lap 29 32 25 20 24 259 241 304 375 320

main manuscript, where the number of data at each location Ni (i = 1, . . . , n) was
simulated from a multinomial distribution with outcomes 2, 3, and 4 with proba-
bilities 1/3. We used the same noise distributions as those of Section 4 in the main
manuscript (Gauss, Beta, and Mixed normal). The number of locations was set as
n = 100, while the total sample size N was 200 to 400 because of the randomness
of Ni. As true data-generating functions, (PC), (VS) and (GP) were adopted. The
convergence criterion of variational Bayes methods was set as 10−3, which is slightly
different from that of the main simulation. We compared the proposed methods
with the quantile smoothing spline method (denoted by Spline for short) by Nychka
et al. (2017) as a frequentist method, which was also applied to Munich rent data
in Section 5.2 of the main manuscript. The reason is that Brantley’s quantile trend
filtering cannnot apply to multiple observations per location.

The results of the simulations are summarized in Tables 3.10, 3.11 and 3.12.
From these results, the MCMC-HS method was the best and the VB-HS method
was at least better than the Spline method for almost all scenarios in terms of
point estimation. Compared with the results of a single observation in the main
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manuscript, the MSE and MAD were smaller for each method, and it seems that
a larger sample size induces more accurate point estimation. Although the CVB
method tended to be over-coverage, it gave wider credible intervals than those of
the MCMC method as seen in the MCIW, and conservatively improved coverage
probability as well as single observation.

More locations

In Section 4 of the main manuscript, we set the number of locations to n = 100. We
considered the same simulation scenarios as those of Section 4, but we set n = 200

instead of n = 100. We note that if we change the number of locations, the (GP)
function presented in Subsection 3.7.3 changes due to random sampling. To avoid
the problem, we considered a linear completion between the original data points.
Furthermore, we only compared the following four methods: MCMC-HS, CVB-HS,
VB-HS, and ADMM.

The results are shown in Table 3.13, 3.14 and 3.15. The MSE and MAD for
all methods were improved over the results of a smaller sample size in most cases.
The point estimation of the MCMC-HS method performed well in many cases as
well as the results of n = 100 observations in terms of point estimation. The
coverage probabilities of the MCMC-HS method were also similar to those of n = 100

observations, which were under 0.90 for extreme quantiles such as 0.05 and 0.95.
However, the CVB-HS method provided values over 0.90 except for 0.5 quantile
level under (PC) and Beta.

3.7.4 Additional information on real data example

We confirm that the proposed algorithm works well by making a simple diagnosis
of sampling efficiency. Here, we especially consider the sampling efficiency in the
two real data analyses. We generated 60,000 posterior samples under MCMC in
section 2.3 after discarding the first 10,000 posterior samples as burn-in, and then
only every 10th scan was saved. For Nile data in Section 5.1 and Munich rent data
in Section 5.2, sample paths and autocorrelations of the posterior samples in three
selected points are provided in Figures 3.6 and 3.7, respectively. The mixing and
autocorrelation of the MCMC algorithm seem satisfactory.
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Table 3.10: Average values of MSE, MAD, MCIW and CP based on 100 replications
for multiple observations (PC) with k = 0. The minimum values and second smallest
values of MSE and MAD are represented in bold and italics respectively. The CP
values above 90% are represented in bold.

MSE MAD
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.0322 0.0052 0.0033 0.0049 0.0332 0.1350 0.0535 0.0436 0.0518 0.1387
VB-HS 0.0387 0.0182 0.0132 0.0180 0.0400 0.1516 0.0971 0.0812 0.0946 0.1564

MCMC-Lap 0.0582 0.0205 0.0167 0.0208 0.0576 0.1917 0.1110 0.0996 0.1111 0.1921
VB-Lap 0.0589 0.0190 0.0154 0.0190 0.0587 0.1950 0.1060 0.0950 0.1053 0.1974
Spline 0.1154 0.0671 0.0548 0.0672 0.1141 0.2214 0.1586 0.1473 0.1582 0.2247

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.0011 0.0013 0.0022 0.0037 0.0155 0.0180 0.0177 0.0276 0.0412 0.0948

VB-HS 0.0008 0.0029 0.0048 0.0079 0.0162 0.0109 0.0270 0.0416 0.0606 0.0991
MCMC-Lap 0.0046 0.0040 0.0056 0.0092 0.0247 0.0433 0.0398 0.0514 0.0702 0.1236

VB-Lap 0.0042 0.0040 0.0056 0.0093 0.0308 0.0351 0.0386 0.0511 0.0709 0.1420
Spline 0.1120 0.0580 0.0424 0.0659 0.1042 0.1240 0.0992 0.1021 0.1257 0.1736

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.0656 0.0136 0.0094 0.0143 0.0669 0.2004 0.0889 0.0728 0.0885 0.2016

VB-HS 0.0822 0.0397 0.0281 0.0406 0.0827 0.2277 0.1507 0.1239 0.1519 0.2286
MCMC-Lap 0.1124 0.0433 0.0355 0.0443 0.1129 0.2754 0.1642 0.1473 0.1650 0.2745

VB-Lap 0.1043 0.0381 0.0313 0.0397 0.1061 0.2649 0.1526 0.1372 0.1545 0.2658
Spline 0.1559 0.0866 0.0763 0.0871 0.1595 0.2915 0.2053 0.1919 0.2067 0.2958

MCIW CP
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.391 0.271 0.246 0.272 0.394 0.723 0.938 0.960 0.947 0.720
CVB-HS 1.097 0.664 0.429 0.675 1.125 0.983 0.991 0.967 0.994 0.985
VB-HS 0.108 0.181 0.187 0.184 0.110 0.228 0.568 0.675 0.602 0.219

MCMC-Lap 0.476 0.533 0.532 0.537 0.476 0.734 0.941 0.964 0.943 0.732
CVB-Lap 1.296 0.678 0.497 0.690 1.323 0.981 0.979 0.953 0.982 0.985
VB-Lap 0.203 0.342 0.362 0.344 0.204 0.288 0.804 0.871 0.809 0.275

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.054 0.084 0.124 0.171 0.216 0.972 0.951 0.932 0.902 0.606
CVB-HS 0.454 0.266 0.194 0.425 0.748 1.000 0.987 0.934 0.985 0.983
VB-HS 0.026 0.065 0.086 0.097 0.056 0.845 0.795 0.702 0.543 0.184

MCMC-Lap 0.171 0.205 0.247 0.276 0.238 0.942 0.950 0.939 0.889 0.619
CVB-Lap 0.496 0.311 0.231 0.451 0.797 0.992 0.976 0.912 0.970 0.964
VB-Lap 0.070 0.136 0.172 0.177 0.090 0.737 0.863 0.836 0.710 0.161

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.628 0.439 0.404 0.439 0.615 0.750 0.935 0.957 0.927 0.742
CVB-HS 1.520 1.007 0.677 1.009 1.551 0.985 0.996 0.978 0.993 0.985
VB-HS 0.169 0.272 0.276 0.273 0.169 0.229 0.524 0.632 0.527 0.217

MCMC-Lap 0.734 0.792 0.778 0.790 0.727 0.746 0.944 0.962 0.941 0.741
CVB-Lap 1.789 0.950 0.702 0.958 1.809 0.987 0.982 0.953 0.979 0.987
VB-Lap 0.319 0.497 0.517 0.496 0.318 0.336 0.806 0.867 0.805 0.339
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Table 3.11: Average values of MSE, MAD, MCIW and CP based on 100 replications
for multiple observations (VS) with k = 1. The minimum values and second smallest
values of MSE and MAD are represented in bold and italics respectively. The CP
values above 90% are represented in bold.

MSE MAD
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.0246 0.0079 0.0063 0.0073 0.0255 0.1168 0.0667 0.0597 0.0638 0.1192
VB-HS 0.0313 0.0135 0.0104 0.0138 0.0331 0.1325 0.0846 0.0749 0.0846 0.1370

MCMC-Lap 0.0346 0.0117 0.0099 0.0113 0.0351 0.1438 0.0838 0.0777 0.0828 0.1458
VB-Lap 0.0320 0.0115 0.0098 0.0112 0.0334 0.1373 0.0831 0.0773 0.0821 0.1415
Spline 0.0400 0.0151 0.0126 0.0149 0.0423 0.1558 0.0955 0.0878 0.0949 0.1615

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.0016 0.0017 0.0024 0.0036 0.0118 0.0254 0.0249 0.0329 0.0426 0.0817

VB-HS 0.0017 0.0026 0.0042 0.0065 0.0122 0.0209 0.0289 0.0414 0.0561 0.0842
MCMC-Lap 0.0015 0.0020 0.0032 0.0051 0.0159 0.0269 0.0284 0.0389 0.0526 0.0977

VB-Lap 0.0013 0.0020 0.0032 0.0051 0.0142 0.0199 0.0282 0.0392 0.0527 0.0930
Spline 0.0016 0.0022 0.0036 0.0057 0.0144 0.0239 0.0310 0.0430 0.0567 0.0949

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.0494 0.0191 0.0152 0.0178 0.0514 0.1702 0.1048 0.0914 0.1007 0.1758

VB-HS 0.0649 0.0282 0.0226 0.0275 0.0677 0.1979 0.1274 0.1119 0.1253 0.2030
MCMC-Lap 0.0695 0.0280 0.0229 0.0255 0.0732 0.2092 0.1298 0.1174 0.1265 0.2153

VB-Lap 0.0651 0.0287 0.0228 0.0257 0.0664 0.2003 0.1304 0.1164 0.1259 0.2034
Spline 0.0925 0.0354 0.0291 0.0351 0.0917 0.2422 0.1501 0.1352 0.1493 0.2422

MCIW CP
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.337 0.277 0.275 0.278 0.341 0.731 0.897 0.921 0.913 0.734
CVB-HS 1.134 0.592 0.403 0.617 1.172 0.994 0.989 0.965 0.994 0.994
VB-HS 0.104 0.154 0.163 0.159 0.105 0.260 0.556 0.645 0.584 0.254

MCMC-Lap 0.403 0.373 0.370 0.374 0.400 0.740 0.918 0.944 0.925 0.734
CVB-Lap 1.150 0.580 0.425 0.599 1.184 0.993 0.989 0.967 0.993 0.993
VB-Lap 0.170 0.228 0.240 0.230 0.172 0.387 0.735 0.787 0.743 0.378

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.084 0.110 0.136 0.162 0.200 0.940 0.931 0.904 0.864 0.648
CVB-HS 0.082 0.131 0.191 0.233 0.237 0.887 0.927 0.931 0.900 0.738
VB-HS 0.030 0.067 0.085 0.090 0.057 0.655 0.747 0.670 0.538 0.226

MCMC-Lap 0.117 0.146 0.182 0.213 0.225 0.950 0.951 0.934 0.891 0.648
CVB-Lap 0.514 0.280 0.213 0.394 0.781 0.999 0.990 0.951 0.989 0.993
VB-Lap 0.052 0.097 0.121 0.130 0.093 0.790 0.857 0.808 0.707 0.312

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.486 0.418 0.406 0.415 0.491 0.720 0.882 0.911 0.893 0.717
CVB-HS 0.719 0.647 0.592 0.646 0.733 0.844 0.957 0.962 0.956 0.852
VB-HS 0.159 0.226 0.232 0.223 0.158 0.247 0.527 0.613 0.536 0.230

MCMC-Lap 0.604 0.528 0.521 0.529 0.606 0.742 0.890 0.919 0.906 0.737
CVB-Lap 1.390 0.792 0.598 0.797 1.448 0.990 0.976 0.952 0.984 0.991
VB-Lap 0.252 0.312 0.327 0.317 0.256 0.383 0.671 0.741 0.687 0.380
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Table 3.12: Average values of MSE, MAD, MCIW and CP based on 100 replications
for multiple observations (GP) with k = 2. The minimum values and second smallest
values of MSE and MAD are represented in bold and italics respectively. The CP
values above 90% are represented in bold.

MSE MAD
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.0188 0.0079 0.0065 0.0076 0.0204 0.1035 0.0693 0.0635 0.0676 0.1080
VB-HS 0.0267 0.0109 0.0085 0.0102 0.0264 0.1189 0.0791 0.0718 0.0765 0.1231

MCMC-Lap 0.0206 0.0083 0.0069 0.0080 0.0224 0.1094 0.0703 0.0646 0.0688 0.1136
VB-Lap 0.0222 0.0089 0.0074 0.0086 0.0234 0.1122 0.0729 0.0669 0.0713 0.1168
Spline 0.0394 0.0140 0.0110 0.0135 0.0419 0.1547 0.0915 0.0817 0.0900 0.1605

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.0011 0.0014 0.0023 0.0035 0.0084 0.0219 0.0234 0.0329 0.0434 0.0702

VB-HS 0.0010 0.0021 0.0032 0.0050 0.0095 0.0161 0.0262 0.0375 0.0510 0.0755
MCMC-Lap 0.0008 0.0014 0.0023 0.0035 0.0094 0.0201 0.0225 0.0321 0.0433 0.0751

VB-Lap 0.0008 0.0016 0.0025 0.0039 0.0093 0.0139 0.0241 0.0339 0.0457 0.0752
Spline 0.0010 0.0018 0.0028 0.0048 0.0139 0.0171 0.0267 0.0370 0.0515 0.0933

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.0476 0.0192 0.0155 0.0180 0.0427 0.1656 0.1084 0.0975 0.1064 0.1630

VB-HS 0.0900 0.0228 0.0181 0.0223 0.0538 0.2018 0.1181 0.1060 0.1175 0.1810
MCMC-Lap 0.0524 0.0197 0.0158 0.0187 0.0480 0.1747 0.1102 0.0989 0.1086 0.1731

VB-Lap 0.0672 0.0206 0.0165 0.0199 0.0478 0.1838 0.1130 0.1013 0.1120 0.1723
Spline 0.0925 0.0332 0.0265 0.0331 0.0917 0.2421 0.1453 0.1287 0.1446 0.2422

MCIW CP
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.291 0.281 0.279 0.281 0.295 0.727 0.895 0.914 0.899 0.715
CVB-HS 1.077 0.551 0.374 0.566 1.086 0.995 0.989 0.961 0.995 0.996
VB-HS 0.103 0.153 0.160 0.153 0.106 0.280 0.569 0.629 0.590 0.286

MCMC-Lap 0.305 0.294 0.294 0.294 0.308 0.732 0.907 0.930 0.911 0.723
CVB-Lap 1.065 0.562 0.430 0.585 1.102 0.995 0.994 0.987 0.996 0.996
VB-Lap 0.131 0.181 0.192 0.181 0.133 0.364 0.687 0.752 0.707 0.369

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.074 0.103 0.133 0.157 0.170 0.944 0.926 0.907 0.852 0.665
CVB-HS 0.524 0.252 0.185 0.375 0.743 1.000 0.990 0.943 0.990 0.997
VB-HS 0.029 0.063 0.079 0.085 0.058 0.664 0.745 0.652 0.527 0.249

MCMC-Lap 0.072 0.104 0.137 0.162 0.179 0.950 0.940 0.921 0.871 0.661
CVB-Lap 0.529 0.258 0.192 0.379 0.760 1.000 0.992 0.959 0.994 0.997
VB-Lap 0.036 0.072 0.092 0.099 0.075 0.806 0.824 0.762 0.638 0.311

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.449 0.422 0.416 0.420 0.428 0.707 0.867 0.907 0.883 0.696
CVB-HS 1.327 0.771 0.547 0.769 1.290 0.989 0.988 0.958 0.987 0.995
VB-HS 0.161 0.220 0.233 0.221 0.158 0.275 0.541 0.614 0.540 0.266

MCMC-Lap 0.478 0.441 0.436 0.439 0.461 0.712 0.881 0.921 0.896 0.703
CVB-Lap 1.346 0.810 0.656 0.818 1.308 0.991 0.995 0.988 0.995 0.996
VB-Lap 0.198 0.264 0.278 0.264 0.198 0.348 0.643 0.721 0.644 0.349
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Table 3.13: Average values of MSE, MAD, MCIW and CP based on 100 replications
for 200 locations (PC) with k = 0. The minimum values and second smallest values
of MSE and MAD are represented in bold and italics respectively. The CP values
above 90% are represented in bold.

MSE MAD
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.0397 0.0060 0.0040 0.0062 0.0404 0.1528 0.0547 0.0459 0.0565 0.1542
VB-HS 0.0358 0.0176 0.0122 0.0172 0.0375 0.1479 0.0934 0.0765 0.0921 0.1511
ADMM 0.0320 0.0238 0.0143 0.0202 0.0366 0.1309 0.1187 0.0912 0.1111 0.1335

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.0052 0.0016 0.0024 0.0042 0.0209 0.0214 0.0200 0.0310 0.0447 0.1112

VB-HS 0.0005 0.0026 0.0043 0.0077 0.0144 0.0100 0.0265 0.0404 0.0601 0.0944
ADMM 0.0009 0.0021 0.0045 0.0130 0.0185 0.0130 0.0344 0.0514 0.0927 0.0975

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.0777 0.0201 0.0144 0.0181 0.0811 0.2202 0.0958 0.0824 0.0942 0.2234

VB-HS 0.0866 0.0427 0.0325 0.0440 0.0898 0.2296 0.1510 0.1274 0.1530 0.2309
ADMM 0.0891 0.0638 0.0471 0.0590 0.0940 0.2184 0.1879 0.1596 0.1830 0.2162

MCIW CP
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.474 0.286 0.251 0.280 0.477 0.746 0.942 0.957 0.927 0.746
CVB-HS 1.003 0.507 0.374 0.497 0.991 0.973 0.967 0.943 0.962 0.968
VB-HS 0.115 0.187 0.194 0.185 0.117 0.237 0.619 0.724 0.625 0.235

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.066 0.094 0.136 0.185 0.270 0.976 0.948 0.920 0.895 0.625
CVB-HS 0.359 0.229 0.161 0.327 0.662 0.997 0.975 0.892 0.947 0.977
VB-HS 0.032 0.071 0.090 0.098 0.062 0.871 0.822 0.720 0.566 0.207

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.758 0.463 0.425 0.455 0.758 0.778 0.924 0.949 0.927 0.778
CVB-HS 1.435 0.766 0.629 0.756 1.449 0.979 0.968 0.949 0.962 0.975
VB-HS 0.177 0.281 0.293 0.282 0.177 0.232 0.564 0.672 0.560 0.237
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Table 3.14: Average values of MSE, MAD, MCIW and CP based on 100 replications
for 200 locations (VS) with k = 1. The minimum values and second smallest values
of MSE and MAD are represented in bold and italics respectively. The CP values
above 90% are represented in bold.

MSE MAD
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.0279 0.0101 0.0090 0.0104 0.0279 0.1264 0.0759 0.0701 0.0751 0.1240
VB-HS 0.0365 0.0147 0.0124 0.0162 0.0362 0.1449 0.0889 0.0810 0.0921 0.1439
ADMM 0.0719 0.0151 0.0138 0.0166 0.0405 0.1659 0.0927 0.0880 0.0968 0.1488

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.0023 0.0019 0.0027 0.0040 0.0115 0.0300 0.0277 0.0365 0.0460 0.0812

VB-HS 0.0022 0.0025 0.0038 0.0060 0.0134 0.0244 0.0300 0.0419 0.0559 0.0884
ADMM 0.0946 0.0023 0.0037 0.0055 0.0223 0.1058 0.0311 0.0427 0.0552 0.1010

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.0622 0.0269 0.0204 0.0237 0.0576 0.1858 0.1207 0.1080 0.1165 0.1854

VB-HS 0.0750 0.0310 0.0241 0.0316 0.0795 0.2116 0.1337 0.1175 0.1337 0.2195
ADMM 0.0950 0.0336 0.0289 0.0356 0.0732 0.2168 0.1416 0.1322 0.1456 0.2064

MCIW CP
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.362 0.321 0.315 0.322 0.354 0.725 0.903 0.923 0.904 0.732
CVB-HS 1.060 0.522 0.418 0.506 1.045 0.988 0.973 0.943 0.955 0.982
VB-HS 0.120 0.187 0.192 0.186 0.121 0.264 0.625 0.692 0.618 0.280

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.098 0.125 0.151 0.175 0.212 0.927 0.935 0.905 0.874 0.683
CVB-HS 0.460 0.251 0.187 0.332 0.677 0.998 0.982 0.920 0.962 0.986
VB-HS 0.038 0.079 0.097 0.103 0.066 0.692 0.784 0.698 0.583 0.246

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.515 0.490 0.479 0.477 0.540 0.711 0.890 0.918 0.891 0.745
CVB-HS 1.315 0.721 0.637 0.690 1.383 0.984 0.963 0.962 0.953 0.985
VB-HS 0.182 0.268 0.281 0.267 0.182 0.272 0.589 0.676 0.593 0.263
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Table 3.15: Average values of MSE, MAD, MCIW and CP based on 100 replications
for 200 locations (GP) with k = 2. The minimum values and second smallest values
of MSE and MAD are represented in bold and italics respectively. The CP values
above 90% are represented in bold.

MSE MAD
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.0329 0.0111 0.0094 0.0115 0.0277 0.1309 0.0812 0.0747 0.0815 0.1239
VB-HS 0.1083 0.0131 0.0107 0.0142 0.0349 0.1854 0.0877 0.0788 0.0885 0.1408
ADMM 0.0409 0.0199 0.0180 0.0218 0.0397 0.1531 0.1077 0.1017 0.1108 0.1516

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.0016 0.0017 0.0028 0.0044 0.0100 0.0271 0.0264 0.0373 0.0491 0.0777

VB-HS 0.0015 0.0023 0.0034 0.0054 0.0120 0.0206 0.0284 0.0406 0.0537 0.0854
ADMM 0.0015 0.0028 0.0047 0.0068 0.0133 0.0209 0.0330 0.0478 0.0613 0.0904

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.1091 0.0337 0.0231 0.0265 0.0615 0.2281 0.1367 0.1177 0.1272 0.1936

VB-HS 0.1447 0.0356 0.0231 0.0276 0.0770 0.2562 0.1375 0.1180 0.1299 0.2163
ADMM 0.0911 0.0471 0.0423 0.0480 0.0939 0.2400 0.1719 0.1618 0.1715 0.2394

MCIW CP
(I) Gauss 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

MCMC-HS 0.368 0.358 0.353 0.355 0.338 0.723 0.914 0.937 0.917 0.734
CVB-HS 1.105 0.528 0.440 0.522 1.065 0.964 0.978 0.966 0.972 0.987
VB-HS 0.139 0.195 0.206 0.196 0.130 0.280 0.632 0.709 0.642 0.300

(II) Beta 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.096 0.126 0.160 0.188 0.190 0.947 0.948 0.913 0.875 0.670
CVB-HS 0.462 0.252 0.204 0.333 0.693 0.999 0.986 0.945 0.968 0.990
VB-HS 0.037 0.081 0.100 0.105 0.072 0.635 0.803 0.705 0.596 0.267

(III) Mixed normal 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95
MCMC-HS 0.5628 0.5995 0.5890 0.5730 0.5322 0.6995 0.9126 0.9469 0.9162 0.7287
CVB-HS 1.393 0.753 0.654 0.720 1.404 0.962 0.967 0.965 0.963 0.987
VB-HS 0.198 0.283 0.300 0.281 0.194 0.260 0.595 0.690 0.615 0.278
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Figure 3.6: Trace plots and autocorrelations of posterior samples of θ25, θ50, θ75 (from
left to right) for quantile levels 0.05, 0.25, 0.50, 0.75, 0.95 (from top to bottom) in real
data analysis of Nile data.
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Figure 3.7: Trace plots and autocorrelations of posterior samples of θ15, θ35, θ56 (from
left to right) for quantile levels 0.10, 0.30, 0.50, 0.70, 0.90 (from top to bottom) in real
data analysis of Munich rent data.
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Chapter 4

Locally adaptive spatial quantile
smoothing

4.1 Introduction
Estimating the spatial trend of the number of crimes is vital to ensure community
safety and to respond quickly to incidents. For example, more police may be assigned
to areas with a lot of crimes than to areas with few crimes. Tokyo metropolitan
police department mentioned that crime predictions have some effects: 1) Efficient
development of police officers, 2) Realization of improved public safety, 3) Improving
police operations efficiency, and 4) Conducting effective patrols. Inference on the
crime risk for each area is an important task for crime data analysis, and it has been
revealed that crime can be controlled more effectively and efficiently by concentrating
police enforcement efforts on high-risk spots and time (e.g. Braga, 2001). Since the
number of crimes is often heterogeneous per region, the use of statistical models that
take into account such heterogeneity is necessary. In Japan, University of Tsukuba
Division of Policy and Planning Sciences Commons provides “GIS database of several
police-recorded crimes at O-aza, chome in Tokyo, 2009–2017”. The data contain the
number of various crimes from 2009 to 2017 as well as spatial information and the
area for each region. Recently, Hamura et al. (2021) and Yano et al. (2021) dealt
with the data as zero-inflated count data and they proposed hierarchical Poisson
models. It is known that crime data have spatial heterogeneity in the sense that
most of the areas have little or no crime throughout multiple years, while others have
a lot of crime yearly. Figure 4.1 shows the averaged values of violent crimes during
2013-2017 in Tokyo. The plot indicates that the distribution of violent crimes has
spatial heterogeneity and there are several hotspots. Hamura et al. (2021) regarded
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the hotspots as outliers and proposed a robust method for violent crimes in 2017. On
the other hand, Yano et al. (2021) focused on the pickpocket (not violent crime) from
2012 to the first half of 2018 at 978 towns in eight wards, and considered a Bayesian
prediction problem based on the Poisson distribution. Our goal in this study is
to estimate the spatial high-risk trends of violent crime with uncertainty and to
detect the potential risk throughout multiple years simultaneously. It is important
to adaptively estimate trends without smoothing for potentially high-risk areas.

Figure 4.1: Spatial plot of log(1 + Y ) for crime density Y . From left to right, the
minimum, mean, and maximum values for each area over five years from 2013 to
2017.

Spatial data with longitude and latitude information are considered point-level
data. Statistical methods for such data have been developed. As a nonparamet-
ric Bayesian approach, Taddy (2010) considered the autoregressive mixture model
and also provided an application of crime data analysis. On the other hand, data
observed per region is known as areal data. Tokyo crime data considered in this
Chapter is areal data, and it is constructed by the total number of crimes per region
for a year. In other words, it does not make much sense to consider it as point-level
data. For crime data as areal data, Balocchi and Jensen (2019) proposed a Bayesian
linear regression model over time within a spatial correlation like conditional au-
toregressive formulation, and they applied their method to an analysis of violent
crimes in Philadelphia. For the same data, Balocchi et al. (2023) also proposed
the CAR-within-clusters model which assumes linear formulation and conditionally
autoregression (CAR) model for each cluster, which deals with spatial discontinuity
by introducing cluster and gives spatial continuity within a cluster. They recom-
mend using the crime density defined as the number of crimes divided by the land
area to deal with the difference in land size. The approach treats crime data as a
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continuous value instead of count data. Following the study, we adopt the crime
density in the Tokyo crime data, that is, we assume the continuous distribution on
the distribution generating data in our modeling, not count data such as Poisson
distribution.

In this study, we develop a quantile trend estimation for spatial data. The
smoothing method has been studied in the context of function estimation to inves-
tigate the characteristics of the time series data. As mentioned in Section 2.3, one
of the nonparametric methods to estimate underlying trends is the ℓ1 trend filtering
(Kim et al., 2009; Tibshirani, 2014). Wang et al. (2015) extend the original trend
filtering to the spatial smoothing by assuming the graph structure. By accounting
for covariates, Reich et al. (2011) proposed a Bayesian spatial quantile regression
by introducing spatially varying basis-function coefficients. Castillo-Mateo et al.
(2023) also considered spatial quantile autoregression for space-time dependence
data, which is based on the Gaussian process model to capture spatial dependence
over the grid cells.

There are some difficulties with these methods. The main difficulty in applying
frequentist trend filtering is that uncertainty quantification is not straightforward.
Moreover, the frequentist formulation includes tuning parameters that influence
smoothness in the penalty term, but the data-dependent selection of the tuning
parameter is not obvious, especially under quantile smoothing. While Bayesian
methods are capable of mitigating these issues, the existing approach only focuses
on time series data; thereby it cannot handle the smoothing of data on general
graphs such as spatial data. Moreover, most of the studies focused on estimating a
mean trend under a homogeneous variance structure, and these methods may not
work well in data with heterogeneous variance. Nevertheless, quantile smoothing
for spatial data has not been studied even from a frequentist perspective.

To overcome the issues, we extend the Bayesian quantile smoothing for time
series data to Bayesian quantile trend filtering on general graphs including spatial
neighboring structures, and also allow for multiple spatial data in which the number
of samples for each location may be different. To this end, we employ the asymmet-
ric Laplace distribution as a working likelihood (Yu and Moyeed, 2001), where the
theoretical justification of using the likelihood is discussed in Sriram et al. (2013)
and Sriram (2015). The novelty of the proposed approach is the construction of
the prior distribution on the graph difference. In particular, we consider the horse-
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shoe prior (Carvalho et al., 2010) as locally adaptive shrinkage priors for the graph
differences. We introduce a novel hierarchical formulation for the prior, known
as “shadow priors” that enhances the efficiency of posterior computation. Specifi-
cally, combining the data augmentation strategy by Kozumi and Kobayashi (2011),
we develop a simple Gibbs sampling algorithm to generate posterior samples. We
demonstrate the usefulness and wide applicability of proposed methods through ex-
tensive simulation studies and application to Tokyo crime data. We here present
the advantage of the proposed trend filtering method compared with the existing
Bayesian spatial methods: the simultaneous autoregressive (SAR) model and the
Gaussian process (GP) model. In Figure 4.2, we show two examples of true quantile
trends (adopted in simulation studies in Section 3.3), and their estimated results
obtained by the proposed method (BQTF-HS) as well as SAR and GP models. It is
observed that BQTF-HS tends to provide better estimation results than both SAR
and GP models, successfully taking account of local changes and the smoothness of
the true trend. Note that similar advantages of trend filtering were confirmed in the
context of smoothing mean parameters (Tibshirani, 2014; Wang et al., 2015).
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Figure 4.2: The examples of three methods for the 0.5-th quantile level. The left
panels are two true signals. The estimates of the proposed methods under horseshoe
and k = 1, SAR models, and GP models for two signals from the second from left
to right.

This chapter is organized as follows: In Section 4.2, we propose a new Bayesian
trend filtering method to estimate quantiles and construct an efficient posterior
sampling algorithm based on Gibbs sampling. In Section 4.3, we illustrate some
simulation studies to compare the performance of proposed methods. In Section
4.4, we apply the proposed methods to violent crime data in Tokyo. Additional
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numerical results are provided in the Appendix 4.6. R code implementing the pro-
posed methods is available in the GitHub repository (URL: https://github.com/
Takahiro-Onizuka/BSQS).

4.2 Bayesian quantile trend filtering on graphs
4.2.1 Shrinkage priors on graph differences

We will consider the following model (see e.g. Onizuka et al., 2024a):

yij = θ(xi) + εij, εij ∼ AL(p,σ2), i = 1, . . . , n, j = 1, . . . , Ni, (4.1)

where yij is a jth observation in the location xi, θ(xi) = θi is a common quantile
to yi1, . . . , yiNi in the location xi, Ni is the number of data per each location xi.
Here AL(p,σ2) denotes the asymmetric Laplace distribution (2.3), where p is a fixed
constant that characterizes the quantile level and σ2 is a scale parameter. Note that
the model (4.1) handles a situation with multiple observations per grid point, and
(yi1, . . . , yiNi) are marginally correlated due to the common θ(xi).

Suppose that spatial location x = (x1, . . . , xn) has a graph structure, and then
θ1, . . . , θn are on general graphs (including the standard trend filtering as a linear
chain graph). The assumption is commonly used because the areal data has an
adjacency relation and the simultaneous/conditional autoregressive models are also
based on graph structure. Following Wang et al. (2015), let G = (V,E) be an
undirected graph with vertex set V = {1, . . . , n} and edge set E. We assume that
|V | = n and |E| = m. For k = 0, if eℓ = (i, j) ∈ V , then D(1) has ℓ-th row

D(1)
ℓ = (0, . . . , 0, 1︸︷︷︸

i

, 0 . . . , 0, −1︸︷︷︸
j

, 0, . . . , 0), (4.2)

where 1 ≤ ℓ ≤ m. For a graph G, the graph difference operator of order k + 1 is
denoted by D(k+1). When k ≥ 1, graph difference operator D(k+1) is defined by

D(k+1) =

{
(D(1))⊤D(k) for odd k,

D(1)D(k) for even k.
(4.3)

Here, we have D(k+1) ∈ Rn×n for odd k and D(k+1) ∈ Rm×n for even k. We note
that the first-order graph difference operator D(1) is a natural generalization of the
usual first-order difference operator in (2.5), and if we consider the linear chain
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graph corresponding to time series data, then they coincide. The k controls the
smoothness of the estimated trend. For example, k = 0 represents the assumption
that the trend to estimate is piecewise constant like the upper left in Figure 4.2.
k ≥ 1 corresponds to the piecewise polynomial trend with degree k as an estimate
for the unknown spatial trend. In other words, the estimate of θi has a relationship
with its neighboring values like a polynomial function, which is similar to a local
linear/polynomial regression. Empirically, we recommend k = 1 to capture changes
and avoid over-fitting.

Let D be a m × n full-rank matrix representing a general difference operator
on a graph, and we consider flexible shrinkage priors on Dθ. When m is smaller
than n as in a linear chain graph, D can be transformed to n × n non-singular
matrix (see also Onizuka et al., 2024a). We here assume that m ≥ n since the
number of edges is typically larger than that of nodes. We consider the prior Dθ |
τ 2,σ2, w ∼ Nn(0, τ 2σ2W ) with a diagonal covariance matrix W = diag(w2

1, . . . , w
2
m),

where w = (w1, . . . , wm) represents local shrinkage parameters for each element in
Dθ and τ 2 is a global shrinkage parameter. When m = n, the prior can be rewritten
as

θ | τ 2,σ2, w ∼ Nn(0,σ
2τ 2(D⊤W−1D)−1).

Our idea is to use the above prior form even under m > n, noting that the covariance
matrix (D⊤W−1D)−1 is still non-singular under m > n. The density function of the
conditional prior of θ is given by

π(θ | τ 2,σ2, w) = (2πσ2τ 2)−n/2|D⊤W−1D|1/2 exp
(
− 1

2σ2τ 2
θ⊤D⊤W−1Dθ

)
. (4.4)

Now, we consider the prior for w. The standard approach is the use of an indepen-
dent prior π(w) =

∏m
i=1 π(wi), and some familiar distribution is used for π(wi), for

example, exponential prior or inverse gamma prior. However, the full conditional
distribution of w is not a familiar form due to the term |D⊤W−1D|1/2 in the density
(4.4). Therefore, it is not easy to construct an efficient Gibbs sampler. Alternatively,
we consider the following joint prior:

π(w) ∝ |D⊤W−1D|−1/2|W |−1/2
m∏

i=1

π(wi), (4.5)

where π(wi) is a proper univariate distribution. For a square matrix D such that
k is odd, the joint prior equals the product of the standard prior π(wi). As shown
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in Subsection 4.2.2, the resulting full conditional distributions of w are familiar
forms under well-known priors for local shrinkage parameters. As a result, we can
construct a Gibbs sampler for the proposed method. Such priors given in (4.5) are
known as “shadow priors”, and are used to improve the mixing of Markov chain
Monte Carlo (MCMC) algorithm (e.g. Liechty et al., 2009) or to construct tractable
full conditional distributions (e.g. Liu et al., 2014; Xu and Ghosh, 2015). Note that
these works demonstrate that the use of shadow prior has little effect on posterior
inference.

As an univariate distribution π(wi) in (4.5), we consider two types of distri-
butions, wi ∼ Exp(1/2) and wi ∼ C+(0, 1). These priors are motivated by the
Bayesian lasso prior (Park and Casella, 2008) and horseshoe prior (Carvalho et al.,
2010), respectively. Regarding the other parameters, we assign σ2 ∼ IG(aσ, bσ) and
τ ∼ C+(0, Cτ ), where aσ, bσ and Cτ are fixed hyper-parameters.

The proposed prior for θ belongs to a class of general priors, described as

θ | σ2, τ 2, ρ ∼ N(0,σ2τ 2Q(ρ)). (4.6)

Note that the simultaneous autoregressive (SAR) and Gaussian process (GP) prior
are popular approaches for spatial smoothing and the priors can also be expressed
as (4.6) with different matrix Q(ρ) from that of the proposed prior. The two priors
will be compared through simulation studies and more detailed explanations are
provided in Section 4.3.

Note that the three conditional priors of θ include σ2 in the scale although σ2 is
the scale parameter of the likelihood (see equations (4.4) and (4.6)). The formulation
has been often used for the conditional normal prior (e.g. Polson and Scott, 2012)
and induces the advantage that the scale of the prior is automatically adjusted when
units of observations are changed.

4.2.2 Markov chain Monte Carlo algorithm

To develop an efficient posterior computation algorithm via Gibbs sampling, we em-
ploy the stochastic representation of the asymmetric Laplace distribution (Kozumi
and Kobayashi, 2011). For εij ∼ AL(p,σ2), we have the following argumentation

εij = ψzij +
√
σ2zijt2uij, ψ =

1− 2p

p(1− p)
, t2 =

2

p(1− p)
,
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where uij ∼ N(0, 1) and zij | σ2 ∼ Exp(1/σ2) for i = 1, . . . , n. From the above
expression, the conditional likelihood function of yij is given by

p(yij | θi, zij,σ2) = (2πt2σ2)−1/2z−1/2
ij exp

{
−(yij − θi − ψzij)2

2t2σ2zij

}
.

Then, under the conditionally Gaussian prior of θ in (4.4), the full conditional
distributions of zi and θ are given by

θ | y, z,σ2, γ2 ∼ Nn

(
A−1B, σ2A−1

)
,

zij | yij, θi,σ2 ∼ GIG

(
1

2
,
(yij − θi)2

t2σ2
,
ψ2

t2σ2
+

2

σ2

)
, i = 1, . . . , n, j = 1, . . . , Ni,

where

A =
1

τ 2
D⊤W−1D +

1

t2
diag

(
N1∑

j=1

z−1
1j , . . . ,

Nn∑

j=1

z−1
nj

)
,

B =

(
N1∑

j=1

y1j − ψz1j
t2z1j

, . . . ,
Nn∑

j=1

ynj − ψznj
t2znj

)⊤

and GIG(a, b, c) denotes the generalized inverse Gaussian distribution. The full con-
ditional distributions of the scale parameter of observations, σ2, and global shrinkage
parameter τ 2 are given by

σ2 | y, θ, z, w, τ 2 ∼ IG

(
n+ 3N

2
+ aσ, βσ2

)
,

τ 2 | θ, w, σ2, ξ ∼ IG

(
n+ 1

2
,

1

2σ2
θ⊤D⊤W−1Dθ +

1

ξ

)
, ξ | τ 2 ∼ IG

(
1

2
,
1

τ 2
+ 1

)
,

βσ2 =
n∑

i=1

Ni∑

j=1

(yij − θi − ψzij)2

2t2zij
+
θ⊤D⊤W−1Dθ

2τ 2
+

n∑

i=1

Ni∑

j=1

zij + bσ,

where N is the number of total data and ξ is an augmented parameter for τ 2. The
full conditional distributions of the other parameters depend on the specific choice
of the distributional form of π(wi), which are summarized as follows.

- (Laplace-type prior) The full conditional distributions of θ, zi, and σ2

have already been mentioned. For the Laplace-type prior, we give τ 2 = 1 and
wi | γ2 ∼ Exp(γ2/2). In this condition, we can model that (Dθ)i ∼ Lap(γ).
Because our condition is γ ∼ C+(0, 1), by using the representation that if
IG(γ2 | 1/2, 1/ν) and IG(ν | 1/2, 1/a2), then γ ∼ C+(0, a), the full conditional
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distributions of wi, γ2 and ν are given by

w2
i | θ,σ2, γ2, ν ∼ GIG

(
1

2
,
η2i
σ2

, γ2
)
,

γ2 | w, ν ∼ GIG

(
m− 1

2
,
2

ν
,

m∑

i=1

w2
i

)
, ν | γ2 ∼ IG

(
1

2
,
1

γ2
+ 1

)
,

where GIG(a, b, c) is the generalized inverse Gaussian distribution and ηi =

(Dθ)i.

- (Horseshoe-type prior) The full conditional distributions of θ, zi, σ2 and
τ 2 have already been mentioned. For the Horseshoe-type prior, wi ∼ C+(0, 1).
By using the representation that w2

i | νi ∼ IG(1/2, 1/νi) and νi ∼ (1/2, 1), the
full conditional distributions of wi and νi are given by

w2
i | θ,σ2, γ2, ν ∼ IG

(
1,

1

νi
+

η2i
2σ2τ 2

)
, νi | wi ∼ IG

(
1

2
,
1

w2
i

+ 1

)
,

where IG(a, b) is the inverse Gamma distribution and ηi = (Dθ)i.

4.3 Simulation studies
We illustrate the performance of the proposed method through simulation studies.

4.3.1 Simulation setting

We show simulation studies for data on 2-D lattice graphs. We formulate the data-
generating process as follows. Let G = (V,E) be a 2-D lattice graph. We set
V = {1, . . . , 100} and |E| = 180 for the graph G. The edges are defined by whether
the lattice is adjacent or not. A more general graph structure is also considered in
the Appendix 4.6. Noisy data were generated from the model yij = f(xi) + ε(xi)

(i = 1, . . . , 100, j = 1, . . . , 5), where xi = (xi1, xi2) is a two-dimensional coordinate,
and f(x) and ϵ(x) are true and noise functions, respectively. Based on the model
3.2, we generated five data for each location i. The following two true functions
were considered:

• Two block structure

f(xi) = 5 (center), and f(xi) = 0 (other),
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• Exponential function

f(xi) = 5 exp

(
−1

2
(xi − µ)⊤Σ−1(xi − µ)

)
, µ = (5.5, 5.5), Σ = 3I2,

where xi = (xi1, xi2), xi1, xi2 = 1, 2, . . . , 10 and In is n × n identity matrix. These
functions are shown in Figure 4.3. As noise functions ϵ(x), we considered the fol-
lowing three structures:

(I) Homogeneous: ϵ(xi) ∼ N(0, 1).

(II) Block heterogeneous:

ϵ(xi) ∼

⎧
⎪⎪⎨

⎪⎪⎩

N(0, 0.52) (1 ≤ xi1 ≤ 5, 1 ≤ xi2 ≤ 5)

N(0, 22) (6 ≤ xi1 ≤ 10, 6 ≤ xi2 ≤ 10)

N(0, 1) (otherwise)
.

(III) Smooth heterogeneous:

ϵ(xi) ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N(0, 0.52) (1 ≤ xi1 ≤ 4, 1 ≤ xi2 ≤ 4)

N(0, 1) (xi1 = 5, 6, 1 ≤ xi2 ≤ 6 or 1 ≤ xi1 ≤ 6, xi2 = 5, 6)

N(0, 1.52) (xi1 = 7, 8, 1 ≤ xi2 ≤ 8 or 1 ≤ xi1 ≤ 8, xi2 = 7, 8)

N(0, 22) (otherwise)

.

The two-block structure is a reasonable function to verify the ability to capture
the jump without smoothing. In the exponential function, we examine the ability
to estimate a continuous curve with noisy data. The noise (I) represents spatial
homogeneity, while the noise may not be realistic in practical situations. In noise
(II) and (III), the aim is to verify how well the proposed method can handle spatial
heterogeneity. In particular, noise (III) has a stronger degree of spatial heterogene-
ity than noise (II). The visualizations of these noise distributions are given in the
Appendix 4.6. Combining two true structures and three noise functions, we consider
six scenarios. Scenarios (i), (ii), and (iii) are based on two block structure and noise
functions (I), (II), and (III), respectively. Scenarios (iv), (v), and (vi) are based
on exponential structure and noise functions (I), (II), and (III), respectively. Since
the noise function is homogeneity, scenarios (i) and (iv) are easier, and scenario
(iv) would especially be the easiest because of its smoothness and homogeneity.
Scenario (iii) constructed by a two-block structure and smooth heterogeneous noise
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would be the most difficult for two reasons: hard to capture the jump points and
heavy heterogeneity.

Two block structure Exponential function

Figure 4.3: Two types of true function f(x).

We used the two proposed methods (denoted by BQTF-HS and BQTF-Lap),
where HS and Lap are the horseshoe and Laplace priors, respectively. Although
there is no previous research about spatial quantile smoothing, to evaluate the
performance of the proposed method, we compare the BQTF methods with the
following three methods:

• SAR: Bayesian simultaneous autoregressive (SAR) quantile model, which is
based on graph structure as well as BQTF. The SAR prior takes the form of
(4.6) and is based on a graph structure with a contingency matrix Ω. The
matrix Q(ρ) is given by Q(ρ)−1 = (In − ρΩ)⊤(In − ρΩ), and the parameter ρ
controls the effect of the spatial correlation. The MCMC algorithm is sum-
marized in the Appendix 4.6. Note that the parameter ρ was sampled by the
random walk Metropolis-Hastings (MH) algorithm.

• GP: Bayesian quantile smoothing under Gaussian process prior, which the
prior takes the form of (4.6) and is based on the location of a data observed
point. The matrix Q(ρ) is given by Qij(ρ) := (Q(ρ))i,j = exp (−∥xi − xj∥/(2ρ)),
where ρ also controls the effect of the spatial dependence between the location
xi and xj. The MCMC algorithm is summarized in the Appendix 4.6. Note
that the parameter ρ was sampled by the random walk MH algorithm.

• qgam: Additive quantile regression which is the frequentist method proposed
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by Fasiolo et al. (2021). The method can be implemented by using their qgam
R package. Let xi = (xi1, xi2) be a two-dimensional coordinate and yi be a
observed data. Then the corresponding estimate θ̂i of θi is obtained by the sum
of functions θ̂i = q̂1(xi1) + q̂2(xi2), where q̂1(·) and q̂2(·) are nonparameteric
estimates of quantile functions.

Note that the detailed posterior computation algorithms of SAR and GP methods
are presented in Appendix 4.6. Since the SAR and GP models are based on the
Gaussian type prior, we could not expect locally adaptive smoothing. If the data
yi is generated from a simple true function f(xi) = f1(xi1) + f2(xi2), then the qgam
method would give a pretty good smoothing, but it is unrealistic in a practical
situation and the simulation setting is more complicated. The other methods such
as spatial regression models are also compared and the results are summarized in
the Appendix 4.6. For the Bayesian methods, we generated 7,500 posterior samples,
and then only every 10th scan was saved, and the order of trend filtering was set as
k = 1 (i.e. area-wise linear trend). We estimate five quantile levels: 0.1, 0.3, 0.5,
0.7, and 0.9. To evaluate the performance of estimates, we adopt the mean squared
error (MSE), the mean absolute deviation (MAD), the mean credible interval width
(MCIW), and the coverage probability (CP) which are defined by

MSE =
1

n

n∑

i=1

(θ∗i − θ̂i)2, MAD =
1

n

n∑

i=1

|θ∗i − θ̂i|,

MCIW =
1

n

n∑

i=1

θ̂97.5,i − θ̂2.5,i, CP =
1

n

n∑

i=1

I(θ̂2.5,i ≤ θ∗i ≤ θ̂97.5,i),

respectively, where θ̂100(1−α),i represent the 100(1−α)% posterior quantiles of θi and
θ∗i are true quantiles at location xi. These values were averaged over 100 replications
of simulating datasets.

4.3.2 Simulation result

Simulation results are shown in Tables 4.1 and 4.2. Note that MCIW and CP are
reported only for Bayesian methods. From Tables 4.1 and 4.2, the proposed BQTF
method under horseshoe prior tends to provide a reasonable point estimate not
only in the case of homogeneous but also for heterogeneous variances. When the
true structure is the exponential function (such as scenarios (iv), (v), and (vi)), the
proposed two methods provide comparable point estimates, and the additive quantile
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regression has smaller MSE and MAD than that for (i), (ii) and (iii) scenarios.
However, it is observed that the additive quantile regression does not work well
for any scenario compared with the proposed methods. The MAD of the proposed
BQTF-HS is smaller than that of the SAR and GP models for all cases, while the
SAR model is sometimes the best for exponential function in terms of MSE because
of the smooth trend structure. In comparison between the SAR and GP models, the
SAR model is better than the GP model in terms of MSE and MAD. For uncertainty
quantification, while BQTF methods have reasonable coverage probabilities for the
50% quantile trend, the coverage probabilities of 95% credible intervals for extremal
quantiles such as 0.1 and 0.9 seem to be far away from the nominal coverage rate of
0.95. Note that the mean credible interval width (MCIW) is the order of HS, Lap,
SAR, and GP.

4.4 Application to crime trend analysis in Tokyo
We apply the proposed methods to spatial data analysis. We used the “GIS database
of number of police-recorded crime at O-aza, chome in Tokyo, 2009–2017”, which
was provided by University of Tsukuba Division of Policy and Planning Sciences
Commons. The “chome” represents a specific area, block or street within a city
or town. For example, “3-chome, Shinjuku” would refer to the third block within
Shinjuku town in Tokyo. The data contains the number of crimes in Tokyo, and we
focus on the violent crime data in particular. We used the number of violent crimes
from some 23 wards in Tokyo for five years (from 2013 to 2017) whose number of
locations is n = 3, 125 and the sample size is N = 3125×5 = 15, 625. The number of
edges is 8,996. The edges are constructed based on the 5 nearest neighbor searches.
Namely, when xj is in 5 nearest neighbors of xi, then we connect xi and xj even
if they are not adjacent to each other on the map. Since the data also involve
information on the area (km2) of each region, we define Y = (Y1, . . . , Y3125) as the
values of the number of violent crimes divided by the area for each region, which
are called crime density as we mentioned in Section 4.1. Using the value of Y

may be reasonable because the larger the area, the greater the number of crimes
in general. Balocchi et al. (2023) also used the crime density normalized by the
area. Moreover, we use the value on the log scale as data y = log(1 + Y ). Such
a transformation is popular in the literature (see also Balocchi and Jensen, 2019).
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Table 4.1: Average values of MSE, MAD, MCIW, and CP based on 100 replications
for scenarios (i), (ii), and (iii) (two-block structure). The minimum values of MSE
and MAD are represented in bold.

Scenario (i)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 0.264 0.158 0.138 0.152 0.248 0.377 0.283 0.266 0.280 0.371
Lap 0.337 0.212 0.193 0.211 0.339 0.460 0.359 0.344 0.360 0.463
SAR 0.345 0.224 0.206 0.224 0.345 0.469 0.377 0.362 0.378 0.470
GP 0.347 0.217 0.199 0.217 0.354 0.470 0.372 0.356 0.373 0.476

qgam 3.985 2.461 1.877 2.269 3.062 1.256 1.266 1.195 1.266 1.425
MCIW CP

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 1.322 1.287 1.262 1.261 1.290 0.822 0.920 0.934 0.921 0.827
Lap 1.400 1.554 1.552 1.541 1.395 0.799 0.910 0.921 0.906 0.801
SAR 1.539 1.706 1.706 1.693 1.534 0.826 0.923 0.935 0.920 0.829
GP 1.525 1.712 1.717 1.703 1.510 0.826 0.928 0.942 0.927 0.826

Scenario (ii)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 0.464 0.272 0.244 0.256 0.451 0.454 0.337 0.317 0.328 0.447
Lap 0.542 0.311 0.283 0.306 0.541 0.524 0.400 0.381 0.399 0.526
SAR 0.537 0.316 0.289 0.312 0.522 0.531 0.415 0.395 0.414 0.529
GP 0.545 0.310 0.282 0.309 0.549 0.533 0.409 0.389 0.410 0.538

qgam 3.973 2.419 1.891 2.219 3.208 1.315 1.241 1.197 1.256 1.459
MCIW CP

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 1.440 1.409 1.369 1.378 1.388 0.814 0.911 0.920 0.909 0.814
Lap 1.543 1.689 1.675 1.678 1.528 0.801 0.907 0.919 0.907 0.799
SAR 1.694 1.854 1.839 1.838 1.688 0.824 0.921 0.932 0.920 0.825
GP 1.681 1.864 1.858 1.852 1.662 0.823 0.924 0.937 0.924 0.823

Scenario (iii)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 0.651 0.395 0.346 0.375 0.602 0.581 0.438 0.408 0.426 0.559
Lap 0.740 0.431 0.389 0.424 0.740 0.643 0.493 0.469 0.489 0.642
SAR 0.736 0.427 0.387 0.422 0.721 0.648 0.501 0.479 0.499 0.644
GP 0.760 0.422 0.378 0.416 0.768 0.656 0.497 0.472 0.494 0.661

qgam 3.792 2.295 1.908 2.174 2.984 1.366 1.258 1.204 1.255 1.422
MCIW CP

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 1.814 1.798 1.767 1.764 1.783 0.795 0.896 0.912 0.899 0.806
Lap 1.932 2.076 2.063 2.061 1.911 0.790 0.901 0.916 0.899 0.794
SAR 2.092 2.254 2.240 2.232 2.073 0.820 0.920 0.930 0.916 0.825
GP 2.071 2.276 2.273 2.270 2.048 0.815 0.925 0.938 0.925 0.821
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Table 4.2: Average values of MSE, MAD, MCIW, and CP based on 100 replications
for scenarios (iv), (v), and (vi) (exponential function). The minimum values of MSE
and MAD are represented in bold.

Scenario (iv)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 0.135 0.082 0.075 0.082 0.135 0.280 0.218 0.207 0.214 0.274
Lap 0.184 0.082 0.072 0.081 0.186 0.341 0.224 0.212 0.226 0.342
SAR 0.195 0.087 0.076 0.085 0.184 0.357 0.234 0.220 0.233 0.347
GP 0.251 0.119 0.107 0.125 0.273 0.405 0.275 0.262 0.285 0.423

qgam 0.577 0.450 0.386 0.418 0.510 0.522 0.503 0.504 0.522 0.551
MCIW CP

HS 0.994 0.982 0.983 0.986 1.021 0.816 0.907 0.921 0.915 0.846
Lap 1.160 1.148 1.136 1.143 1.169 0.857 0.952 0.964 0.953 0.863
SAR 1.275 1.259 1.244 1.243 1.263 0.887 0.967 0.975 0.970 0.893
GP 1.333 1.424 1.433 1.445 1.348 0.878 0.961 0.972 0.961 0.872

Scenario (v)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 0.284 0.125 0.109 0.122 0.282 0.355 0.246 0.228 0.242 0.349
Lap 0.313 0.116 0.095 0.115 0.312 0.397 0.248 0.225 0.246 0.396
SAR 0.289 0.112 0.093 0.110 0.272 0.398 0.251 0.229 0.247 0.385
GP 0.385 0.152 0.131 0.166 0.418 0.457 0.293 0.272 0.304 0.475

qgam 0.686 0.472 0.398 0.432 0.619 0.588 0.515 0.508 0.528 0.601
MCIW CP

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 1.141 1.075 1.067 1.082 1.154 0.816 0.907 0.926 0.915 0.832
Lap 1.306 1.228 1.208 1.225 1.302 0.849 0.947 0.959 0.949 0.853
SAR 1.434 1.339 1.308 1.321 1.405 0.876 0.963 0.971 0.961 0.883
GP 1.514 1.533 1.525 1.557 1.517 0.858 0.959 0.969 0.955 0.853

Scenario (vi)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 0.348 0.169 0.142 0.151 0.311 0.423 0.305 0.278 0.287 0.400
Lap 0.435 0.170 0.140 0.157 0.408 0.487 0.307 0.280 0.296 0.470
SAR 0.424 0.169 0.138 0.151 0.362 0.495 0.313 0.283 0.295 0.456
GP 0.579 0.224 0.182 0.221 0.587 0.578 0.361 0.327 0.359 0.584

qgam 0.916 0.598 0.492 0.505 0.655 0.718 0.591 0.565 0.579 0.660
MCIW CP

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 1.392 1.293 1.272 1.273 1.413 0.798 0.890 0.911 0.901 0.833
Lap 1.634 1.518 1.477 1.484 1.613 0.839 0.938 0.953 0.943 0.853
SAR 1.794 1.664 1.606 1.593 1.720 0.872 0.959 0.969 0.960 0.888
GP 1.887 1.886 1.853 1.894 1.872 0.849 0.957 0.971 0.960 0.860
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We regard five years of data as multiple observation data per location. The data is
shown in Figure 4.4, and the plot indicates that spatial trends have not changed over
the years. Additionally, the histograms of y for each year and all years are also shown
in Figure 4.5, which represent that the distribution of observed data is the same for
all years. Although there are some hotspots for each year in Figure 4.4, some high-
risk areas have overlapped throughout the five years. They tend to be particularly
common in downtown areas, and such areas can be seen as ones with potentially
high risk. In this section, our goal is to estimate spatial quantile trends and detect
potential hotspots. In particular, since we are interested in the median and high-
risk cases of criminal activity, we estimate 50% and 90% quantile trends. We adopt
the proposed Bayesian quantile trend filtering under horseshoe prior (BQTF-HS)
and compare the performance with two methods: the SAR model and the additive
quantile regression (qgam) using latitude and longitude as covariates. The GP model
has a high computation cost because the covariance matrix is not a sparse matrix,
unlike the BQTF and SAR models. Therefore, although the GP models can be
applied to the example, we only consider the above two methods as competitors.
For the Bayesian methods, we generated 50,000 posterior samples, and then the first
10,000 samples were discarded and only every 40th scan was saved. The order of
trend filtering is k = 1. The estimated quantile trends are shown in Figure 4.6. Note
that if the estimate has a negative value, then it is plotted as zero. The proposed
BQTF method seems to capture the zero-inflated data throughout five years. For
the 90% quantile trend, the BQTF method provides the adaptive smoothing that
detects not only high-risk spots but also low-risk spots and gives smoothing a high
quantile trend. The estimate of the SAR model is not smoother than the BQTF
methods and is similar to raw data shown in Figure 4.4. On the other hand, the
additive quantile regression (qgam) method results in over-shrinkage and clearly can
not achieve a locally adaptive smoothing. In other words, the qgam method cannot
detect hotspots, and the areas that seem to be not hotspots also have a green or
blue color. Therefore, we can conclude that the proposed BQTF method gives a
more reasonable estimate of potential quantile trend than the SAR model and qgam,
which are not smooth or producing over-shrinkage results. The six hotspots detected
by the proposed are shown in Figure 4.6, which are the main stations (Shinjuku,
Ikebukuro, Shibuya, Shinbashi, Tokyo, and Akihabara) in the Yamanote line, and
the areas are filled by blue, which have high values. Such areas seem to be outliers in
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Hamura et al. (2021), and the same result is observed. Moreover, the lower left area
filled by yellow is considered lower-risk in terms of 50% trend, and the spatial effect
analyzed in Hamura et al. (2021) also has small values in these areas. However, as
seen in the 90% trend, it seems that the risk in these areas is not low potentially.
The potential risk is not clear from the 50% quantile trend or the other method.
Hence, the BQTF method provides a locally adaptive smoothing for high quantile
trends and captures latent heterogeneity by treating five years of data as multiple
observations.

Figure 4.4: Spatial plot of log(1 + Y ) for crime density Y based on raw data from
2013 to 2017.

4.5 Concluding remarks
In this study, we proposed a Bayesian quantile trend filtering (BQTF) method on
graphs under continuous shrinkage priors, which enables us to estimate quantile
trends for spatial data. We also provide a simple Gibbs sampler by introducing
a kind of shadow prior. Through simulation studies, it is shown that the BQTF
estimates under the horseshoe prior provide locally adaptive smoothing in the sense
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Figure 4.5: The histogram of the crime densities for each year and five-year data.

of capturing the change of quantile trends and estimating the smooth quantile trends.
The application of the violent crime data in Tokyo gives interesting results in that
the proposed method provides locally adaptive quantile smoothing for all quantiles
and detects hotspots focusing on a low quantile level.

In terms of application, locally adaptive smoothing of point-referenced spatial
data is an important problem in future work, while we consider the smoothing of
areal data. The trend estimation of point-level data has also been studied (see also
Lum and Gelfand, 2012). Since the observation points of these data are different be-
tween years, the proposed methods cannot be used as is to detect potential hotspots
throughout multiple years.

4.6 Appendix
This section provides additional information for the simulation study, the MCMC
algorithm of the other methods, and the additional analysis of Tokyo Crime data.
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Figure 4.6: Estimated trends via BQTF-HS, SAR, and qgam from top to bottom
for two quantile levels: 50% (left) and 90% (right). The six red points are the
main stations (Shinjuku, Ikebukuro, Shibuya, Shinbashi, Tokyo, and Akihabara) in
Tokyo.
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4.6.1 Additional information for simulation study
The MCMC algorithms of SAR and GP models

In this subsection, we summarized the MCMC algorithms of SAR and GP mod-
els compared with the proposed methods in simulation studies. Since the prior
of θ is θ ∼ Nn(0,σ2τ 2Q(ρ)) for both methods, the algorithm of SAR and GP
prior is equal. Because θ ∼ Nn(0,σ2τ 2Q(ρ)) is assumed instead of θ | σ2, τ 2, w ∼
Nn(0,σ2τ 2(D⊤W−1D)−1) in the proposed methods, the algorithm is directly given
as follows:

• Sample θ from

θ | y, σ2, z, τ 2, ρ ∼ N(A−1B, σ2A−1),

A =
1

τ 2
Q−1 +

1

t2
diag

(
N1∑

j=1

z−1
1j , . . . ,

Nn∑

j=1

z−1
nj

)
,

B =

(
N1∑

j=1

y1j − ψz1j
t2z1j

, . . . ,
Nn∑

j=1

ynj − ψznj
t2znj

)⊤

, Q = Q(ρ).

• Sample σ2 from

σ2 | θ, y, z ∼ IG

(
aσ +

n+ 3N

2
, βσ

)
,

βσ = bσ +
n∑

i=1

Ni∑

j=1

(yij − θi − ψzij)2

2t2zij
+

n∑

i=1

Ni∑

j=1

zij +
1

τ 2
θ⊤Q−1θ.

• If τ 2 ∼ IG(aτ , bτ ) is assumed for the prior of τ 2, sample τ 2 from

τ 2 | θ,σ2 ∼ IG

(
aτ + n/2, bτ +

1

2σ2
θ⊤Q−1θ

)
.

• The parameter ρ is sampled with the random walk MH.

True five quantiles under the three noise distribution

Figure 4.7 summarizes the plot of true five quantile trends under three noise dis-
tribution ϵ in the simulation study (see also Section 3). We considered the three
scenarios: that is (I) homogeneous, (II) block heterogeneous, and (III) smooth het-
erogeneous.
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Figure 4.7: The true p-th quantiles (p = 0.1, 0.3, 0.5, 0.7, 0.9) for three noise distri-
butions from top to bottom: (I), (II), (III).
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Computation time and efficiency

We provide the raw computing time and the sampling efficiency of the MCMC
algorithm in the simulation study. We calculated the effective sample size per unit
time, defined as the effective sample size divided by the computation time in seconds.
The results are reported in Tables 4.3 and 4.4. Although the effective sample size
(ESS) per computation time under Laplace prior is larger than the other methods,
the computation times are similar. It is also observed that there are no differences
between scenarios.

Table 4.3: Average values of effective sample size per unit time and raw computing
time based on 100 replications for scenarios (i), (ii), and (iii).

Scenario (i)
ESS (per second) Compuation rime (second)

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 11 16 19 17 11 66 66 66 66 66
Lap 20 34 38 35 20 71 70 70 71 71
SAR 11 12 12 12 11 64 64 64 64 64
GP 11 12 12 12 11 66 66 66 66 66

Scenario (ii)
ESS (per second) Compuation rime (second)

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 11 17 20 18 11 66 66 66 66 66
Lap 20 36 40 36 20 71 70 70 70 71
SAR 11 12 12 12 11 64 64 64 64 64
GP 11 12 12 12 11 66 66 66 66 66

Scenario (iii)
ESS (per second) Compuation rime (second)

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 10 14 16 15 10 66 66 66 66 66
Lap 21 35 39 36 21 70 70 70 70 70
SAR 11 12 12 12 11 64 64 64 64 64
GP 11 12 12 12 11 66 66 66 66 66

Comparison with the other methods

In addition to the methods presented in Section 3, we compared the following meth-
ods.

• HS (k = 0): the proposed method under horseshoe prior and 1st order differ-
ence operator.
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Table 4.4: Average values of effective sample size and raw computing time based on
100 replications for scenarios (iv), (v), and (vi).

Scenario (iv)
ESS (per second) Compuation rime (second)

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 10 11 11 11 10 65 65 65 65 65
Lap 21 35 37 35 21 70 69 69 69 70
SAR 11 12 12 12 11 64 64 64 64 64
GP 11 11 11 11 11 67 67 67 67 67

Scenario (v)
ESS (per second) Compuation rime (second)

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 10 11 11 11 9 65 65 65 65 65
Lap 22 36 39 37 21 70 69 69 69 70
SAR 11 12 12 12 11 64 64 64 64 64
GP 11 11 11 11 11 67 67 67 67 67

Scenario (vi)
ESS (per second) Compuation rime (second)

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 9 11 11 11 9 66 66 66 66 66
Lap 22 36 39 36 22 70 70 70 70 70
SAR 11 12 12 12 11 64 64 64 64 64
GP 11 11 11 11 11 67 67 67 67 67
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• Lap (k = 0): the proposed method under Laplace prior and 1st order difference
operator.

• spreg: the classical spatial regression with two covariates (two-dimensional
coordinate) and spatially correlated error terms, which is implemented by
using the package spatialreg in R. Since we can not estimate a quantile using
the method, we only compare it with the 50% quantile trend (true signal).

The results are reported in Tables 4.5 and 4.6. We also showed the HS and Lap
methods under k = 1 for comparison. For the lower quantile level, because the
BQTF methods under k = 0 lead to strong shrinkage, the point estimates of k = 0

are worse than those of k = 0 in the 0.1-th quantile level, especially under Laplace
prior. The estimates under k = 0 are better than those of k = 0 for the other
quantile levels. As seen in the main manuscript, the results of k = 1 under the two-
block structure are better than the existing methods, and then we adopt k = 1 for
real data analysis. Compared with spreg in Table 4.6, it is observed that the method
does not work as well as the qgam method presented in the main manuscript.

2-D random graph

We consider a more general graph based on the 2-D lattice graph in the main
simulation study. We set a new 2-D graph with an additional edge drawn on the
diagonal, in which the number of vertexes and edges are |V | = 100 and |E| = 342,
and then the twenty hundred edges are selected from the edge set randomly. The
true structures of the 2-D lattice graph and the 2-D random graph are shown in
Figure 4.8. On the graph structure, the simulation studies based on two true signals
(two-block structure and exponential function) and three noise distributions ((I),
(II), and (III)) are set as the additional simulation study. The results are shown in
Table 4.7 and 4.8. Note that the results of the compared GP and qgam methods
are the same as the 2-D lattice graph because they are only based on the location of
the area, not the graph structure. For the two-block structure, the MSE and MAD
of the BQTF-HS are the smallest in almost all cases. For the exponential function
((iv), (v), and (vi)), the SAR and the GP models are sometimes better than the
proposed methods in center quantiles such as 0.3, 0.5, and 0.7 due to smooth trend.
Note that the estimates under the 2-D random graph are worse than those under the
2-D lattice graph because the graph is not straightforward, unlike the GP model.
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Table 4.5: Average values of MSE, MAD, MCIW, and CP based on 100 replications
for scenarios (i), (ii), and (iii) (two-block structure).

Scenario (i)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS (k = 0) 0.545 0.052 0.046 0.053 0.106 0.329 0.174 0.165 0.176 0.247
HS (k = 1) 0.264 0.158 0.138 0.152 0.248 0.377 0.283 0.266 0.280 0.371
Lap (k = 0) 5.649 0.128 0.115 0.125 0.221 1.283 0.277 0.264 0.276 0.373
Lap (k = 1) 0.337 0.212 0.193 0.211 0.339 0.460 0.359 0.344 0.360 0.463

MCIW CP
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

HS (k = 0) 0.957 1.011 1.015 1.012 1.027 0.857 0.975 0.983 0.978 0.914
HS (k = 1) 1.322 1.287 1.262 1.261 1.290 0.822 0.920 0.934 0.921 0.827
Lap (k = 0) 0.228 1.363 1.355 1.353 1.318 0.247 0.947 0.955 0.945 0.876
Lap (k = 1) 1.400 1.554 1.552 1.541 1.395 0.799 0.910 0.921 0.906 0.801

Scenario (ii)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS (k = 0) 0.319 0.117 0.088 0.119 0.328 0.368 0.223 0.190 0.224 0.369
HS (k = 1) 0.464 0.272 0.244 0.256 0.451 0.454 0.337 0.317 0.328 0.447
Lap (k = 0) 5.946 0.189 0.168 0.188 0.572 1.546 0.311 0.290 0.308 0.483
Lap (k = 1) 0.542 0.311 0.283 0.306 0.541 0.524 0.400 0.381 0.399 0.526

MCIW CP
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

HS (k = 0) 1.186 1.139 1.116 1.140 1.176 0.842 0.950 0.976 0.949 0.847
HS (k = 1) 1.440 1.409 1.369 1.378 1.388 0.814 0.911 0.920 0.909 0.814
Lap (k = 0) 0.294 1.474 1.448 1.460 1.446 0.261 0.939 0.949 0.931 0.841
Lap (k = 1) 1.543 1.689 1.675 1.678 1.528 0.801 0.907 0.919 0.907 0.799

Scenario (iii)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS (k = 0) 0.347 0.129 0.101 0.129 0.349 0.422 0.257 0.227 0.255 0.416
HS (k = 1) 0.651 0.395 0.346 0.375 0.602 0.581 0.438 0.408 0.426 0.559
Lap (k = 0) 6.774 0.265 0.230 0.249 1.232 1.780 0.386 0.362 0.376 0.708
Lap (k = 1) 0.740 0.431 0.389 0.424 0.740 0.643 0.493 0.469 0.489 0.642

MCIW CP
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

HS (k = 0) 1.478 1.398 1.373 1.401 1.477 0.848 0.960 0.974 0.962 0.845
HS (k = 1) 1.814 1.798 1.767 1.764 1.783 0.795 0.896 0.912 0.899 0.806
Lap (k = 0) 0.382 1.767 1.726 1.737 1.670 0.059 0.929 0.940 0.927 0.784
Lap (k = 1) 1.932 2.076 2.063 2.061 1.911 0.790 0.901 0.916 0.899 0.794
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Table 4.6: Average values of MSE, MAD, MCIW, and CP based on 100 replications
for all scenarios.

MSE
(i) (ii) (iii) (iv) (v) (vi)

HS 0.138 0.244 0.346 0.075 0.109 0.142
Lap 0.193 0.283 0.389 0.072 0.095 0.140

spreg 1.744 4.209 5.886 1.791 2.855 4.523
MAD

HS 0.266 0.317 0.408 0.207 0.228 0.278
Lap 0.344 0.381 0.469 0.212 0.225 0.280

spreg 0.926 1.783 2.140 1.239 1.455 1.859

Figure 4.8: The true structures of the 2-D lattice graph (left) and the 2-D random
graph (right).
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Table 4.7: Average values of MSE, MAD, MCIW, and CP based on 100 replications
for scenarios (i), (ii), and (iii) (two-block structure). The minimum values of MSE
and MAD are represented in bold.

Scenario (i)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 0.300 0.199 0.178 0.191 0.290 0.415 0.331 0.314 0.327 0.409
Lap 0.346 0.214 0.196 0.213 0.348 0.468 0.365 0.351 0.366 0.469
SAR 0.344 0.214 0.196 0.214 0.345 0.468 0.370 0.354 0.369 0.470
GP 0.347 0.217 0.199 0.217 0.354 0.470 0.372 0.356 0.373 0.476

qgam 3.985 2.461 1.877 2.269 3.062 1.256 1.266 1.195 1.266 1.425
MCIW CP

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 1.383 1.409 1.393 1.377 1.326 0.800 0.899 0.917 0.901 0.807
Lap 1.403 1.577 1.576 1.561 1.389 0.791 0.907 0.920 0.908 0.794
SAR 1.524 1.700 1.704 1.689 1.514 0.830 0.927 0.942 0.927 0.831
GP 1.525 1.712 1.717 1.703 1.510 0.826 0.928 0.942 0.927 0.826

Scenario (ii)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 0.502 0.295 0.264 0.288 0.488 0.494 0.372 0.350 0.369 0.484
Lap 0.553 0.309 0.283 0.311 0.558 0.533 0.403 0.385 0.404 0.534
SAR 0.540 0.300 0.275 0.307 0.534 0.532 0.403 0.385 0.408 0.532
GP 0.545 0.310 0.282 0.309 0.549 0.533 0.409 0.389 0.410 0.538

qgam 3.973 2.419 1.891 2.219 3.208 1.315 1.241 1.197 1.256 1.459
MCIW CP

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 1.540 1.544 1.503 1.497 1.453 0.800 0.900 0.914 0.898 0.797
Lap 1.556 1.726 1.710 1.699 1.525 0.797 0.910 0.920 0.907 0.796
SAR 1.686 1.859 1.848 1.839 1.673 0.828 0.928 0.938 0.927 0.828
GP 1.681 1.864 1.858 1.852 1.662 0.823 0.924 0.937 0.924 0.823

Scenario (iii)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 0.698 0.423 0.368 0.391 0.629 0.613 0.473 0.444 0.460 0.585
Lap 0.765 0.434 0.387 0.422 0.755 0.659 0.498 0.473 0.494 0.652
SAR 0.747 0.418 0.373 0.411 0.731 0.653 0.494 0.469 0.490 0.648
GP 0.760 0.422 0.378 0.416 0.768 0.656 0.497 0.472 0.494 0.661

qgam 3.792 2.295 1.908 2.174 2.984 1.366 1.258 1.204 1.255 1.422
MCIW CP

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 1.886 1.910 1.868 1.848 1.801 0.782 0.888 0.898 0.884 0.790
Lap 1.942 2.117 2.100 2.087 1.896 0.787 0.902 0.917 0.904 0.790
SAR 2.074 2.271 2.259 2.242 2.051 0.819 0.927 0.939 0.925 0.828
GP 2.071 2.276 2.273 2.270 2.048 0.815 0.925 0.938 0.925 0.821

81



Table 4.8: Average values of MSE, MAD, MCIW, and CP based on 100 replications
for scenarios (iv), (v), and (vi) (exponential function). The minimum values of MSE
and MAD are represented in bold.

Scenario (iv)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 0.183 0.125 0.114 0.119 0.177 0.332 0.273 0.263 0.267 0.321
Lap 0.219 0.117 0.106 0.115 0.222 0.371 0.269 0.257 0.268 0.370
SAR 0.237 0.123 0.109 0.118 0.226 0.391 0.278 0.263 0.274 0.382
GP 0.251 0.119 0.107 0.125 0.273 0.405 0.275 0.262 0.285 0.423

qgam 0.577 0.450 0.386 0.418 0.510 0.522 0.503 0.504 0.522 0.551
MCIW CP

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 1.092 1.097 1.095 1.098 1.107 0.788 0.873 0.882 0.876 0.815
Lap 1.216 1.235 1.229 1.232 1.213 0.832 0.924 0.939 0.928 0.842
SAR 1.342 1.381 1.368 1.366 1.330 0.869 0.951 0.960 0.952 0.878
GP 1.333 1.424 1.433 1.445 1.348 0.878 0.961 0.972 0.961 0.872

Scenario (v)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 0.357 0.177 0.152 0.174 0.351 0.419 0.303 0.281 0.298 0.405
Lap 0.384 0.169 0.139 0.161 0.373 0.446 0.300 0.272 0.292 0.431
SAR 0.376 0.165 0.135 0.155 0.338 0.453 0.304 0.274 0.294 0.428
GP 0.385 0.152 0.131 0.166 0.418 0.457 0.293 0.272 0.304 0.475

qgam 0.686 0.472 0.398 0.432 0.619 0.588 0.515 0.508 0.528 0.601
MCIW CP

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 1.249 1.192 1.189 1.203 1.242 0.777 0.878 0.898 0.880 0.798
Lap 1.392 1.344 1.315 1.318 1.350 0.824 0.923 0.941 0.927 0.829
SAR 1.541 1.495 1.458 1.454 1.491 0.856 0.945 0.959 0.949 0.866
GP 1.514 1.533 1.525 1.557 1.517 0.858 0.959 0.969 0.955 0.853

Scenario (vi)
MSE MAD

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 0.450 0.242 0.201 0.202 0.374 0.492 0.371 0.345 0.345 0.447
Lap 0.511 0.238 0.199 0.212 0.457 0.531 0.367 0.340 0.349 0.499
SAR 0.524 0.236 0.195 0.207 0.436 0.551 0.369 0.338 0.348 0.504
GP 0.579 0.224 0.182 0.221 0.587 0.578 0.361 0.327 0.359 0.584

qgam 0.916 0.598 0.492 0.505 0.655 0.718 0.591 0.565 0.579 0.660
MCIW CP

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
HS 1.502 1.441 1.411 1.409 1.497 0.767 0.855 0.876 0.872 0.813
Lap 1.696 1.630 1.585 1.578 1.646 0.812 0.910 0.929 0.923 0.842
SAR 1.884 1.842 1.776 1.748 1.804 0.852 0.947 0.959 0.949 0.876
GP 1.887 1.886 1.853 1.894 1.872 0.849 0.957 0.971 0.960 0.860
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4.6.2 Additional information for Tokyo crime data analysis

In Section 4 of the main manuscript, the edges were constructed based on the 5
nearest neighbor searches. We compare the results with those of 3 and 7 nearest
neighbors. The result is reported in Figure 4.9. From the figure, we can observe
that the results for each number of nearest neighbors do not change very much. The
number of edges for each graph is 5598, 8,996, and 12,398. It seems that the graph
structure did not affect the smoothness in the example.
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Figure 4.9: The three estimates under 3, 5, and 7 nearest neighbors from top to
bottom.
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Chapter 5

Locally adaptive Bayesian
boundary smoothing

5.1 Introduction
Consider the nonparametric regression model

yi = f(xi) + εi, i = 1, . . . , n, (5.1)

where y1, . . . , yn ∈ R are outcomes, x1, . . . , xn ∈ R are input points, f is the un-
derlying function to be estimated, and ε1, . . . , εn are independent errors which are
not assumed to be centered, but to have one-sided support such as (−∞, 0]. The
regression function f describes the support frontier. For such models, some of the
regularity conditions on the statistical model may be violated. For example, Smith
(1994) considered the linear regression model with a class of one-sided error distribu-
tions including the exponential and Weibull distributions. In this case, the support
of the distribution of the response variable depends on unknown parameters. He also
showed that the asymptotic distribution of the estimator of the regression coefficient
vector is non-normal. For this reason, the model (5.1) is generally called a “non-
regular model”. In the context of nonparametric regression, some authors proposed
the methods and showed their theoretical properties for the model defined by (5.1)
(see e.g. Deprins et al., 1984; Hall et al., 1998; Hall and Simar, 2002; Daouia et al.,
2016; Reiß and Selk, 2017; Reiß and Schmidt-Hieber, 2020a,b; Selk et al., 2022).
In particular, Daouia et al. (2017) provided an excellent R package to implement
some nonparametric boundary estimation methods including shape restriction and
robust estimation. There are many applications of the model (5.1), for instance,
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in the microeconomic theory where the support boundary is considered as the set
of the most efficient businesses or industries, in climate science where the trend of
maximum values of temperature is important to come up with an environmental
policy. Furthermore, these considerations often lead to the assumption of mono-
tonicity/nearly monotonicity. In nonparametric regression or nonparametric curve
fitting problems, shape constraints such as monotonicity and convexity are also use-
ful when we have some prior information on the shape of data (see e.g. Robertson
et al., 1988). For boundary curve estimation, Daouia et al. (2016) proposed spline
smoothing methods under monotone/concave constraint, and provided an efficient
optimization algorithm. We note that boundary regression models relate to non-
parametric quantile regression with high or low quantile levels. The method is also
called extremal quantile regression, and it might be interpreted as an exploratory
tool rather than as a method for final boundary analysis. In this study, we are
interested in the boundary regression curve, not the extremal quantile regression
curve.

In this study, we develop a locally adaptive boundary smoothing method using
Bayesian trend filtering. To this end, we use the truncated multivariate (tMVN)
distribution as a working likelihood and shrinkage priors for differences. Using the
scale mixtures of normal priors, we can easily derive Gibbs sampling algorithms,
while one of the full conditional distributions is the tMVN distribution. It is well-
known that sampling from the tMVN distribution is quite challenging even if the
dimension of the parameter is moderately large (e.g. one hundred). To overcome
this difficulty, we employ an approximation of the indicator function in the tMVN
distribution by using the sigmoid function with a tuning scale parameter. The idea
comes from the paper by Souris et al. (2018) on the Bayesian shape constraint re-
gression (see also Ray et al., 2020). While they used the approximation for prior
distribution, we adopt one to the likelihood function. Using such approximation,
we provide an efficient Gibbs sampling algorithm using the Pólya-Gamma data aug-
mentation (Polson et al., 2013). The shrinkage priors for differences are similar to
Chapter 4. The Laplace prior corresponds to L1-penalty in the original trend fil-
tering and the horseshoe prior is known as a more flexible shrinkage prior in sparse
Bayesian estimation by introducing global and local shrinkage parameters. We also
extend the proposed model to the case of some shape constraints. In particular, we
propose a nearly isotonic regression method for estimating support boundaries. The

86



nearly isotonic regression which was proposed by Tibshirani et al. (2011) is a kind of
generalization of original isotonic regression because the method allows violations of
monotonicity at some change points. In other words, the nearly isotonic regression
is a penalized version of isotonic regression, and it has robustness against structural
misspecification for the assumption of monotonicity. We illustrate the performance
of the proposed method through some numerical experiments including real data
examples and also provide the sensitivity analysis for selecting a tuning parameter
of the sigmoid function.

The rest of this chapter is organized as follows. In Section 5.2, we formulate
the proposed method and prior specification. An efficient Gibbs sampling algorithm
using the approximated likelihood and data augmentation is also introduced. Some
simulation studies and real data applications are given in Sections 5.3 and 5.4,
respectively. R code implementing the proposed methods is available at the GitHub
repository (URL: https://github.com/Takahiro-Onizuka/BBTF.git).

5.2 Bayesian boundary trend filtering
5.2.1 The idea of boundary trend filtering

We restate the original ℓ1 trend filtering to estimate nonparametric regression model
yi = f(xi) + εi for i = 1, . . . , n:

min
θ∈Rn

n∑

i=1

(θi − yi)
2 + λ∥D(k+1)

n θ∥1,

where y = (y1, . . . , yn)⊤, θ = (θ1, . . . , θn)⊤ = (f(x1), . . . , f(xn))⊤, λ > 0 is a tuning
parameter which controls the smoothness of the trend, and D(k+1)

n is a (n−k−1)×n
difference operator matrix of order k + 1 defined in (2.5). Brantley et al. (2020)
also propose the quantile trend filtering assuming check loss instead of quadratic
loss, and these Beyaesian formulations are also considered (see e.g. Roualdes, 2015;
Faulkner and Minin, 2018; Heng et al., 2023; Onizuka et al., 2024a). Although
existing methods provide a reasonable estimate for mean or quantile trend, we can
not apply such methods to nonparametric regression models with one-sided error as
(5.1).

To this end, we consider the following optimization problem to estimate the
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boundary trend:

min
θ≥y

n∑

i=1

(θi − yi)
2 + λ∥D(k+1)

n θ∥1, (5.2)

where the relation θ ≥ y between two vectors y = (y1, . . . , yn)⊤ and θ = (θ1, . . . , θn)⊤

implies θi ≥ yi for all i. Note that the constraint θ ≥ y leads to the estimation of
the upper boundary trend. When we estimate the lower boundary trend, we may
consider the constraint θ ≤ y instead of θ ≥ y. To the best of our knowledge,
such boundary trend filtering has not been proposed in terms of trend filtering. As
mentioned in Section 5.1, the Bayesian approach has several attractive properties
for sparse estimation including trend filtering. For these reasons, we focus on the
Bayesian boundary trend filtering in this study. We also see the advantages such as
locally adaptive smoothing and uncertainty quantification through real data analysis
in Section 5.4.2. We note that the purpose of trend filtering is to estimate “the value
of the underlying function at the data points” and not to estimate the function itself.
In other words, the trend filtering estimate θ̂ is not a function and it has a different
purpose than the spline methods from which the function is obtained as an estimate.

5.2.2 Bayesian boundary trend filtering

Combining the model (1.2) and (5.2), we formulate the Bayesian boundary trend
filtering. Without loss of generality, we only consider the estimation of the upper
boundary trend. For each yi (i = 1, . . . , n), we consider the following model:

yi = θi + εi, εi ∼ HN(0,σ2) (5.3)

where HN(µ,σ2) represents the (upper truncated) half-normal distribution with lo-
cation parameter µ and scale parameter σ2. The conditional probability density
function of yi given θi in (5.3) is

p(yi | θi,σ2) =

√
2

πσ2
exp

(
− 1

2σ2
(yi − θi)2

)
1{yi≤θi}(yi), i = 1, . . . , n,

where 1A(x) is an indicator function defined by 1A(x) = 1 if x ∈ A and 1A(x) = 0

otherwise. The corresponding working likelihood of (θ,σ2) is given by

L(θ,σ2 | y) ∝ (σ2)−n/2 exp

(
− 1

2σ2

n∑

i=1

(yi − θi)2
)

n∏

i=1

1{yi≤θi}(θi), (5.4)
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which is that of the truncated multivariate normal distribution restricted to the
region C = {θ ∈ Rn | yi ≤ θi, i = 1, . . . , n}.

Next, we introduce shrinkage priors on differences Dθ, where D is the k + 1

th order difference operator defined in (3.3) of Chapter 3. The shrinkage priors
we consider here are the horseshoe, Laplace, and normal priors (see also Faulkner
and Minin, 2018; Onizuka et al., 2024a). The horseshoe and Laplace priors can be
represented by the scale mixtures of normal distribution:

Dθ | τ 2,σ2, u ∼ Nn(0,σ
2U), (5.5)

where U = diag(u2
1, . . . , u

2
k+1, τ

2u2
k+2, . . . , τ

2u2
n) with shrinkage parameters ui and τ .

Here, τ and ui are called global and local parameters respectively, and this formu-
lation enables locally adaptive smoothing. In (5.5), we employ a prior distribution
on Dθ which depends on error variance σ2. The advantage of such a conditional
prior is that the scale of the prior is automatically adjusted when we change units
of observations. Such a formulation of the prior is widely used when we assume the
normal prior (e.g. Polson and Scott, 2012). Since the matrix D is non-singular, the
prior of θ can be rewritten as

θ | τ 2,σ2, u ∼ Nn(0,σ
2(D⊤U−1D)−1). (5.6)

We note that prior distributions for τ and ui depend on the shrinkage priors. The
shrinkage priors we consider in the chapter are expressed as the marginal priors of
the following hierarchical priors.

• Horseshoe prior:

θ | τ 2,σ2, u ∼ Nn(0,σ
2(D⊤U−1D)−1),

τ ∼ C+(0, 1),

u2
i ∼ IG(aui , bui) (i = 1, . . . , k + 1),

ui ∼ C+(0, 1) (i = k + 2, . . . , n),

where U = diag(u2
1, . . . , u

2
k+1, τ

2u2
k+2, . . . , τ

2u2
n).

• Laplace prior:

θ | σ2, u ∼ Nn(0,σ
2(D⊤U−1D)−1),
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u2
i ∼ IG(aui , bui) (i = 1, . . . , k + 1),

ui ∼ Exp(γ2/2) (i = k + 2, . . . , n), γ2 ∼ IG(aγ, bγ),

where U = diag(u2
1, . . . , u

2
k+1, u

2
k+2, . . . , u

2
n).

• Normal prior:

θ | σ2, τ 2, u1, . . . , uk+1 ∼ Nn(0,σ
2(D⊤U−1D)−1),

u2
i ∼ IG(aui , bui) (i = 1, . . . , k + 1), τ 2 ∼ IG(aτ , bτ ),

where U = diag(u2
1, . . . , u

2
k+1, τ

2, . . . , τ 2).

Here, IG(a, b) and C+(a, b) are the inverse-gamma distribution with shape a and
rate b, and the half-Cauchy distribution with location a and scale b, respectively.
We also assume the conjugate proper prior for σ2 such as σ2 ∼ IG(aσ, bσ) for some
hyper-parameters aσ > 0 and bσ > 0.

Such formulations of likelihood and prior distributions lead to tractable full con-
ditional distribution for θ so that we can easily construct an efficient Gibbs sampler.
From (5.4) and (5.6), the resulting full conditional distribution of θ is the trun-
cated multivariate normal (tMVN) distribution. Efficient sampling algorithms for
the tMVN distribution have been developed in recent years. For example, Pakman
and Paninski (2014) proposed an exact Hamiltonian Markov chain algorithm, and
Botev (2017) proposed accept-reject algorithms that create an exact sample from the
tMVN distribution. However, it is known that sampling from the high-dimensional
tMVN distribution is quite challenging even if the dimension of the parameter is
moderately large (e.g. n = 100). To overcome such a sampling problem, we intro-
duce the following approximation of the indicator function in the likelihood function
(5.4). The idea comes from the paper by Souris et al. (2018). They proposed an
approximation of the tMVN distribution via logistic sigmoid function ση(ξi):

1(ξi ≥ 0) ≈ ση(ξi) =
eηξi

1 + eηξi
, i = 1, . . . , n. (5.7)

Then, the approximate truncated multivariate normal likelihood Lη(θ | y) is repre-
sented by

Lη(θ | y) ∝ e−
1

2σ2 (y−θ)⊤(y−θ)
n∏

i=1

(
eη(θi−yi)

1 + eη(θi−yi)

)
. (5.8)
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The approximate distribution (5.8) is also called the soft truncated multivariate
normal distribution by Souris et al. (2018). We can easily show that the approxi-
mate truncated multivariate normal likelihood Lη(θ | y) converges to the truncated
multivariate normal likelihood L(θ | y) as η → ∞ in the sense of L1 convergence
(see also Souris et al., 2018). Hence, the constant η controls the accuracy of the
approximation, and we recommend a large value for η.

5.2.3 Shape constraints

There are many phenomena for which monotonic or concave constraints are ap-
propriate such as the dose-response curve in medicine and the demand curve in
economics. The most popular shape-constraint regression method is the isotonic
regression. Although the isotonic regression is useful in application, the monotone
assumption may be violated at a few points in practice. For example, the global
warming in climate change (Tibshirani et al., 2011) and geological observations in
seismology (Minami, 2020) indicate violations of the monotonicity. As a penalized
isotonic regression, Tibshirani et al. (2011) proposed a nearly isotonic (NI) regres-
sion, and the corresponding estimate is defined by

θ̂ = argmin
θ∈Rn

n∑

i=1

(yi − θi)2 + λ
n−1∑

i=1

(θi − θi+1)+,

where (x)+ = max(x, 0) and λ > 0 is a tuning parameter that controls the violation
of the monotone constraint. Ramdas and Tibshirani (2016) also applied nearly
isotonic constraint to trend filtering. We now consider the Bayesian boundary trend
filtering under the nearly isotonic constraint. First, the optimization problem is
formulated as

min
θ≥y

n∑

i=1

(yi − θi)2 + λ1∥D(k+1)
n θ∥1 + λ2

n−1∑

i=1

(θi − θi+1)+, (5.9)

where λ1,λ2 > 0 are tuning parameters. If the constraint θ ≥ y is removed, the opti-
mization problem is nothing but the original nearly isotonic trend filtering proposed
by Ramdas and Tibshirani (2016). The third term in (5.9) plays a role of nearly
isotonic constraint. In other words, we impose a penalty when the monotonicity is
violated. In the Bayesian context, the solution of the model (5.9) is equivalent to
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the posterior mode under the prior which is proportional to

exp
{
−λ1∥D(k+1)θ∥1

}
exp

{
−λ2

n−1∑

i=1

(θi − θi+1)+

}
. (5.10)

We can easily deal with the first term in (5.10) like (5.6). For the second term
in (5.10), it is useful to employ the variance-mean mixture representation (see e.g.
Polson and Scott, 2013)

a−1 exp{−2c−1(ax)+} =

∫ ∞

0

φ1(x | −av, cv)dv,

where φn(· | a, b) represents n-dimensional Gaussian density with mean vector a and
covariance matrix b. Using this identity, we introduce the prior distribution for the
nearly isotonic constraint as

exp

{
− 1

ρ2σ2

n−1∑

i=1

(θi − θi+1)+

}
=

n−1∏

i=1

∫ ∞

0

φ1(θi − θi+1 | −vi, 2ρ2σ2vi)dvi, (5.11)

and then the conditional prior of θ for nearly isotonic constraint is rewritten as

p(θ | ρ2,σ2, v) =
n−1∏

i=1

φ1(θi − θi+1 | −vi, 2ρ2σ2vi) = φn−1(Pθ | −v, V ), (5.12)

where n−1 is the length of the vector Pθ, P = D(1)
n and V = diag(2ρ2σ2v1, . . . , 2ρ2σ2vn−1)

with a scale parameter ρ2. Note that the scale parameter ρ2 plays a role of tuning
parameter λ2 in (5.9), and we estimate ρ2 from data assuming the prior distribu-
tion on ρ2. In our numerical studies, we use a prior ρ2 ∼ IG(aρ, bρ). Introducing
latent variables v1, . . . , vn−1, the prior is written by conditional Gaussian distribu-
tion, and then the conditional prior of the shape-restricted trend filtering like (5.10)
also becomes Gaussian distribution. While we only consider the monotonically in-
creasing condition, if we assume a nearly decreasing or convex, then we may use
P = −D(1)

n ∈ R(n−1)×n or P = D(2)
n ∈ R(n−2)×n respectively.

Remark 5.2.1 (Posterior propriety). The prior defined by the left-hand side of
(5.11) is improper. If we assume proper priors on the remaining parameters, then
we can show that the joint posterior distribution is proper because the prior p(θ |
ρ2,σ2) = exp{−1/(ρ2σ2)

∑n−1
i=1 (θi − θi+1)+} is bounded by 1 for any θ. Hence, the
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integral
∫

p(y | θ,σ2)p(θ | σ2, τ 2, u)p(θ | ρ2,σ2)dθ. (5.13)

is bounded by the integral of the product of proper density functions.

5.2.4 Markov chain Monte Carlo algorithm

In this subsection, we construct an efficient posterior computation algorithm via
the Markov chain Monte Carlo method. In the proposed model, we can construct
a Gibbs sampler. First of all, we consider the sampling of θ from the posterior
distribution. From (5.6), (5.8) and (5.12), the full conditional distribution of θ is
given by the following form:

φn(θ | µθ,Σθ)
n∏

i=1

(
eη(θi−yi)

1 + eη(θi−yi)

)
,

where µθ and Σθ are some mean vector and covariance matrix. To simplify the
sampling, we put ξi = θi − yi and ξ = (ξ1, . . . , ξn)⊤. Then the full conditional
distribution of ξ is given by

φn(ξ | A−1b, A−1)
n∏

i=1

(
eηξi

1 + eηξi

)
, (5.14)

where the matrix A and vector b depend on the type of shrinkage priors. For
sampling of ξ, the Polya-Gamma data augmentation proposed by Polson et al. (2013)
can be applied, and then we can sample θ from the following three steps:

(i) Sample latent variables ωi | ξi ∼ PG(1, ηξi) for i = 1, . . . , n.

(ii) Sample ξ | ω ∼ Nn(µω,Σω), with

Σω =
(
η2Ω+ A

)−1
, µω = Σω (ηκ+ b) ,

where ω1, . . . ,ωn are latent variables, κ = (1/2, . . . , 1/2)⊤, and Ω = diag(ω1, . . . ,ωn).

(iii) Set θ = ξ + y.

In step 1, PG(b, c) is the Pólya-Gamma distribution with parameter b > 0 and c ∈ R
(see Definition 1 in Polson et al. (2013)), and sampling from the distribution can be
implemented by using R package pgdraw, for example.

93



Although we consider three shrinkage priors (horseshoe, Laplace, and normal
priors), we only show the full conditional distributions for the horseshoe type prior.
Since Gibbs sampling algorithms under the Laplace and normal type priors can also
be derived in the same manner, we here omit them.

Under the horseshoe prior, using the mixture of inverse-gamma representation
of the half-Cauchy distribution, all full conditional distributions are standard prob-
ability distributions (Makalic and Schmidt, 2015). By introducing latent variables
ψ and νi for i = k + 2, . . . , n, it holds that

τ ∼ C+(0, 1) ⇐⇒ τ 2 | ψ ∼ IG(1/2, 1/ψ), ψ ∼ IG(1/2, 1),

ui ∼ C+(0, 1) ⇐⇒ u2
i | νi ∼ IG(1/2, 1/νi), νi ∼ IG(1/2, 1), i = k + 2, . . . , n.

Then we have the following Markov chain Monte Carlo algorithm under the horse-
shoe prior. We note that the full conditional distributions of θ and σ2 depend
on whether we assume the shape constraint or not. Furthermore, when we con-
sider the shape constraint, we need to sample additional parameters ρ2 and vi for
i = 1, . . . , n− 1 from the posterior.

Gibbs sampling algorithm under horseshoe prior

1. Sampling of θ

• Draw ωi ∼ PG(1, ηe⊤i ξ) = PG(1, ηξi), independently for i = 1, . . . , n.

• Draw ξ ∼ Nn(µω,Σω), with

Σω =
(
η2Ω+ A

)−1
, µω = Σω (ηκ+ b) ,

κ = (1/2, . . . , 1/2)⊤, Ω = diag(ω1, . . . ,ωn),

where A and b are as follows.

- (Unconstraint)

A = (In +D⊤U−1D)/σ2, b = −D⊤U−1Dy.

- (Nearly isotonic constraint)

A = (In +D⊤U−1D + PV P )/σ2, b = −(D⊤U−1Dy + P⊤V (Py + v)),

where P = D(1) and V = diag(1/(2ρ2v1), . . . , 1/(2ρ2vn−1)).
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• Set θ = ξ + y

2. Sampling of σ2

• Draw σ2 ∼ IG (ασ, βσ), where ασ and βσ are as follows.

- (Unconstraint)

ασ = n+ aσ, βσ =
n∑

i=1

(yi − θi)2/2 + θ⊤D⊤U−1Dθ/2 + bσ.

- (Nearly isotonic constraint)

ασ = (3n− 1)/2 + aσ,

βσ =
n∑

i=1

(yi − θi)2/2 + θ⊤D⊤U−1Dθ/2 +
n−1∑

i=1

(Pθ)2i /(2ρ
2vi) + bσ.

3. Sampling of τ

• Draw ψ ∼ IG (1/2, 1/τ 2 + 1).

• Draw τ 2 ∼ IG
(
(n− k)/2,

∑n
i=k+2(Dθ)

2
i /(2σ

2) + 1/ψ
)
.

4. Sampling of u

• Draw u2
i ∼ IG (1 + aui , (Dθ)

2
i /(2σ

2) + bσ), independently for i = 1, . . . , k+

1.

• Draw ν2i ∼ IG (1/2, 1/ui + 1), independently for i = k + 2, . . . , n.

• Draw u2
i ∼ IG (1, (Dθ)2i /(2σ

2τ 2) + 1/νi), independently for i = k +

2, . . . , n.

5. Sampling of ρ2 (only when we assume the nearly isotonic constraint)

• Draw vi ∼ GIG (1/2, (Pθ)2i /(4ρ
2σ2), 1/2ρ2σ2), independently for i =

1, . . . , n− 1.

• Draw ρ2 ∼ IG
(
(n− 1)/2 + aρ,

∑n−1
i=1 (Pθ)

2
i /(2σ

2vi) + bρ
)
.

In practical use, we specify hyper-parameters aσ, bσ, aρ, bρ, aui , bui for i =

1, . . . , k + 1. In our numerical studies, we set hyper-parameters aσ = bσ = 0.1,
aρ = bρ = 1, and aui = bui = 1 for i = 1, . . . , k + 1 as default values.
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5.3 Numerical experiments
We illustrate the performance of the proposed method through simulation studies.
In Subsection 5.3.1, we deal with monotone functions as true regression functions.
The aim is to compare the proposed methods with frequentist methods and to see the
difference between unconstrained methods and nearly isotonic constraint methods.
In Subsection 5.3.2, we will discuss the robustness of the shape constraint methods
(nearly isotonic or monotone constraint) for structural misspecification such that
the true boundary trend is not completely monotone.

5.3.1 Simulation (I): Estimation of monotone boundary

We generate the data from the model yi = f(xi) + εi (i = 1, . . . , 100), where f(x)

and ε are a true function and a noise distribution, respectively. We assume the
following two true functions:

(i) Square root (Sqrt): f(x) =
√
x/2

(ii) Piecewise constant (PC):

f(x) = 0.5 · 1[1,20](x) + 1[21,40](x) + 2.5 · I[41,60](x) + 3.5 · 1[61,100](x)

We employ the (upper truncated) half-normal distribution HN(0,
√
π/2/σ) with lo-

cation parameter 0 and variance parameter σ2 to generate the noise εi. We consider
the four scenarios: (a) σ = 0.5, (b) σ = 1, (c) σ = 2 and (d) mixtures of the
half-normal 0.8×HN(0,

√
π/2) + 0.2×HN(0,

√
π/2/3). Hereafter, we often denote

scenarios like (i-a) for example. We adopt the proposed methods: Bayesian bound-
ary trend filtering under the horseshoe, Laplace, and normal priors (denoted by HS,
Lap, and Nor) and nearly isotonic (NI) constrained Bayesian boundary trend filter-
ing for each prior (denoted by HSNI, LapNI, and NorNI for short). As competitors,
we consider the following frequentist methods:

• QS, CS, QSI, and CSI: Quadratic and Cubic spline methods (with/without
isotonic constraint) for estimating boundary curve proposed by Daouia et al.
(2016). The knot of the spline is selected by the Bayesian information criterion
(BIC). R-code is provided by R package npbr.

• QTF: Quantile trend filtering method proposed by Brantley et al. (2020).
The method solves the optimization problem using the alternating direction
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method of multipliers (ADMM) algorithm, where the penalty parameter is
determined by the extended Bayesian information criterion (eBIC). We use
the quantile level 0.99 to estimate the extremal quantile trend. The method
can be implemented by using their R package detrendr.

• FDH and LFDH: Classical nonparametric methods called the free disposal hull
defined by Deprins et al. (1984) and its linearized version (see e.g. Hall and
Park, 2002). The method can also be implemented by R package npbr.

For the proposed Bayesian methods, we generated 10500 posterior samples, then
we removed the first 500 samples, and only every 5th scan was saved. For trend
filtering methods (including QTF), we set the order of k as k = 1 (piecewise lin-
ear) and k = 0 (piecewise constant) for scenarios (i) and (ii) respectively. For the
proposed method, we set η = 500.

To evaluate the performance of estimates, we adopted the root mean squared
error (RMSE), the average length of the credible interval (AL), and the coverage
probability (CP). These criteria are defined by RMSE = {n−1

∑n
i=1(f(xi)− θ̂i)2}1/2,

AL = n−1
∑n

i=1(θ̂97.5,i − θ̂2.5,i), and CP = n−1
∑n

i=1 1[θ̂2.5,i,θ̂97.5,i](f(xi)), respectively,
where θ̂100(1−α),i represent the 100(1 − α)% posterior quantiles of θi. These values
were averaged over 100 replications of simulating datasets. We only reported RMSE
for frequentist competitors.

First, we show one-shot simulation results for some methods in Figure 5.1 when
(b) σ = 1. We can observe that five methods (HS, HSNI, QS, QSI, and QTF) give
reasonable estimates under scenario (i). For scenario (ii), the QS and QSI methods
provide over-shrinkage estimates and the FDH and QTF methods can not capture
some change points, while the proposed methods under the horseshoe prior give
reasonable estimates for piecewise constant structure. A remarkable point is that
the proposed methods under the horseshoe prior illustrate good performance for
both scenarios.

We also report RMSE, AL, and CP averaged over 100 Monte Carlo replications
in Tables 5.1 and 5.2. From Table 5.1, the results indicate that the proposed HS
and HSNI methods provide more accurate point estimates than other Bayesian and
frequentist methods except for scenarios (i-c) and (i-d). Focusing on scenario (i-d),
we can observe that spline methods provide relatively smaller RMSE than those
of the proposed Bayesian methods, and the proposed shape-constrained methods
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significantly improve the RMSE of unconstraint methods. From Table 5.2, the cov-
erage probabilities under the HS and HSNI methods are larger than the nominal
level of 0.95 except for a few cases, whereas the average length of intervals of the
HS and HSNI methods tend to be smaller than other methods under scenario (ii).
Although the proposed methods under the Laplace prior also have reasonable cov-
erage probabilities, the average lengths of intervals tend to be wider than those of
the horseshoe prior.
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Figure 5.1: One-shot simulation results of six methods for two scenarios under the
noise (b). For (i) Sqrt scenario (top panels) and (ii) PC scenario (bottom panels),
the resulting estimates of HS, HSNI, QS, QSI, QTF, and FDH are shown.
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Table 5.1: RMSE averaged over 100 Monte Carlo replications and their standard
deviation (shown in parenthesis). The best score is bolded.

(i) Sqrt
(a) (b) (c) (d)

HS 0.041 (0.013) 0.072 (0.027) 0.122 (0.050) 0.257 (0.141)
Lap 0.134 (0.026) 0.265 (0.058) 0.528 (0.100) 0.347 (0.088)
Nor 0.049 (0.011) 0.078 (0.025) 0.121 (0.050) 0.149 (0.031)

HSNI 0.041 (0.014) 0.070 (0.028) 0.131 (0.075) 0.174 (0.047)
LapNI 0.090 (0.023) 0.153 (0.039) 0.308 (0.083) 0.154 (0.043)
NorNI 0.047 (0.012) 0.077 (0.026) 0.122 (0.056) 0.138 (0.027)

QS 0.083 (0.043) 0.133 (0.088) 0.231 (0.173) 0.120 (0.055)
CS 0.078 (0.043) 0.130 (0.082) 0.248 (0.179) 0.125 (0.062)
QSI 0.064 (0.026) 0.094 (0.044) 0.166 (0.091) 0.108 (0.052)
CSI 0.060 (0.027) 0.092 (0.042) 0.171 (0.087) 0.109 (0.050)
QTF 0.145 (0.037) 0.136 (0.041) 0.170 (0.053) 0.445 (0.042)
FDH 0.209 (0.025) 0.310 (0.042) 0.488 (0.100) 0.357 (0.080)

LFDH 0.170 (0.033) 0.363 (0.120) 0.876 (0.322) 0.952 (0.402)

(ii) PC
(a) (b) (c) (d)

HS 0.060 (0.026) 0.131 (0.041) 0.237 (0.058) 0.276 (0.163)
Lap 0.168 (0.025) 0.297 (0.051) 0.583 (0.116) 0.395 (0.112)
Nor 0.163 (0.016) 0.221 (0.027) 0.282 (0.050) 0.265 (0.040)

HSNI 0.061 (0.035) 0.120 (0.064) 0.230 (0.077) 0.174 (0.070)
LapNI 0.122 (0.017) 0.193 (0.030) 0.318 (0.069) 0.235 (0.038)
NorNI 0.273 (0.023) 0.292 (0.032) 0.291 (0.033) 0.310 (0.038)

QS 0.227 (0.034) 0.320 (0.059) 0.459 (0.147) 0.349 (0.084)
CS 0.240 (0.034) 0.334 (0.059) 0.468 (0.159) 0.364 (0.089)
QSI 0.260 (0.079) 0.333 (0.076) 0.377 (0.059) 0.352 (0.068)
CSI 0.286 (0.083) 0.364 (0.054) 0.365 (0.063) 0.364 (0.061)
QTF 0.207 (0.029) 0.251 (0.050) 0.370 (0.223) 0.273 (0.057)
FDH 0.141 (0.032) 0.239 (0.068) 0.414 (0.108) 0.302 (0.089)

LFDH 0.350 (0.079) 0.602 (0.163) 1.297 (0.403) 1.293 (0.412)
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Table 5.2: Average lengths (AL) and coverage probabilities (CP) of 95% credible
intervals averaged over 100 Monte Carlo replications.

(i) Sqrt
(a) (b) (c) (d)

AL CP AL CP AL CP AL CP
HS 0.200 0.990 0.342 0.983 0.731 0.980 0.989 0.979
Lap 0.444 0.931 0.885 0.925 1.747 0.925 1.588 0.975
Nor 0.175 0.969 0.271 0.961 0.620 0.972 0.853 0.990

HSNI 0.183 0.987 0.287 0.973 0.413 0.939 0.637 0.955
LapNI 0.261 0.919 0.419 0.890 0.778 0.860 0.638 0.972
NorNI 0.160 0.960 0.219 0.920 0.343 0.901 0.430 0.956

(ii) PC
(a) (b) (c) (d)

AL CP AL CP AL CP AL CP
HS 0.211 0.980 0.438 0.969 0.948 0.958 0.780 0.975
Lap 0.564 0.942 1.024 0.941 1.927 0.935 1.616 0.961
Nor 0.583 0.944 0.813 0.939 1.259 0.957 0.978 0.929

HSNI 0.121 0.936 0.210 0.911 0.380 0.834 0.340 0.938
LapNI 0.301 0.872 0.472 0.854 0.814 0.844 0.682 0.901
NorNI 0.329 0.698 0.404 0.700 0.533 0.744 0.494 0.714
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5.3.2 Simulation (II): Estimation of piecewise monotone bound-
ary

In this subsection, we give an additional simulation study to show the usefulness
of the nearly isotonic constraint. Although the monotone constraint θ1 ≤ · · · ≤ θn

is not robust against structural misspecification, we show that the proposed nearly
isotonic method provides a reasonable estimate even if the monotonicity is partially
violated. To verify the robustness of the proposed method, we consider a piecewise
monotone function as a true function in the data generating process yi = f(xi) + εi

for xi = 1, . . . , 100. To this end, we consider the following piecewise sigmoid function
(see also Meyer and Woodroofe, 2000; Minami, 2020):

f(x) = 1 + 4 exp(32x− 8)/(1 + exp(16x− 8)) · 1[0,50](x)

+ 4 exp(16(2x− 1)− 8)/(1 + exp(16(2x− 1)− 8)) · 1[51,100](x).

The true function is monotone except for a jumping point at xi = 50, then the sce-
nario is reasonable to compare the HS, HSNI, and other isotonic constraint methods.
As noise distributions, we also assume the half-normal distribution HN(0,

√
π/2/σ)

with (a) σ = 0.5, (b) σ = 1 and (c) σ = 2 as in Subsection 5.3.1, and report the aver-
aged values of RMSE, AL, and CP. We compare the proposed HS and HSNI methods
as well as the frequentist boundary spline methods with/without the isotonic con-
straint (QS, QSI, CS, and CSI). The number of generated posterior samples is the
same as that of Subsection 5.3.1, and we set k = 1 and η = 500 for the proposed
methods.

We show one-shot simulation results in Figure 5.2 under case (b). From the
figure, it is observed that the QS and CS methods can not capture well the jump
point at x = 50. The QSI and CSI methods do not work at all because of model
misspecification. In contrast to such methods, the proposed HS and HSNI methods
provide smoother boundary trends and their estimates seem to be comparable. The
result shows that the proposed HSNI method is more robust against structural
misspecification than that of assuming a completely monotone constraint.

From Table 5.3, it is observed that the HSNI method has the smallest RMSE.
For uncertainty quantification, we report average lengths and coverage probabilities
of credible intervals in Table 5.4. The proposed methods have reasonable coverage
probabilities except for the HSNI under (c). Therefore, the proposed nearly isotonic
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method can reasonably estimate a piecewise monotone trend as well as a completely
monotonic trend.
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Figure 5.2: One-shot simulation results of six methods (HS, HSNI, QS, QSI, CS,
and CSI) for the piecewise sigmoid scenario under the noise (b).

Table 5.3: RMSE averaged over 100 Monte Carlo replications and their standard
deviation (shown in parenthesis). The best score is bolded.

(a) (b) (c)
HS 0.089 (0.026) 0.194 (0.065) 0.408 (0.083)

HSNI 0.082 (0.019) 0.178 (0.064) 0.375 (0.094)
QS 0.467 (0.074) 0.515 (0.093) 0.659 (0.110)
CS 0.478 (0.065) 0.536 (0.076) 0.706 (0.103)
QSI 1.826 (0.017) 1.809 (0.030) 1.790 (0.052)
CSI 1.826 (0.019) 1.808 (0.031) 1.794 (0.055)

5.3.3 Sensitivity analysis for selecting of η

Since the sigmoid function ση(x) defined by (5.7) converges in the sense of L1-
convergence to the indicator function 1[0,∞)(x) as η →∞, we may select a moderate
large η in practice. We here check the sensitivity of the point estimates of θ for vari-
ous values of η using the same simulated dataset as Subsection 5.3.1. We considered
three values η ∈ {100, 200, 500}. The boxplots of RMSE for the two scenarios (i)
Sqrt and (ii) PC are provided in Figure 5.3, where the noise distribution is half-
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Table 5.4: Average lengths (AL) and coverage probabilities (CP) of 95% credible
intervals averaged over 100 Monte Carlo replications.

(a) (b) (c)
AL CP AL CP AL CP

HS 0.363 0.967 0.645 0.961 1.205 0.933
HSNI 0.311 0.959 0.495 0.927 0.812 0.868

normal with the standard deviation σ = 1. From these figures, we can observe that
the results of RMSE for each η do not change very much.
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Figure 5.3: Sensitivity analysis of η under scenarios (i-b) and (ii-b).

5.3.4 Efficiency of sampling

We evaluate the efficiency of the proposed Gibbs sampler under the same simulation
setting as in Subsection 5.3.1. We here adopt scenario (i-b) in Subsection 5.3.1 and
employ the HS method.

The rejection sampler proposed by Botev (2017) is known as an efficient sampling
method from the tMVN distribution, and it is interesting to compare the proposed
sampler with Botev’s one. However, the algorithm gets stack even if the dimension
n is equal to 50 in our model because the acceptance rate becomes very low in
high-dimension (see also Souris et al., 2018). Pakman and Paninski (2014) also
proposed an excellent sampling algorithm based on Hamiltonian Monte Carlo, and
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the algorithm can be easily implemented by using their R-package tmg. However, it is
known that their method has the following problems: 1) Leaf-frog steps with careful
tuning are necessary to obtain good mixing; 2) The algorithm often fails to produce
answers and has high-computational cost (see also Souris et al., 2018; Ray et al.,
2020). For these reasons, we consider a coordinate-wise sampler to obtain samples
from the tMVN distribution as a competitor. Since the full conditional distribution
of parameter vector θ = (θ1, . . . , θn) is the tMVN distribution, we can easily derive
the full conditional distribution of θi given θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) as one-
dimensional truncated normal distribution (e.g. Okano et al., 2024). By using the
coordinate-wise sampler, we can construct the Gibbs sampler in our model without
approximating the indicator function. Although the run-time of the coordinate-
wise sampler is faster than that of the proposed Gibbs sampler, especially for high-
dimensional situations, we show that the proposed method is more efficient in terms
of the effective sample size (ESS) through a simple simulation study.

We report the result of the sampling efficiency of two methods in Table 5.5.
For a low dimensional case such as n = 50, they are comparable. On the other
hand, it is observed that the larger dimension, the larger difference between them.
For the coordinate-wise sampler, although run-time is relatively faster than the
proposed method, the ESS is relatively small against the proposed one, especially
for high-dimension. The run-time of the proposed method increases rapidly with
dimension, but the ESS is relatively better than that of the coordinate-wise sampler.
Interestingly, we can observe that the ESS of the proposed method tends to increase
with dimension. As an example, we show the sample path and autocorrelation plot
of parameter θ50 which is a specific location in Figure 5.4. It indicated that the
autocorrelation does not rapidly decay for the coordinate-wise sampler, while the
proposed method has reasonable mixing and autocorrelation.

5.4 Real data examples
We apply the proposed methods to two real data examples.

5.4.1 Production activity of air traffic controllers

We consider an efficient frontier estimation that corresponds to the production ac-
tivity of the 37 European air traffic controllers (Mouchart and Simar, 2002). The
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Table 5.5: CPU times (in seconds) and the mean of effective sample sizes (ESS) for
θ1, . . . , θn under scenario (i-b) (in Subsection 5.3.1) with HS method, averaged over
10 runs which are generated 2000 posterior samples after a burn-in period of 500
and after thinning the chain by 5.

n = 50 n = 100 n = 200 n = 300
Time ESS Time ESS Time ESS Time ESS

Proposed 11.17 69.75 47.73 92.59 289.14 112.19 910.72 112.07
Coordinate-wise 12.12 11.83 32.99 11.98 128.34 9.35 343.50 9.57
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Figure 5.4: Trace plots and autocorrelations of posterior samples of θ50 under sce-
nario (i-b) (in Subsection 5.3.1) with HS method. We used 2000 posterior samples
after a burn-in period of 500 and after thinning the chain by 5.
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data was also analyzed by Daouia et al. (2016), and they applied their boundary
spline methods. We can obtain the data in R package npbr. From the scatter plot
of the data in Figure 5.5, we observe that the assumption of a monotone boundary
seems to be reasonable. The x and y-axis indicate the input (an aggregate factor of
a different kind of labor) and output (an aggregate factor of the activity produced,
based on the number of controlled air movements, the number of controlled flight
hours, etc.) variables. We applied the proposed HS and HSNI methods compared
with existing boundary quadratic spline with isotonic constraint (QSI) and LFDH
methods. We note that Brantley’s quantile trend filtering method we used in the
previous section can not be applied to irregular grid data. To handle such an ir-
regular grid, we need to use the proposed trend filtering methods with an adjusted
difference matrix defined in Remark 3.2.1. To avoid numerical instability of the ma-
trix D⊤U−1D in the proposed methods, we employed a transformation of the input
variables as 1000 × x. We set the order of trend filtering as k = 1. We generated
10500 samples (burn-in 500) and then saved the 5th scanned samples.

The results are shown in Figure 5.5. Although the proposed HS method provides
an almost monotonic point estimate, there is observed a decreasing trend between
2000 and 4000. On the other hand, the proposed HSNI method provides a reasonable
point estimate of monotone boundary and uncertainty quantification. The average
length of 95% credible intervals made by the HSNI method was 0.692, which was
considerably smaller than the 0.936 produced by the HS method. Although the point
estimates using the QSI and HSNI methods seem to be comparable, it is observed
that the QSI and LFDH methods tend to give over-fitting estimates to data. In
particular, the LFDH method can not estimate a smooth monotone boundary.

5.4.2 Global warming data

Global warming is one of the important issues in the world. Although the attention
to the problem is often focused on the prediction of future climate change, it is also
important to look back and explore the processes of past climate change. We apply
the proposed method to estimate the past trend of annual temperature anomalies.
The data is available from R package CVXR, and it includes the global monthly and
annual temperature anomalies relative to the mean of 1960–1990 during 1850–2015
(the sample size is 166). The data is equally spaced non-stationary time series data,
we can also observe that the monotonicity assumption is partially violated from the

106



0.0

2.5

5.0

7.5

10.0

12.5

0 2000 4000 6000
input

ou
tp
ut

HS

0.0

2.5

5.0

7.5

10.0

12.5

0 2000 4000 6000
input

ou
tp
ut

HSNI

0.0

2.5

5.0

7.5

10.0

12.5

0 2000 4000 6000
input

ou
tp
ut

QSI

Estimate
95%CI

0.0

2.5

5.0

7.5

10.0

12.5

0 2000 4000 6000
input

ou
tp
ut

LFDH

Figure 5.5: Estimated boundary curves for the proposed methods (HS and HSNI)
and existing frequentist methods (QSI and LFDH) for air controllers data.

scatter plot in Figure 5.6. There exist a few outliers in 1877 and 1878, and they
are reported as unexpected climate change (see e.g. Aceituno et al., 2009). Hence,
the use of the nearly isotonic constraint may be useful. For the data, Tibshirani
et al. (2011) applied the nearly isotonic regression to estimate the mean trend. In
our analysis, we are interested in the estimation of the (upper and lower) boundary
trends not in the mean trend. Estimating boundary trends is useful to clarify the
variability of extreme values, and we can obtain the range of variability as a by-
product.

In this analysis, we applied the proposed HS and HSNI methods. We generated
10500 samples (burn-in 500) and then saved the 5th scanned samples. As competi-
tors, we employ the unconstraint quadratic spline (QS) and quantile trend filtering
(QTF). We set the quantile levels of the QTF method as 0.99 and 0.01. For the HS,
HSNI, and QTF methods, we assume that the order of trend filtering is k = 1.

The results of point estimates and credible intervals are shown in Figure 5.6. It
is observed that the QS method gives a slightly overfitted estimate of the data and
quantile trend filtering tends to induce over-shrinkage. On the other hand, the pro-
posed HS and HSNI methods provide smoother and more locally adaptive boundary
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trend estimates. The HSNI method provides almost monotone boundary trend es-
timates, while for the upper boundary, the monotonicity was violated from 1878
to 1920. Furthermore, average distances between upper and lower point estimates
which is defined by

∑166
i=1 |θ̂upper,i− θ̂lower,i|/166 were 0.328 (HS), 0.439 (HSNI), 0.269

(QS), and 0.431 (QTF), respectively. In terms of the average distance, the proposed
HSNI method is quite similar to the QTF method, and it is also considered that the
QS method overfits the data and underestimates the extent to which data exists.
For uncertainty quantification, average lengths of 95% credible intervals made by
the HS method were 0.100 (lower) and 0.117 (upper), which are smaller than 0.126
(lower) and 0.164 (upper) by the HSNI method, respectively. At first glance, this
result appears as if the assumption of shape constraint was not a reasonable one,
but it also appears to successfully capture the uncertainty in the estimation of the
boundary trend. For example, in Figure 5.6, the 95% credible intervals for the upper
boundary become wider during 1978-1920, and the lower and upper limits of the in-
tervals give the trends like the HS method and monotone trend, respectively. Hence,
it indicates that the HSNI method provides a reasonable uncertainty evaluation to
some extent. As we observed in Section 5.3, if the potential boundary is monotone
or not monotone, the resulting 95% credible intervals of the HSNI method tend to
be narrower than those of the HS method, unlike this result.

5.5 Concluding remarks
In this chapter, we proposed a Bayesian boundary trend filtering using the truncated
multivariate normal working likelihood and global-local shrinkage priors. Using the
approximation of the indicator function in the truncated multivariate normal like-
lihood, an efficient Gibbs sampling algorithm to sample from posterior distribution
was also constructed.

We close this chapter by considering some future directions. Although we employ
the truncated multivariate normal distribution as a working likelihood, it may lead
to undesirable inference when the model is misspecified. To overcome this problem,
we need to consider a kind of calibration method to obtain the correct coverage
probability of credible interval (e.g. Syring and Martin, 2019; Onizuka et al., 2024a).
Another important issue is “robustness” against outliers. However, it is well-known
that the robust estimation of boundary curve is not easy unlike mean curve (e.g.
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Figure 5.6: Estimated boundary curves for the proposed methods (HS and HSNI)
and existing frequentist methods (QS and QTF) for global warming data.

Daouia and Simar, 2005; Daouia and Ruiz-Gazen, 2006; Daouia et al., 2021). In our
framework, the scale constant η in the sigmoid function may play an important role
in controlling the boundary constraint. Developing a suitable selection criterion of
η in the presence of outliers will be interesting future work.
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Chapter 6

Conclusions and Discussions

In this thesis, we proposed several locally adaptive Bayesian smoothing methods
for not only time series data but also spatial data. The proposed methods were
inspired by ℓ1 trend filtering which was originally proposed by Kim et al. (2009).
By assuming different types of working likelihoods, we considered to estimate vari-
ous statistics such as quantiles and boundaries. Introducing global-local shrinkage
priors, the locally adaptive smoothing was achieved, and the performance of the
proposed method was illustrated through simulation and real data analysis. It is a
crucial point that all proposed methods we presented in this thesis can be imple-
mented by efficient algorithms such as MFVB and Gibbs sampler by using mixture
representations or approximations of likelihood function.

There are several future directions for this study. First, it is interesting to apply
other working likelihoods to trend filtering. For example, although we employ the
asymmetric Laplace likelihood in Chapters 3 and 4, it would be possible to extend the
framework to the extended asymmetric Laplace likelihood which is a more flexible
distribution considering an additional shape parameter (e.g. Yan and Kottas, 2017).
Moreover, since the proposed methods do not work well to estimate extremal quan-
tiles, it is also important to extend the proposed methods to smoothing for extremal
quantiles (e.g. Chernozhukov, 2005). For boundary trend filtering, it is considered
to use heavy-tailed distribution (e.g. Desgagné, 2015; Desgagné and Gagnon, 2019;
Hamura et al., 2022a) to deal with outliers. It is also useful to propose a locally
adaptive stochastic frontier model by adding the non-negative technical inefficiency
term. Since the stochastic frontier model (e.g. Aigner et al., 1977) assumes the
error distribution which is the sum of truncated normal distribution and Gaussian
distribution, it is associated with boundary trend filtering. Second, for the quantile
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estimation, there is a crossing problem when we use asymmetric Laplace likelihood
in general. Crossing means the absence of monotonicity with respect to quantile
levels in the estimation of conditional and structural quantile functions. The non-
crossing Bayesian quantile smoothing methods have been developed in recent years
(e.g. Wang and Cai, 2023), and it is expected to extend the proposed quantile trend
filtering to Bayesian non-crossing smoothing. Furthermore, it is also possible to
establish the non-crossing smoothing focusing on the extremal quantiles. Third,
although we only modeled smoothing without covariates, it may be important to
consider the covariates. Since Sadhanala and Tibshirani (2019) considered an ex-
tension of trend filtering to additive models to handle covariates, such an extension
of our proposed model will be also expected. Finally, it is important to prove some
theoretical properties such as posterior consistency for the proposed models. In par-
ticular, it is a challenging issue for the Bayesian boundary trend filtering due to its
non-regularity.
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