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Chapter 1 Background and objective 

1.1 Introduction and Background 

In the last decades, light-weight materials such as fiber reinforced plastics (FRP) and 

aluminum alloy have been widely used to reduce fuel consumption as well as weight 

reduction. The combination of FRP and metallic materials is also attracting attention as 

multi-material design or hybrid design. Adhesive bonding is considered the most 

promising method for joining FRP to FRP or FRP to metallic materials. Therefore, there 

has been growing interest in adhesively bonding in a wide range of industries, including 

the automotive, maritime and space industries. Adhesive bonding plays an important role 

in integrating individual parts and transferring loads. In the design of mechanical 

structures, it is becoming more important to ensure the safety of integrated structure as 

well as individual parts. Structural analysis using the finite element method (FEM) has 

become popular as a simulation tool to solve these problems and contribute to design 

works. 

There are many factors that must be considered in the design of adhesive joints, 

including stress concentration, interfacial strength between adherend and adhesive, 

manufacturing defects, fatigue loading, mixed mode loading, and many others, in order 

to more accurately predict their strength. The stress field near the bonding edge is known 

to exhibit the singularity behavior [1-2]. An example of the stress distribution in the 

adhesive layer for single-lap adhesive joint determined by using theoretical stress analysis 

method [3] is shown in Fig. 1.1. The single-lap joint is a typical adhesive joint in practical 

use, in which thickness changes in a step-like manner at the overlap. The thin adhesive 

layer located at the center of the sandwich structure between two adherends is subjected 

to high shear stress condition. In addition, the joint is also subjected to moment due to the 

mismatch of the loading axes of the two adherends. Because of these structural features, 

the adhesive layer has been subjected to shear stress and tensile stress simultaneously, 

and both of them exhibit the singularity behavior. It can be seen that shear stress 𝜏௫௬ and 

peel stress 𝜎௬ are sharply higher at the edges where 𝑋 𝐿⁄ = 1.0, −1.0 as shown in Fig. 

1.1. Therefore, even in the case of uniaxial loading, it is necessary to evaluate the strength 

of adhesive joints by considering both shear stress and tensile stress and their singularities. 

As can be seen from the above, in adhesive joints, it is important to correctly evaluate 

the stress at the ends and corners where stress concentration occurs. Because the adhesive 

is located in thin layers compared to other adherends, its mesh size must be sufficiently 

fine when using FEM to accurately predict such stress distributions in the adhesive. 

However, it is not reasonable method to obtain accurate stress in the adhesive using finite 

element (FE) simulation with fine mesh, because it results in large volume of analysis 
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data and extremely high computational cost. Therefore, it is necessary to establish a 

simple and accurate analysis method for evaluating the strength of adhesive joints instead 

of computationally heavy FE simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, the method predicting the strength of adhesively joints based on 

fracture mechanics has contributed to the evaluation of fracture phenomena of adhesive 

joints. In fracture mechanics, it has been assumed that local damage inside the adhesive 

has become to crack that propagate in the adhesive layer. For FE analysis based on 

fracture mechanics, a method using cohesive zone modeling (CZM) based on energy 

release rate was proposed. In numerical analysis, CZM can describe the failure process 

as the formation of the cohesive zone, initiation of damage, softening of tractions and 

completely separation of materials, by using the traction-separation law. Other methods 

for analyzing crack initiation or propagation include the extended finite element method 

(XFEM) and continuum damage models. These methods are effective for evaluating 

crack propagation in adhesive, but the computational cost is higher than CZM. Therefore, 

assuming that cracks propagate along the adhesive layer in the adhesively bonded joints, 

inserting the CZM elements into the adhesive layer is considered to be one of the most 

effective methods for evaluating adhesive strength. CZM requires the fracture toughness 

to define the traction-separation law. The fracture toughness corresponds to the area 

 

Fig. 1.1 Stress distribution example in the adhesive for single lap 

adhesive joint obtained by Goland-Reissner analysis [3]. 
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enclosed by the curve of the traction-separation law, and it plays an important role in 

determining complete material failure. 

In designing adhesive joints, brittle failure has been an important issue to be avoided. 

Toughened epoxy adhesives were developed to prevent such brittle failure, and their 

fracture toughness values are several times greater than those of conventional adhesives. 

In general, toughened epoxy adhesive exhibits a tendency for the energy release rate to 

increase with crack propagation as shown by so-called R-curve in Fig. 1.2 [4]. On the 

other hand, conventional epoxy resin does not exhibit R-curve, and crack propagates 

unstably. Therefore, in order to evaluate joint strength of the toughened epoxy adhesive 

using CZM, it is important to obtain the R-curve of the toughened epoxy adhesive and 

evaluate its fracture toughness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The high fracture toughness value of the toughened epoxy adhesive described above 

has been achieved by adding micro rubber particles into the resin. Rubber particles have 

lower modulus of elasticity and deformation resistance compared to epoxy resin. In 

multiaxial stress field, these particles would cause cavitation failure by tensile stress as 

shown in Fig. 1.3 [5]. The black area in Fig. 1.3 (b) shows cavitation fracture. In uniaxial 

tensile stress or pure shear stress conditions, the effect of cavitation is expected to be 

small. However, the fracture mechanism of adhesive is expected to be different in 

multiaxial stress field compared to uniaxial stress field. Therefore, yield criterion of the 

toughened epoxy adhesive should be defined appropriately to account for the effects of 

the stress field. In other words, yield criterion for the toughened epoxy adhesive should 

be defined in a manner that includes the effect of stress multiaxiality (or hydrostatic 

stress). 

 

Fig. 1.2 Typical R-curve behavior of a double cantilever beam (DCB) 

joint under the mixed-mode condition [4]. 
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As described above, there are a number of issues that need to be studied in the design 

of adhesive joints (particularly toughened epoxy adhesive joints). This study specifically 

focused on the toughened epoxy adhesive and investigated the fracture toughness under 

mixed-mode conditions, crack propagation analysis using FE models with CZM, and 

yielding behavior of adhesive joint in multiaxial stress field. 

 

1.2 Literature Survey 

This chapter contains discussions on the previous studies on mixed-mode fracture 

toughness in adhesively bonded joints, failure predictions of adhesively bonded joints and 

yield criteria of ductile adhesive. 

1.2.1 Mixed-mode fracture toughness test 

In recent years much effort has been devoted to the fracture toughness 

characterization of adhesive bonded joints. In order to determine their fracture toughness, 

many experimental methods have been proposed. With regard to the mixed-mode (mode 

I + mode II), the mixed-mode bending (MMB) is commonly used for the characterization 

of the fracture behavior of adhesively bonded joints. 

To ensure the strength of the adhesively bonded joints, ductile adhesive have been 

widely employed. Since ductile adhesive is known to exhibit elastic-plastic behavior and 

cracks propagate in the adhesive layer with stability, it is necessary to evaluate the 

relationship between fracture toughness and crack length during crack propagation (R-

curve, see Fig. 1.2). 

Several authors have presented mixed-mode fracture toughness for adhesively 

bonded joints using MMB [6, 7]. Due to the difficulty in having a sufficient distance 

between crack tip and loading device, the evaluation of R-curve has been limited to crack 

 

(a) Virgin                       (b) Damaged 

Fig. 1.3 Cavitation of damaged rubber particles [5]. 



5 

length up to about 15 mm. It is necessary to select a suitable method in which the crack 

tip is less sensitive to test jig, in order to accurately evaluate the crack propagation 

behavior during test. One of the appropriate apparatuses is Fernlund and Spelt jig [8]. 

This jig has the advantage of a longer ligament section and is particularly suitable for the 

evaluation of R-curve properties because the crack tip is located far enough from the 

loading device. Several studies exist that have evaluated R-curves of mixed-mode fracture 

toughness using Fernlund and Spelt jig [4, 9-10]. However, to the best of the author's 

knowledge, there are no studies that quantitatively evaluate the R-curve of toughened 

adhesive under a wide range of mixed-mode conditions (0 ≤ 𝐺ூூ 𝐺்⁄ ≤ 0.8 ) using 

Fernlund and Spelt jig. Here 𝐺் = 𝐺ூ + 𝐺ூூ , 𝐺ூ  and 𝐺ூூ  are energy release rates in 

modes I and II, respectively, and 𝐺ூூ 𝐺்⁄  is mode ratio. 

1.2.2 Cohesive zone modeling 

Cohesive element can be treated as one of the interface elements which is acting 

between the continuum elements. It has following three characteristics. 

 

1) It has no Young's modulus and Poisson's ratio. 

2) Nonlinear behavior of CZM is controlled by the relationship between traction and 

separation (i.e. traction-separation law). 

3) It allows zero thickness. 

 

Essentially, CZM has been widely used to evaluate the delamination of carbon fiber 

reinforced plastics (CFRP) and the interfacial strength between fibers and matrix resin. 

In recent years, CZM is widely used for design of adhesive joints because it is capable of 

evaluating crack propagation. Failure criterion of CZM is influenced by the relationship 

between traction and separation (traction-separation law). The traction-separation law 

plays an important role in the behavior of the CZM from damage initiation to dissipation 

of its energy. Various traction-separation relationships have been proposed. Typical 

traction-separation laws that have been proposed are known such as bilinear, exponential-

linear, and trapezoidal models as schematically shown in Fig. 1.4. 

The bilinear model is the most basic traction-separation law and has been employed 

in many studies. In terms of its simple triangular shape, it has the advantage of being able 

to be defined with fewer parameters. The bilinear model is often applied to brittle 

materials such as epoxy adhesives [11-14]. Several studies have been conducted on the 

applicability of exponential-linear model [15-17]. Compared to the bilinear model, the 

exponential linear model can deal with toughened materials because the area enclosed by 

the traction-separation curve (i.e. the fracture energy) ensure larger. The trapezoidal 
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model has been employed to adhesive joints with ductile adhesives [18-21]. Failure 

criterion of CZM under mixed-mode conditions is defined by the traction-separation law 

in each mode together with some kind of mixed-mode failure criterion. Several studies 

defined CZM failure criterion under mixed-mode conditions by using the trapezoidal 

model together with linear failure criterion [18-19, 21]. In addition to the linear failure 

criterion, B-K criterion [22-25] and power-law criterion [26] have also been proposed for 

CZM in mixed-mode conditions, so the applicability of these criteria to the toughened 

epoxy adhesive joint under mixed-mode loadings should be discussed. In terms of 

simplicity of the formula, the power-law criterion has the advantage of being easy to use 

and providing an opportunity for widespread in many industries. However, to the best of 

the author's knowledge, previous studies that have evaluated load-displacement curves 

under the mixed-mode conditions using Spelt's jig have used the linear fracture criterion 

but never employed the power-law failure criterion based on the trapezoidal traction-

separation law. 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.3 Plasticity modeling of adhesive 

It has been reported that the strength of toughened epoxy adhesive is affected by 

triaxial tensile stress [27, 28]. As previously described, it is known that toughened epoxy 

adhesive has improved its toughness by adding rubber particles into resign. Bagheri et al. 

observed rubber particles using scanning electron microscope (SEM) and reported that 

their diameters to be 0.2 μm~0.7 μm [29]. Imanaka et al. reported that the addition of 

rubber particles (mean diameter of 70 nm) to epoxy adhesives improved mode I fracture 

toughness over ten times compared to unmodified adhesive [30]. 

It has been reported that rubber particles added to adhesive cavitate under triaxial 

tensile stress, causing crack propagation. Kinloch et al. has suggested that the micro-voids 

 
(a) Bilinear model       (b) Exponential-linear model  (c) Trapezoidal model 

Fig. 1.4 Schematics of typical traction-separation laws. 
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are produced during ductile stable crack growth by cavitation in the rubbery particles, or 

debonding at the particle/matrix interface by using compact tension specimens and SEM 

observations of fracture surfaces formed by stable crack propagation [31]. Scanning 

electron microscopy of fracture surfaces has indicated that cavitation of the rubber 

particles is the major deformation mechanism during crack growth, according to Pearson 

et al. [32]. As can be seen from the above findings, in order to describe yielding behavior 

for toughened adhesive which includes rubber particles, the consideration of hydrostatic 

stress is essential. 

The stress analyses for the adhesive joints have been carried out using von Mises 

yield criterion which is commonly employed in metallic materials. However, von Mises 

yield criterion is not sufficient to reproduce the yielding behavior of toughened epoxy 

adhesive, because this criterion does not take into account the effects of hydrostatic stress. 

One yield criterion that can express the effect of hydrostatic stress on yielding behavior 

is Drucker-Prager model [33-36]. 

In the exponential Drucker-Prager yield criterion, the influence of hydrostatic stress 

can be set by the hydrostatic-stress sensitivity parameter 𝜆. Dean et al. reported that the 

parameter 𝜆 identified from the experimental results of bulk adhesive tensile tests and 

notched plate shear tests can be used to evaluate the stress-strain relationship of another 

adhesive joint such as butt joint [36]. However, it would be reasonable to define the 

hydrostatic stress dependence considering the stress state of adhesive layer, since the 

stress multiaxiality depends on the type of adhesive joint. To the best of the author's 

knowledge, no study has been reported that investigates the appropriate hydrostatic-stress 

sensitivity parameter 𝜆 , taking into account a wide range of stress multiaxiality in 

adhesive layers. This is another important issue that motivated this study. 

 

1.3 Objective and outline of this thesis 

Joints between composites, and multi-material joints between metals and composite 

materials are increasingly being developed in many industries. In response to this 

situation, high-strength adhesives are required to safely maintain the strength of the 

bonded structure. In general, for the same type of adhesive materials, it is known that high 

strength adhesives usually fail by brittle fracture process. Therefore, it is necessary to 

design adhesive joints considering the balance between static strength and fracture 

toughness. The fracture toughness of adhesive joints is often evaluated in terms of Mode 

I and Mode II conditions. However, practical adhesive joints are rarely used only in 

uniaxial loading condition, so they must be evaluated in mixed-mode conditions. 

Recently, rubber-modified epoxy adhesive that improve fracture toughness while 
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maintaining static strength have been developed and widely applied to many structures. 

This type of adhesive shows a ductile fracture rather than brittle one of conventional 

epoxy adhesive in failure, resulting in higher fracture energy. Therefore, it is important 

to measure the relationship between crack length and energy release rate to evaluate 

strength characteristic against crack. 

Traditionally, strength characteristics of adhesive joints have been implemented 

through experimental trial and error. However, the above approach does not work well in 

the situation where model-based development (MBD) is focused on in R&D process. 

Therefore, it is necessary to develop a system that can explain the strength of adhesive 

joints through simulation. In adhesive joints, stress concentration occurs at the edges, 

causing crack initiation and propagation which splits the adhesive layer and leads to 

failure. Considering this fracture process due to crack propagation, the strength of the 

adhesive bonded joint can be predicted by the CMZ embedded in the FE model. The 

fracture toughness of the toughened adhesive is given in the R-curve, and its energy 

release rate increases with crack length. For this reason, this study was conducted to 

investigate whether the crack growth could be predicted by the CZM considering the R-

curve. 

In toughened adhesive joints, the effect of plastic deformation at the crack tip on 

fracture toughness should be considered. Cavitation failure of micro rubber particles 

dispersed in the matrix resin affects the yield behavior of the adhesive. To account for 

cavitation of rubber particles, it is necessary to apply a yield criterion that allows influence 

of hydrostatic stress. In this study, some yield criteria that can be used to simulate the 

yielding and plastic behavior of toughened epoxy adhesives under various hydrostatic 

stress were investigated. 

The main structure of this thesis is shown below. Here in Chapter 1, background of 

this study, survey of the relevant literatures, objective and structure of this thesis are 

explained. In Chapter 2, the fracture toughness values of adhesive joints were measured 

under mixed-mode condition. To obtain the R-curves, a special loading system which was 

proposed by Fernlund and Spelt [8] was used. The R-curves under the various mixed 

mode conditions were verified by comparing them with J-integral analysis results. 

Chapter 3 describes the FE analysis of crack propagation using CZM. The traction-

separation law was defined by using R-curves which was obtained in Chapter 2. The peak 

loads in mixed-mode fracture toughness tests were estimated by CZM. The accuracy of 

the prediction was verified by two types of energy-based failure criteria i.e. linear 

criterion and power-law criterion. 

In Chapter 4, yield criterion and plastic behavior of toughened epoxy adhesive joints 
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were evaluated in three different stress multiaxially conditions including bulk adhesive 

tensile test, thick adherends shear test and butt joints tensile test. Based on this result, 

whether hydrostatic sensitivity parameter which is key parameter of exponential Drucker-

Prager criterion depends on stress multiaxially was examined. 

Chapter 5 is the conclusion of this thesis. It summarizes the main achievements of 

this study and their significance, and also discusses future prospects. 

 

References 

[1] T. Hattori, S. Sakata, T. Hatsuda, G. Murakami. A stress singularity parameters 

approach for evaluating adhesive strength. Trans Jpn Soc Mech Eng. 1988; 31: 718-23. 

https://doi.org/10.1299/kikaia.54.597 

[2] T. Hattori, T. Watanabe. Standardizing of strength evaluation methods using stress 

singularity parameters. Trans Jpn Soc Mech Eng. 2001; 67: 1486-92. 

https://doi.org/10.1299/kikaia.67.1486 

[3] M. Goland, E. Reissner, The stresses in cemented joints, ASME J Appl Mech. 1944; 

11: A17-A27. 

https://doi.org/10.1115/1.4009336 

[4] Azari S, Eskandarian M, Papini M, Schroeder JA, Spelt JK. Fracture load predictions 

and measurements for highly toughened epoxy adhesive joints. Eng Fract Mech. 2009; 

76: 2039-55. 

https://doi.org/10.1016/j.engfracmech.2009.05.011 

[5] T. Ikeda, D. Lee, N. Miyazaki, Effect of Bond Thickness on the Fracture Toughness 

of Adhesive Joints and Its Mechanism. J Adhes Soc. 2006; 3: 97-105. 

https://doi.org/10.11618/adhesion.42.97 

[6] Shahverdi M, Vassilopoulos A P, Keller T. Mixed-mode quasi-static failure criteria 

for adhesively-bonded pultruded GFRP joints. Compos Part A-Appl S. 2014; 59: 45-56. 

https://doi.org/10.1016/j.compositesa.2013.12.007 

[7] Ducept F, Gamby D, Davies P. A mixed-mode failure criterion derived from tests on 

symmetric and asymmetric specimens. Compos Sci Technol. 1999; 59(4): 609–19. 

https://doi.org/10.1016/S0266-3538(98)00105-5 

[8] Fernlund G, Spelt J K. Mixed-mode fracture characterization of adhesive joints. 

Comp Sci Technol. 1994; 50(4): 441-9. 

https://doi.org/10.1016/0266-3538(94)90052-3 

[9] Ameli, A., Papini, M., Schroeder, J.A., and Spelt, J.K., Fracture R-curve 

characterization of toughened epoxy adhesives. Eng Frac Mech. 2010; 77: 521-34. 

https://doi.org/10.1016/j.engfracmech.2009.10.009 



10 

[10] Hafiz, T A, Abdel Wahab, M M, Crocombe, A D and Smith, P A, Mixed-mode 

fracture of adhesively bonded metallic joints under quasi-static loading Eng Fract Mech. 

2010; 77: 3434-45. 

https://doi.org/10.1016/j.engfracmech.2010.09.015. 

[11] M.A.S. Santos, R.D.S.G. Campilho. Mixed-mode fracture analysis of composite 

bonded joints considering adhesives of different ductility. Int J Fract. 2017; 207: 55-71. 

https://doi.org/10.1007/s10704-017-0219-x 

[12] T.E.A. Ribeiro, R.D.S.G. Campilho, L.F.M. da Silva, L. Goglio. Damage analysis of 

composite–aluminium adhesively-bonded single-lap joints. Compos Struct. 2016; 136: 

25-33.  

https://doi.org/10.1016/j.compstruct.2015.09.054 

[13] Elena M. Moya-Sanz, Inés Ivañez, Shirley K. Garcia-Castillo. Effect of the geometry 

in the strength of single-lap adhesive joints of composite laminates under uniaxial tensile 

load. Int J Adhes Adhes. 2017; 72: 23-29. 

https://doi.org/10.1016/j.ijadhadh.2016.10.009 

[14] R.D.S.G. Campilho, M.D.Banea, J.A.B.P.Neto, L.F.M.da Silva. Modelling adhesive 

joints with cohesive zone models effect of the cohesive law shape of the adhesive layer. 

Int J Adhes Adhes. 2013; 44: 48-56. 

http://dx.doi.org/10.1016/j.ijadhadh.2013.02.006 

[15] R.L. Fernandes, R.D.S.G. Campilho. Numerical evaluation of dissimilar cohesive 

models to predict the behavior of Double-Cantilever Beam specimens. Procedia Struct 

Integrity. 2016; 1: 42-9. 

https://doi.org/10.1016/j.prostr.2016.02.007 

[16] Yabin Yan, Takashi Sumigawa, Fulin Shang, Takayuki Kitamura. Cohesive Zone 

Criterion for Cracking along the Cu/Si Interface in Nanoscale Components. Engng Fract 

Mech. 2011; 78(17): 2935-46. 

https://doi.org/10.1016/j.engfracmech.2011.08.010 

[17] Ting Miao, Liqiong Tian, Xiaochang Leng, Zhamgmu Miao, Chengjun Xu. A 

Comparative Study of Cohesive Zone Models for Predicting Delamination Behaviors of 

Arterial Wall. Open Physics. 2020; 18: 467–477. 

[18] M.F.S.F. De Moura, J.P.M. Gonçalves, J.A.G. Chousal, R.D.S.G. Campilho. 

Cohesive and continuum mixed-mode damage models applied to the simulation of the 

mechanical behaviour of bonded joints. Int J Adhes Adhes. 2008; 28(8): 419-26. 

https://doi.org/10.1016/j.ijadhadh.2008.04.004 

[19] Campilho RDSG, de Moura MFSF, Domingues JJMS. Using a cohesive damage 

model to predict the tensile behaviour of CFRP single-strap repairs. Int J Solids Struc. 



11 

2008; 45: 1497–512. 

https://doi.org/10.1016/j.ijsolstr.2007.10.003 

[20] M.N. Cavalli, M.D. Thouless. The Effect of Damage Nucleation on the Toughness 

of an Adhesive Joint. J Adhesion. 2001; 76: 75-92. 

https://doi.org/10.1080/00218460108029618 

[21] Campilho RDSG, Banea MD, Neto JABP, et al. Modelling adhesive joints with 

cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int J Adhes 

Adhes. 2013; 44: 48–56. 

https://doi.org/10.1016/j.ijadhadh.2013.02.006. 

[22] Kenane, M., Benzeggagh, M.L. Mixed-mode delamination fracture toughness of 

unidirectional glass/epoxy composites under fatigue loading. Compos Sci Technol. 1997; 

57 (5): 597–605. 

https://doi.org/10.1016/S0266-3538(97)00021-3 

[23] Balzani C, Wagner W, Wilckens D, Degenhardt R, Büsing S, Reimerdes HG. 

Adhesive joints in composite laminates-A combined numerical/experimental estimate of 

critical energy release rates. Int J Adhes Adhes. 2012; 32: 23–38. 

https://doi.org/10.1016/j.ijadhadh.2011.09.002 

[24] Mathews M, Swanson SR. Characterization of the interlaminar fracture toughness of 

a laminated carbon/epoxy composite. Compos Sci Technol. 2007; 67: 1489–98. 

https://doi.org/10.1016/j.compscitech.2006.07.035 

[25] Bui QV. A modified Benzeggagh-Kenane fracture criterion for mixed-mode 

delamination. J Compos Mater. 2011; 45(4): 389–413. 

https://doi.org/10.1177/0021998310376105 

[26] F.A.A. Nunes, R.D.S.G. Campilho, Mixed-mode fracture analysis of adhesively-

bonded joints using the ATDCB test specimen. Int J Adhes Adhes. 2018; 85: 58-68. 

https://doi.org/10.1016/j.ijadhadh.2018.05.019 

[27] Wang CH, Rose LRF. Determination of triaxial stresses in bonded joints. Int J 

Adhesion Adhesives. 1997; 17: 17-25. 

https://doi.org/10.1016/S0143-7496(96)00028-0 

[28] Chun HW, Peter C. Plastic yielding of a film adhesive under multiaxial stresses. Int 

J Adhes Adhes. 2000; 20: 155-64. 

https://doi.org/10.1016/S0143-7496(99)00033-0 

[29] Bagheri R, Pearson R A. Role of particle cavitation in rubber-toughened epoxies: 

1. Microvoided toughening. Polymer. 1996; 37: 4529-38. 

https://doi.org/10.1016/0032-3861(96)00295-9 

[30] Makoto Imanaka, Ryousuke Orita, Yosinobu Nakamura, Masaki Kimoto. 



12 

Comparison of failure mechanisms between rubber-modified and unmodified epoxy 

adhesives under mode II loading condition. J. Mater. Sci. 2008; 43: 3223-33. 

https://doi.org/10.1007/s10853-008-2557-6 

[31] Kinloch A J, Shaw S J, Tod D A, Hunston DL. Deformation and fracture behavior 

of a rubber-toughened epoxy:1. Microstrucuture and fracture studied. Polymer. 1983; 

24: 1341-54. 

https://doi.org/10.1016/0032-3861(83)90070-8 

[32] Pearson R A, Yee A F. Toughening mechanisms in elastomer-modified epoxies 

Part 2 Microscopy studies. J. Mat. Sci. 1986; 21: 2475-88. 

https://doi.org/10.1007/BF01114294 

[33] Dean G, Crocker L, Read B, Wright L. Prediction of deformation and failure of 

rubber-toughened adhesive joints. Int J Adhes Adhes. 2004; 24: 295-306. 

https://doi.org/10.1016/j.ijadhadh.2003.08.002 

[34] Garcı´a JA, Chiminelli A, Garcı´a B, Lizaranzu M, Jiménez MA. Characterization 

and material model definition of toughened adhesives for finite element analysis. Int J 

Adhe Adhes. 2011; 31: 182-92. 

https://doi.org/10.1016/j.ijadhadh.2010.12.006 

[35] Chiminelli A, Breto R, Jiménez MA, Velasco F, Abenojar J, Martínez MA. 

Experimental method for the determination of material parameters of plasticity models 

for toughened adhesives. Int J Adhes Adhes. 2016; 68: 182-7. 

https://doi.org/10.1016/j.ijadhadh.2016.03.004 

[36] Quan H, Alderliesten R. On the effect of plastic model on simulation of adhesive 

bonded joints with FM94. Int J Adhes Adhes. 2021; 110: 102916. 

https://doi.org/10.1016/j.ijadhadh.2021.102916 



13 

Chapter 2 Mixed-mode fracture toughness evaluation of adhesive joints 

2.1 Introduction 

In practical adhesive structures, the adhesive joints are subjected to complicated 

stress conditions due to their complexity of the cross-sectional geometry and the multi-

directional loading. Therefore, evaluation method that account for combined stress is 

necessary to predict the strength of the adhesive joints. 

Toughened epoxy adhesive is prominently used in structural component such as 

airframes, turbine blades and repair for the CFRP components. Some toughened 

adhesives are characterized by crack propagation before failure. Therefore, it is important 

to be able to predict crack propagation behavior under mixed-mode conditions. It is 

necessary to clarify the R-curve behavior of highly toughened epoxy adhesives under the 

various mode ratios. 

MMB test and Arcan test are well-known methods for evaluating mixed-mode 

fracture toughness. These methods cover a wide range of mixed-mode loading conditions 

from mode I to mode II and used to assess the mixed-mode interlaminar fracture 

toughness of CFRP or the fracture toughness of adhesive bonded joints. The MMB test 

has a unique characteristic that combines the DCB test and the 3-point bending end-

notched flexure (ENF) test. In the MMB test, the crack tip approaches the loading punch 

as the crack propagates, so the energy release rate is affected by the external force from 

the punch [1]. The Arcan test is not appropriate for evaluating fracture toughness along 

with crack propagation because the specimen is as small as the compact tension (CT) test 

and the ligament length is short. For this reason, this study uses the link-type jig proposed 

by Fernlund-Spelt [2], in which the crack tip is less affected by the constraint of the 

apparatus and can accommodate longer crack length. This jig enables accurate evaluation 

of fracture toughness during crack propagation. 

This chapter intends to evaluate the fracture toughness of adhesives during crack 

propagation in mixed-mode conditions by using theoretical method and FEM. The mixed-

mode fracture toughness tests are performed using a link-type jig proposed by Fernlund-

Spelt. The characteristic of R-curve behavior is evaluated up to crack length of 25 mm 

from initiation. The goal is to validate the J-integral of fracture toughness tests using FE 

analysis by comparing the energy release rate at crack propagation with experimental 

results, and to establish an analytical method for the energy release rate in link-type 

fracture toughness test jig. 
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2.2 Loading system of mixed-mode fracture toughness test 

Fig. 2.1 presents the mixed-mode loading system that proposed by Fernlund-Spelt, 

featuring a mechanical link with hinge and arm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

This jig enables the DCB specimen to be subjected to bending deformation while 

opening crack, giving Mode I and Mode II deformations simultaneously, and allows the 

fracture toughness tests under a wide range of mixed-mode conditions. The characteristics 

of the apparatus are as follows. 

 

1) Due to the relatively longer distance between the loading point and the support point 

compared to other jigs, it can provide sufficient ligament length. 

2) By setting the pins in the adequate position the mode ratio can be changed. 

3) Mode ratio can be determined by changing the hinge distance. 

 

Therefore, it is possible to obtain R-curves of adhesive joints with crack propagation 

at various mode ratios. 

 

2.3 Evaluation method for mixed-mode energy release rate 

2.3.1 Energy release rate based on beam theory and mode partitioning 

According to Spelt et al. [2] the energy release rate for the jig shown in Fig. 2.1 can 

be derived as follows. The DCB specimen was supported at upper-rod and lower-rod, and 

it was subjected to loads 𝐹ଵ and 𝐹ଶ by constraining the vertical displacement of the 

right end. The applied loads 𝐹ଵ and 𝐹ଶ for a given jig load 𝐹 can be determined by 

𝑆௜ (𝑖 = 1, 2, 3, 4) as follows: 

 
Fig. 2.1 Mixed mode loading system proposed by Fernlund-Spelt [2]. 
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where 𝑆௜ denote the lengths between each pin. Note that mixed mode ratios (𝐺ூூ/𝐺்) 

can be defined by 𝑆௜ just changing the pin arrangement in the jig. The mixed-mode ratio 

given as a function of 𝐹ଵ and 𝐹ଶ will be discussed later. 

Based on the Bernoulli-Euler beam theory, neglecting the adhesive layer, the total 

energy release rate 𝐺 in the DCB test for given loads 𝐹ଵ and 𝐹ଶ is given by: 

 

 

 

 

where  𝐵 and ℎ are the width and thickness of the adherend, respectively, 𝑎 is the crack 

length, and 𝐸 is the Young’s modulus of the adherend. Since unidirectional CFRP was 

used as the adherend, the Young’s modulus 𝐸 was replaced with 𝐸ଵଵ, that is elastic 

modulus in the fiber direction. Note that Eq. 2.3 neglects the adhesive layer. 

The phase angle of loading 𝜓 was defined as: 

 

 

 

 

The energy release rates in mode I and II are given by: 

 

 

 

 

 

 

2.3.2 Energy release rate considering adhesive layer 

Fernlund and Spelt [3] further considered the elastic deformation of the adhesive 

layer based on the theory of a beam placed on an elastic support as follows. The external 

forces 𝐹ଵ and 𝐹ଶ are separated into mode I component 𝑓ଵ and mode II component 𝑓ଶ, 

respectively, as 

𝐹ଵ = 𝐹
𝑆ଶ

𝑆ଷ
,                                           (2.1) 

𝐹ଶ = 𝐹
𝑆ଵ𝑆ସ

𝑆ଷ(𝑆ଷ + 𝑆ସ)
,                          (2.2) 
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Then the energy release rate, considering adhesive thickness 𝑡, is given by the equation: 

 

 

 

where 𝑎  is crack length, and 𝐸  and ℎ  are elastic modulus of the adherend and 

thickness, respectively. 𝛷ூ and 𝛷ூூ are given by the equations: 

 

 

 

 

 

 

 

where 𝛼 = 2.946 is a calibration constant determined by a FE analysis [4]. 𝐸௔ and 𝐺௔ 

are the elastic and shear modulus of adhesive, respectively. The phase angle is given by 

the following equation: 

 

 

 

In addition, the total energy release rate 𝐺 is separated into the individual energy 

release rates 𝐺ூ and 𝐺ூூ, which are calculated by Eqs. 2.5 and 2.6 using the phase angle 

𝜓. 

 

2.4 Validation of mode ratio using FE analysis 

2.4.1 FE model 

In order to evaluate the R-curve accurately, whether the mode ratio with respect to 

crack propagation would be remained constant was examined using FE analysis. 

Specifically, the theoretical values of 𝐺ூ and 𝐺ூூ derived with Eq. 2.9 were compared 

with those derived from the FE analysis. 

A two dimensional (2D) linear elastic FE analysis was conducted with the FE code 
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MSC-Marc. The experimental loading devices were modeled by a combination of beam 

and links. Prior to conducting the FE analysis using beam and link elements, it was 

confirmed that the values 𝐹ଵ and 𝐹ଶ calculated from the FE analysis agreed with the 

values obtained from the given 𝐹 according to Eqs. 2.1 and 2.2. 

The DCB specimen was modeled with plane strain four node quadrilateral elements. 

The adhesive layer was meshed with twelve elements across the thickness. The crack was 

introduced by double nodes along edges of elements on the middle of adhesive thickness. 

The size of the element at the crack tip was 0.015 mm. The overall mesh and boundary 

conditions are illustrated in Fig. 2.2. Load 𝐹 was applied at point B. The movement of 

the specimen was constrained in the vertical direction at its right end. The mechanical 

properties used in this simulation are presented in Table 2.1. Subscripts 1, 2 and 3 used 

in the table correspond to fiber direction, width direction and thickness direction of 

adherend, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Boundary conditions and mesh pattern for FE analysis. 

Table 2.1 Mechanical properties of adhesive and adherend. 
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The energy release rate was calculated using the virtual crack closure technique 

(VCCT), for the load 𝐹 of 100 N. The analysis was performed under the mode ratio 

𝐺ூூ/𝐺் of 0.8, 0.68, 0.55 and 0.21 with the crack length 𝑎 of 0 mm, 10 mm, 20 mm, 40 

mm, 60 mm. The geometric nonlinearity is considered in this analysis. The effect of any 

residual stress was not considered in the analysis. 

2.4.2 FE results 

The mode ratio behaviors as a function of the crack length under the given specific 

mode ratios were compared between the theoretical values and FE results. The mode ratio 

𝐺ூூ/𝐺் as a function of crack length 𝑎, defined by the beam theory and FE analysis is 

presented in Fig. 2.3. As shown in this figure, it was confirmed that the mode ratio 𝐺ூூ/𝐺் 

keeps an almost constant value throughout the crack length. This figure also shows that 

the mode ratio obtained by the FE analysis agrees well with that calculated by the beam 

theory irrespective of crack length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Fracture toughness test of CFRP adhesive joints under mixed-mode condition 

2.5.1 Materials 

The material of adherend is as follows. Unidirectional CFRP prepreg sheets with a 

nominal thickness of 0.2 mm were used as an adherend of the DCB specimen. The fiber 

of the CFRP was TR50S and the matrix resin was #350, Mitsubishi chemical. The 

unidirectional CFRP prepregs were stacked as [0°]40 and placed in a vacuum bag then 

cured in autoclave under the pressure of 0.2 MPa and a temperature of 130℃. The 

mechanical properties of the CFRP are listed in Table 2.1. 

The adhesive used for the DCB specimen was film epoxy adhesive (AF163-2U, 

 
Fig. 2.3 Relationship between mode ratio and crack length. 



19 

nominal thickness of 0.14 mm, 3M). The material properties of adhesive were obtained 

by tensile test. The preparation of specimen is as follows. The 24 laminated adhesive film 

was put in a bag and vacuumed for a few minutes to avoid air inclusions. Then, it was 

clamped between release-treated steel plates via 3 mm thickness gauges and cured at 

120℃ for 1 h. After cooling to the room temperature, the bulk adhesive plate was trimmed 

into a dumbbell shape specimen. The shape and dimensions of the specimen are shown 

in Fig. 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The test method is as follows. A quasi-static tensile test was conducted using a 

tensile test machine (AG-Xplus, Shimadzu) at room temperature and the test speed of 0.5 

mm/min, while the strain was measured with an extensometer (SIE-560SA, Shimadzu). 

 

Fig. 2.3 Shape and sizes of dumbbell specimen for tensile test (Thickness = 

3.0 mm). 

 

       Fig. 2.4 Stress-strain curve of the bulk adhesive. 
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The stress-strain curve of the bulk adhesive is shown in Fig. 2.4. Young’s modulus and 

Poisson’s ratio were obtained from the slope of the elastic region of stress-strain curve, 

as presented in Table 2.1. 

2.5.2 Preparation of the DCB specimen 

The DCB specimen used for the mixed-mode fracture test is shown in Fig. 2.5. The 

preparation of the specimen was as follows. Prior to bonding, the bonding surface was 

polished with emery paper #180, and cleaned with acetone to remove dust, oil, and release 

agents. Two layers of the film adhesive were placed between the adherends. A 0.01 mm 

thick metal film coated with a release agent was inserted in the middle of adhesive layer 

to induce initial crack. Polytetrafluoroethylene (PTFE) films were placed between the 

adherend to control the adhesive thickness, resulting a nominal value of 0.2 mm. The 

specimen was clamped by clips and cured in the thermostatic chamber at 120℃ for 1 h. 

To observe the crack propagation behavior clearly, the side of the joints was polished 

with emery paper #1500 along the adhesive layer after removing the excess adhesive. 

 

 

 

 

 

 

 

 

 

 

2.5.3 Test procedure 

Fracture toughness tests were conducted using the Fernlund-Spelt loading jig 

described as in Fig. 2.6. As schematically illustrated in Fig. 2.1, the DCB was supported 

at upper and lower points in the end, subsequently the loads 𝐹ଵ and 𝐹ଶ were applied via 

pins attached to the adherends. The load 𝐹 and the crosshead displacement 𝛿 at the 

point A were measured by a loadcell and an encoder mounted on the test machine, 

respectively, and they were recorded during the test with a frequency of 5 Hz. The crack 

tip image was recorded using an optical microscope camera mounted on an XYZ stage. 

The crack growth length was measured by the displacement of the stage using a linear 

gauge (LG-1100 N, Mitsutoyo). The test was conducted with a test machine (AG-100NE, 

Shimadzu) at a crosshead speed of 0.5 mm/min. Three mixed-mode conditions 𝐺ூூ/𝐺் =

0.21, 0.55, 0.80 and DCB test corresponding to 𝐺ூூ/𝐺் = 0 were conducted. 

 
Fig. 2.5 Shape and sizes of adhesively bonded DCB specimen. 
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2.6 Experimental results and discussion 

2.6.1 Fracture toughness tests 

The load-displacement curves and crack growth behaviors for various mode ratios 

are shown in Fig. 2.7. Additionally, microscopic images of the crack tip for crack lengths 

of 0.2 – 5.0 mm are also indicated. The direction of crack propagation is from left to right. 

The load-displacement curves are almost linear up to the maximum load. 

In the condition close to Mode I side, crack tip could be found relatively clear. On 

the other hand, the condition close to Mode II side, it was difficult to confirm where the 

crack tip due to microcracks occur in front of the crack tip. The microcracks occurred in 

front of the crack in accordance to the increase in Mode II component. In this study, 

microcracks generated discontinuously at the crack tip were not regarded as cracks. The 

crack length was determined with the tip of the microcracks connected to the main crack 

at the crack tip. The approximate crack growth rates were measured and ranged from 

approximately 0.07 mm/sec to 0.18 mm/sec. This figure indicates following facts. 

 

(1) In the cases of 𝐺ூூ/𝐺் = 0 and 0.21, the crack propagation initiates at the peak load, 

and then the crack grows with decreasing load. The crack propagated almost straightly 

along the adhesive-layer line. 

(2) In the cases of 𝐺ூூ/𝐺் = 0.55 and 0.80, the crack propagation starts before the load 

reaches the maximum load. The crack propagated by the microcracks connecting to the 

front of the main crack. The microcracks were inclined at approximately 45°  with 

respect to the adhesive-layer line. 

 

Fig. 2.6 Experimental setup using the Fernlund-Spelt loading jig 

for mode ratio 𝐺ூூ/𝐺் = 0.55. 
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(a) 𝐺ூூ/𝐺் = 0.00 (Mode I is dominant.) 

 

 
(b) 𝐺ூூ/𝐺் = 0.21 (Mode I is dominant.) 

 

 
(c) 𝐺ூூ/𝐺் = 0.55 (The effect of mode II is remarkable.) 

 

 
(d) 𝐺ூூ/𝐺் = 0.80 (The effect of mode II is remarkable.) 

 

Fig. 2.7 Load-displacement and crack extension-displacement curves and 

microscopic images of adhesive layer for typical mode ratios. 
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(3) In the case of 𝐺ூூ/𝐺் = 0.80, coalescence of micro-cracks was observed at the front 

of the crack tip. A similar behavior in the vicinity of the crack tip under mode II loading 

condition was observed in the previous study by Blackman et al [5]. 

 

In the mixed-mode conditions (𝐺ூூ/𝐺் ≥ 0.55) where the shear mode was dominant, 

the crack propagation behavior was almost the same as in the pure shear mode condition, 

where microcracks appeared at the crack tip before crack propagation and they connected 

with each other. This is one of new findings in this work. 

2.6.2 Damage zone length 

The damage zone length was measured using the images recorded during mixed-

mode fracture tests. The damage zone was defined as the area where stress whitening and 

microcracks are confirmed in front of the crack tip. The length of the damage zone is the 

distance from the crack tip to the end of the damage zone. The relationship between the 

length of damage zone and the crack growth is shown in Fig. 2.8. This figure indicates 

following facts. 

 

(1) Under the mode Ⅰ loading, the damage length 𝐿 is almost constant regardless of the 

crack growth ∆𝑎. 

(2) The damage length increases as mode Ⅱ component increases. 

(3) The damage growth rate ∆𝐿 ∆𝑎⁄  increases as mode Ⅱ component increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.8 Relationship between length of damage zone and crack 

growth. 
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2.6.3 Fracture surface-roughness 

The fracture surface of the adhesive exhibits various morphologies and 

characteristics depending on the mode ratio. The observation of the fracture surface of 

the DCB specimen was conducted in order to investigate what kind of relationships or 

characteristics exist between mode ratios and fracture surfaces. The microscopic surface 

morphology was observed using the digital microscope (VR-3050, Keyence). The 

fracture surface roughness was determined by means of the area roughness parameter 𝑆௔ 

(arithmetical mean height) which is the extension of 𝑅௔ (arithmetical mean height of a 

line) to a surface. It expresses the difference in height of each point compared to the 

arithmetical mean height of surface. 

Typical 3D digital microscopic images of the fracture surfaces for various mode 

ratios are shown in Fig. 2.9. The crack growth direction is from left to right. Size of the 

observation area is 8 mm × 8 mm, and its position is just ahead of the initial crack tip. 

The contour level indicates the height of the fracture surface. This figure indicates 

following facts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) In the cases of 𝐺ூூ/𝐺் =0 and 0.21, surface roughness is relatively flat. This implies 

that the crack propagates almost straight along the adhesive-layer as shown in Figs 2.7 

(a) and (b). 

(2) In the cases of 𝐺ூூ/𝐺் =0.55 and 0.80, the small crests are found on the surface. The 

surface roughness is significantly higher than those in the cases of 𝐺ூூ/𝐺் =0 and 0.21. 

This also implies that the crack progresses while the microcracks are connected to the 

 
Fig. 2.9 Microscopic view of fracture surfaces for typical mode ratios. 
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front of the main crack, as shown in Figs 2.7 (c) and (d). 

(3) The surface roughness was found to be the highest in the case of 𝐺் = 0.80. This 

implies that the microcracks coalesce with each other during crack propagation in the 

mode II predominant condition. 

 

The surface roughness parameters for various mode ratios are summarized in Fig. 

2.10. This figure shows that 𝑆௔ increases with the increase in the mode II component. 

This is because the crack propagation path develops a more complicated shape as the 

mode II component increases. 

 

 

2.6.4 SEM observation of fracture surfaces 

The fracture surfaces were observed with a SEM (JSM-6510A, JEOL). Figure 2.11 

shows the SEM observation images of the fracture surfaces for the mode ratios of 

𝐺ூூ/𝐺் = 0, 0.21, 0.55, and 0.80, respectively, which correspond to those in Fig. 2.9. 

In the case of 𝐺ூூ/𝐺் =0, fracture surface was found to be relatively flat and many 

voids of approximately 1 μm in diameter were observed. These voids would be induced 

by cavitation of the rubber particles contained in the adhesive due to the high tri-axial 

tensile stress under mode-I loading condition [6-8]. 

In the case of 𝐺ூூ/𝐺் =0.21, voids were also observed because mode I still be 

dominated. However, deformation of hackle patterns different from 𝐺ூூ/𝐺் = 0 was 

observed on the surface. This would be due to the deformation of mode II component. 

In the case of 𝐺ூூ/𝐺் =0.55 and 0.8, the hackle pattern deformation became more 

 
          Fig. 2.10 Relationship between surface roughness and mode ratio. 
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significant with an increasing mode II component. Note that even under a high mode II 

condition, the voids were still observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7 Fracture toughness based on J-integral 

2.7.1 FE models 

Fracture toughness value was evaluated with FE model using J-integral method to 

compare with theoretical value. The J-integral is considered more appropriate for 

evaluating the energy release rate of toughened adhesive than VCCT, because J-integral 

is less sensitive to the mesh shape of the crack tip. Especially in the Mode II side 

conditions, the mesh at the crack tip could be distorted and affect the value of the energy 

release rate. 

The FE models were same as shown in Fig. 2.2. The J-integral was adopted in the 

crack tip instead of VCCT. The J-integral path was performed along an arbitrary mesh 

group encircling the crack tip of the adhesive layer. 

2.7.2 Comparing experiment and FE results 

Figure 2.12 shows the relation between the total energy release rate, 𝐺், and crack 

growth, Δ𝑎, for various mode ratios. 𝐺் was calculated by the three methods, simple 

beam theory, beam theory considering adhesive layer, and J-integral of FE analysis, 

respectively. 

The energy release rates calculated by the beam theory considering the adhesive 

layer are almost the same as those in the FE results. The results calculated by the simple 

 

Fig. 2.11 SEM observation of fracture surfaces for typical mode ratios. 
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beam theory are apparently lower than those obtained with the FE results. 

The difference in 𝐺் between the simple beam theory and the FE model was found 

to be more significant in the region of high mode II component. Hafiz et al. [9] also 

reported for an adhesively bonded steel joint with a brittle adhesive that the energy release 

rate calculated by FEM agrees well with the energy release rate calculated by Eq. 2.9 

considering the adhesive layer. From these results, it would be concluded that the 

consideration of the adhesive layer is of vital importance for accurate 𝐺் calculation. 

Figure 2.12 also indicates that 𝐺் was almost constant independently of the crack 

length in the cases of 𝐺ூூ/𝐺் =0 and 0.21, whereas in the cases of 𝐺ூூ/𝐺் = 0.55, 0.68, 

and 0.80, it increases with the crack growth up to an approximately 10 mm. Azari et al. 

[10] reported that the slope of the R-curve increased with the increase in the ratio of mode 

II. This characteristic of R-curve agrees with that of the relationship between length of 

damage zone and crack growth as shown in Fig. 2.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7.3 R-curve behavior 

Figure 2.13 depicts the relationship between the total energy release rate 𝐺் and 

the mode ratio 𝐺ூூ/𝐺், along with the experimental and the corresponding FE analysis 

results. 

This figure is used to investigate the relationship between the R-curve and mode 

ratio. Here, 𝐺்ௌ denotes the steady state energy release rate over the plateau region of 

the R-curve which was obtained by averaging 𝐺் from 10mm to 25mm in Fig. 2.12. 

𝐺்஼ denotes the critical energy release rate at the crack initiation which means the 𝐺் 

of Δ𝑎 = 0 in Fig. 2.12. It was found that both 𝐺்஼ and 𝐺்ௌ increased as a function of 

 
Fig. 2.12 Relationship between total energy release rate and crack growth 

with various mode ratios. 
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𝐺ூூ/𝐺் and the difference between 𝐺்஼ and 𝐺்ௌ increased with increase of the mode 

II component. The other comparable studies have also indicated similar trends [10-12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7.4 Discussion 

The reasons why the difference between 𝐺்஼ and 𝐺்ௌ increased with increase of 

the mode II component are discussed. Generally, at the crack tip in adhesive joints under 

mode I loading, the stress multiaxiality is high and the plastic region is small. However, 

as the mode II component increases, the stress multiaxiality decreases and the plastic 

region expands. Therefore, it is well known that fracture toughness increases with the 

increase in the mode II component [5, 9, 11-12]. 

Furthermore, it has been also known that an increase in mode II component creates 

microcracks inclined toward the interface in the vicinity at the crack tip [5, 12]. Thus, the 

increase of the mode II component forms the complicated damage area at the crack tip 

where plastic region and microcracks were exist. 

The reason why the difference between 𝐺்஼ and 𝐺்ௌ increases with the increasing 

mode II component have explained from the viewpoint of the damage zone of mode II 

component [3, 11]. However, the expansion of the plastic region and damage zone 

contributes to the increase in both 𝐺்஼  and 𝐺்ௌ . Therefore, only two reasons are 

insufficient to explain why the increase in the mode II component increases the slope of 

R-curve. 

The results of this study imply that the difference between both 𝐺்஼  and 𝐺்ௌ 

relates to the crack propagation appeared in Fig. 2.7. This complicated path caused rough 

fracture surface especially mode II dominant condition described as in Fig. 2.9. The 

 

Fig. 2.13 Relationship between total energy release rate and mode ratio. 
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complicated crack path would increase the crack growth resistance. These results could 

explain the characteristic of the R-curve where the difference between 𝐺்஼  and 𝐺்ௌ 

increases with the increase in mode II component. 

 

2.8 Conclusions 

Fracture toughness tests for adhesively bonded CFRP joints under mixed I and II 

mode conditions were conducted by means of the Fernlund–Spelt DCB test, where a 

highly toughened epoxy adhesive was used. The main findings of this study are as 

follows: 

 

1. The total energy release rate 𝐺்  increased with the increase in the mode II 

component. In the mode ratios 𝐺ூூ/𝐺் = 0 and 0.21, 𝐺் was almost constant 

irrespective of crack length, whereas in the cases of  𝐺ூூ/𝐺் = 0.55, 0.68 and 

0.80, 𝐺் increased up to approximately 10 mm crack length, then it saturated 

for further crack growth.  

2. The difference between 𝐺்஼ (= 𝐺் at the onset of crack growth) and 𝐺்ௌ (=

𝐺் at the steady state) increases with the increase in mode II component. This 

reason may occur because the crack propagation path has a more complicated 

shape with the increase in mode II component, and the complicated crack 

propagation path increases the crack growth resistance. Reflecting such crack 

growth behavior, the surface roughness 𝑆௔ increased with the increase in mode 

II component. This is because the crack propagation path develops a more 

complicated shape as the mode II component increases. 

3. From SEM observation of the fracture surfaces, under the pure mode I condition 

( 𝐺ூூ/𝐺் =0), many voids induced by a high triaxial tensile stress were observed 

on the relatively flat fracture surface. As the mode II component increased, the 

pleated deformation became more dominant, wherein many voids were still 

observed until the mode ratio  𝐺ூூ/𝐺் reached 0.55. On the fracture surface for 

 𝐺ூூ/𝐺் = 0.80 (where the mode II component was the highest), a sharply ridged 

deformation was observed, wherein the growth of voids were suppressed under 

the low triaxial tensile-stress condition. 
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Chapter 3 Crack propagation of adhesive joints using cohesive zone models under 

the mixed-mode conditions 

3.1 Introduction 

In the case of fracture mechanics problems such as cohesive failure of adhesive 

bonded joints, delamination of CFRP laminates, interfacial fracture of dissimilar 

materials and fatigue failure, the use of cohesive zone model (CZM) has been more 

increasing in recent years. These models are able to deal with simulation of onset of crack 

and propagation. In general, CZMs are implemented in FE models between solid elements 

or shell elements. CZMs may have specific thickness or zero thickness. Because it is not 

continuum elements but interfacial elements and does not have Young's modulus and 

Poisson's ratio, so zero thickness is not a problem. Once the behavior of traction-

separation law between the element and another one is clear, CZMs can be applied. 

The use of ductile adhesive has increased for vehicles because the high fracture 

toughness contributes the safety. Therefore, it is important to set appropriate traction-

separation curve and CZM parameters for ductile adhesives. And the verification whether 

the CZMs could work well under the mixed-mode conditions is needed. 

In this chapter the crack propagation of adhesive joints with toughened epoxy 

adhesive under the mixed-mode condition was evaluated. The interest of this study is to 

clarify whether the crack propagation for every mode ratio could predict using trapezoidal 

traction-separation in this adhesive. And the appropriate of the CZM’s energy-based 

power-law failure criterion was evaluated compared to conventional liner criteria. 

3.2 Traction-separation law 

CZM was originally introduced to treat small scale yielding conditions at the crack 

tip in linear elastic fracture mechanics [1, 2]. The energy which has been consumed in the 

region where traction force acts between the continuum elements can deal with as failure 

criterion, and crack propagation can be simulated. The discretization model which was 

embedded into FE model of the relationship between traction and cohesive energy is CZM. 

This special interface element is applicable to delamination of CFRP and crack 

propagation of adhesive joints. 

The behavior of the CZM is defined by the traction 𝑡௜ and separation 𝛿௜ acting 

between the continuum elements, and the relationship between them is expressed in Eq. 

3.1. 

 

 

 

The relationship between traction and separation is called traction-separation law. A 

𝑡௜ = 𝑓(𝛿௜)     (𝑖 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼)                        (3.1) 
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typical triangular shape (bilinear) traction-separation law relationship under the mode I 

condition is shown in Fig. 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The area under the traction-separation curve OAB corresponds to the energy at 

which CZM completely disappear. The fracture energy value of crack propagation per 

area 𝐺௜ expressed in Eq. 3.2 is equal to the area under the traction-separation curve. 

 

 

 

 

 

The traction-separation curve between OA described as Fig. 3.1 is linear relation, 

and CZM functions as a linear spring. Assuming that the CZM is inserted between the 8-

nodes solid element, the relationship between the traction and separation can be expressed 

as in Eq. 3.3. 

 

 

 

 

 

 

where 𝐾௜ is the elasticity matrix in the mode I, II, and III. 
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                             (3.2) 

 
Fig. 3.1 Bilinear traction-separation law relationship under mode I 

condition. 
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When CZM satisfies damage onset criterion Eq. 3.4, it corresponds to point A in Fig. 

3.1. Where 𝑡ே , 𝑡ௌ  and 𝑡்  are the maximum traction in mode I, II and III, and this 

equation can define the damage onset condition in three-dimensional. 

 

 

 

 

The segment AB in Fig. 3.1 represents a linear degrease in traction. If CZM meets 

the damage onset condition Eq. 3.4, the traction can be expressed by Eq. 3.5 using the 

damage variable 𝑑௜. 

 

 

 

When the damage variable reaches 𝑑௜ = 1 , the CZM is considered to have 

completely failed, and the traction is 𝑡௜ = 0, corresponding to point B in Fig. 3.1. The 

damage variable 𝑑௜ can be given as: 

 

 

 

 

Note that 𝛿௜  is not the current separation but the maximum separation. Because the 

damage to CZM is not recovered by unloading. 

Traction-separation law can also be given in other forms. For example, the 

trapezoidal shape shown in Fig. 3.2, the damage variable 𝑑௜ can be given as follows. 
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𝑡௜ = (1 − 𝑑௜)𝐾௜𝛿௜                             (3.5) 

𝑑௜ =
𝛿௨,௜൫𝛿௜ − 𝛿ଵ,௜൯

𝛿௜൫𝛿௨,௜ − 𝛿ଵ,௜൯
                                      (3.6) 

 

Fig. 3.2 Trapezoidal shape traction-separation relationship under 

the Mode I condition. 
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The plateau region (segment AB in Fig. 3.2) is as follows. 

 

 

 

 

The segment BC where traction degrease is as follows. 

 

 

 

 

The energy-based failure criterion for CZM can take into account mixed-mode 

conditions as shown in Eq. 3.9. Here, the most representative linear criterion is shown, 

other mixed-mode failure criteria have also been proposed, such as the power-law and the 

BK law [3]. 

 

 

 

 

Although this chapter presents a three-dimensional traction-separation law, the CZM of 

a two-dimensional four-node shell element can also be applied when the adhesive joint is 

employed as a plane stress or plane strain. 

3.3 Critical energy release rate for CZM 

3.3.1 Mode II fracture toughness 

The fracture toughness values under mode I and II loading conditions are required 

for CZM estimation under mixed-mode conditions. In the case of CZM, how to define 

fracture toughness values is very important things. This study aims to deal with ductile 

adhesive. Since ductile adhesives have been subject to plastic deformation and 

microcracks during crack propagation, fracture toughness values used in CZM should be 

defined based on the R-curve characteristic. In Mode II condition, the obtaining of the 

relationship between energy release rate and crack length is very difficult, because the 

crack tip is not clear. The appropriate method for evaluating the R-curve under the Mode 

II condition has been proposed by compliance-based beam method (CBBM) [4, 5]. 

Therefore, ENF test for the Mode II fracture toughness value was evaluated using CBBM 

method. 

3.3.2 ENF tests  

Fig. 3.3 depicts the geometry and dimensions of the ENF specimens. Unidirectional 
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𝑑௜ = 1 −
𝛿ଵ,௜

𝛿௜
                                (3.7) 

𝑑௜ = 1 −
𝛿ଵ,௜൫𝛿௨,௜ − 𝛿௜൯

𝛿௜൫𝛿௨,௜ − 𝛿ଶ,௜൯
        (3.8) 
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CFRP prepreg sheets with a nominal thickness of 0.20 mm were used as an adherend. 

The CFRP fiber was TR50S, and the matrix resin was #350 (Mitsubishi Chemical). The 

unidirectional CFRP prepregs were stacked at [0°]40 and cured in an autoclave. A rubber-

modified epoxy adhesive film (AF163-2U, 3M) was used. 

 

 

 

 

 

 

 

 

 

The ENF test was conducted under a three-point bending loading. Loading 

displacement was applied at the rate of 0.5 mm/min using a universal testing machine 

(AG-100NE, Shimadzu) to induce stable crack propagation. The experimental load–

displacement (𝑃 − 𝛿) curves for the ENF test are presented in Fig. 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initially, the load increased linearly with displacement, and the slope of the load–

displacement curve decreased as the fracture process zone (FPZ) developed. At the 

maximum of the load–displacement curve, the FPZ was fully developed and crack 

propagation occurred. Subsequently, the cracks propagated further as the load decreased. 

 

Fig. 3.3 Schematic representation of ENF test. 

 

Fig. 3.4 Load–displacement curve for ENF test. 
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This load–displacement curve was used as fundamental data to obtain the R-curve. 

3.3.3 Data reduction scheme of CBBM 

In the ENF tests of adhesively bonded joints, crack length identification is difficult 

because of the formation of an FPZ with microcracks ahead of the crack tip. To overcome 

this, a data reduction scheme based on the concept of equivalent crack length, called the 

compliance-based beam method (CBBM), has been proposed [4-5], which depends only 

on the compliance of the specimen during testing. The outline of this data-reduction 

scheme is as follows: Based on the Timoschenko beam theory, the compliance of the ENF 

specimen, 𝐶 = 𝛿 𝑃⁄ , is given by: 

 

 

 

 

where 𝛿 is the applied displacement and 𝑃 is the applied load. 𝐵, ℎ, and 𝐿 are the 

dimensions of the specimen described in Fig. 3.3. 𝐸௙ and 𝐺ଵଷ are the flexural modulus 

of the specimen and the shear modulus of the adherend, respectively. The material 

properties of CFRP are shown in Table 3.1. 𝐸௙ can be obtained using Eq. 3.11, using the 

initial compliance 𝐶଴ and initial crack length 𝑎଴. 

 

 

 

 

where 𝐶଴௖௢௥௥ is given by 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐸௙ =
3𝑎଴

ଷ + 2𝐿ଷ

8𝐵ℎଷ𝐶଴௖௢௥௥
,                                        (3.11) 

𝐶଴௖௢௥௥ = 𝐶଴ −
3𝐿

10𝐺ଵଷ𝐵ℎ
.                             (3.12) 

𝐶 =
3𝑎ଷ + 2𝐿ଷ

8𝐸௙𝐵ℎଷ
+

3𝐿

10𝐺ଵଷ𝐵ℎ
,                                        (3.10) 

Table 3.1 Mechanical properties of CFRP. 
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During the crack propagation process, an FPZ was generated at the crack tip. The crack 

length used in Eq. 3.10 has been affected by the FPZ. Therefore, the real crack length 𝑎 

was replaced by the effective crack length 𝑎௘  which included the effect of the FPZ. 

Combining Eqs. 3.10 and 3.11 yields: 

 

 

 

 

where 𝐶௖௢௥௥ is given by: 

 

 

 

 

Note that 𝐶଴௖௢௥௥ is the correction factor for compliance 𝐶଴ at the initial crack length 

𝑎଴, and 𝐶௖௢௥௥ is the correction factor for compliance 𝐶 at crack length 𝑎. The energy 

release rate under mode II condition can be obtained using the Irwin–Kies relation, as: 

 

 

 

 

3.3.4 R-curve 

Based on the load–displacement curve shown in Fig. 3.4, the R-curve obtained 

according to the CBBM method is displayed in Fig. 3.5 (a). The energy release rate along 

the vertical axis was calculated using Eq. 3.15, and the equivalent crack length on the 

horizontal axis was calculated using Eq. 3.13. 

 

 

 

 

 

 

 

 

 

 

 

𝑎௘ = 𝑎 + Δ𝑎ி௉௓ = ൤
𝐶௖௢௥௥
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൬
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ଵ/ଷ

,                                     (3.13) 

𝐶௖௢௥௥ = 𝐶 −
3𝐿

10𝐺ଵଷ𝐵ℎ
.                                        (3.14) 
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𝑃ଶ

2𝐵

𝑑𝐶

𝑑𝑎
=

9𝑃ଶ𝑎௘
ଶ

16𝐵ଶℎଷ𝐸௙
.                                        (3.15) 

 

Fig. 3.5 R-curve under mode II loading condition. 
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The profile of the R-curve is summarized as follows.  

(1) In the first stage as shown in Fig. 3.5 (a), the initial increasing tendency occurring in 

the range 0 ≤ ∆𝑎௘ ≤ 5mm reproduces the FPZ development.  

(2) In the second range 5 ≤ ∆𝑎௘ ≤ 15mm, the slope of the R-curve is gentle.  

(3) In the third range, the slight upward trend observed in the region 16 ≤ ∆𝑎௘ ≤ 18mm 

is explained by the influence of the applied load as the crack approaches the central region 

of the specimen. 

The critical energy release rate is generally defined as the value at which the energy 

release rate remains constant with respect to crack length. However, in some cases, the 

energy release rate was not constant for crack growth, as shown in Fig. 3.5 (a). In this 

case, the critical energy release rate is adopted as the value at which the slope of the R-

curve is minimized [6]. Therefore, as shown in Fig. 3.5 (b), the energy release rate was 

differentiated with respect to the equivalent crack length to obtain the minimum slope. 

The energy release rate corresponding to 𝑑𝐺 𝑑𝑎௘⁄  become the minimum value was 

regarded as the critical energy release rate. 

3.3.5 Mode I fracture toughness 

In the case of Mode I condition, the R-curve can be easily obtained by using 

conventional DCB test. Because in Mode I, the crack tip is easily observed and the crack 

propagates stably. The R-curve under the Mode I condition is shown in Fig. 3.6 [7]. Note 

that the DCB specimen was same adhesive joint as in the ENF test in this chapter. As 

shown in this figure, the energy release rate is approximately constant irrespective as 

crack length. Therefore, the critical energy release rate for the Mode I condition can be 

defined by averaging the energy release rate during stable crack propagation in the range 

10 ≤ ∆𝑎 ≤ 25mm. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.6 R-curve under mode I loading condition. 
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In the case of the adhesive joints used ductile adhesive, the energy release rate in the 

plateau region of the R-curve was considered as the critical energy release rate value. 

3.4 Determination of mixed-mode fracture criteria 

To estimate the strength of adhesive joints using the CZM, a failure criterion under 

mixed-mode conditions is required, in addition to the mode I and II critical energy release 

rate values. In this study, the two criteria expressed in Eqs. 3.16 and 3.17 were determined 

under various mixed-mode conditions provided in the previous study [7]. 

The linear failure criteria can be defined as: 

 

 

 

The power-law failure criteria can be defined as: 

 

 

 

 

 

Figure 3.7 (a) shows the experimentally obtained total energy release rate, 𝐺் =

𝐺ூ + 𝐺ூூ , as a function of the mode ratio, 𝑚 = 𝐺ூூ 𝐺்⁄  (refer to [7]), along with the 

corresponding calculations using the linear fracture model (𝑛 = 1.0) and the power-law 

model (𝑛 = 1.8) . Figure 3.7 (b) shows the failure envelope between 𝐺ூ 𝐺ூ஼⁄  and 

𝐺ூூ 𝐺ூூ஼⁄ . From these figures, it was found that the power-law model accurately describes 

the mixed-mode failure criteria, whereas the linear model exhibits a significant prediction 

error (e.g., the error in 𝐺் at 𝑚 = 0.8 was as large as 25% of the experimental result). 

This implies that a power-law fracture model with 𝑛 = 1.8 is suitable for this adhesive. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.7 Comparison of numerical and experimental total strain energy 

release rate in plateau region. 

𝐺௶

𝐺௶௖
+

𝐺ூூ

𝐺ூூ௖
= 1,                                                 (3.16) 
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= 1,                                    (3.17) 
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3.5 CZM FE simulation of mixed-mode fracture of adhesively bonded joints 

3.5.1 Cohesive damage model based on linear failure criterion 

FE simulations were performed to verify the accuracy of the CZM in predicting 

mixed-mode fractures in adhesively bonded joints. CZM FE simulations were performed 

using the power-law-type model (Eq. 3.17) and Campilho’s linear model (Eq. 3.16), 

respectively. 

First, the well-known Campilho’s CZM framework is briefly summarized. Figure 

3.8 shows trapezoidal cohesive damage model proposed by Campilho et. al [8]. The 

behavior of the adhesive was integrated into the cohesive damage law and inserted into 

the trapezoidal cohesive damage model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the pure mode model, the area circumscribed by the trapezoid is equal to the 

critical energy release rate 𝐺௜஼  (𝑖 = 𝛪, 𝐼𝐼) for each mode. Before damage onset, the 

following equation holds between the traction and separation for each mode. 

 

 

 

 

Here 𝜎௜, 𝛿௜, and 𝑒௜ (𝑖 = 𝛪, 𝐼𝐼) are the stress, the relative displacement, and the stiffness 

parameter in each mode, respectively. In the mixed-mode model, damage onset is 

described by the following quadratic stress criterion. 

 

 

𝜎௜ = 𝑒௜𝛿௜      (𝑖 = 𝛪, 𝐼𝐼).                                        (3.18) 

ቆ
𝜎௶

𝜎௨,௶
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ଶ

+ ቆ
𝜎ூூ

𝜎௨,ூூ
ቇ

ଶ

= 1 ,                                        (3.19) 

 

Fig. 3.8 Trapezoidal softening law for pure and mixed-mode 

cohesive damage models [8]. 
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where 𝜎௨,௜ (𝑖 = 𝛪, 𝐼𝐼) represents the local strength in each mode for the pure mode model. 

Considering Eqs. 3.18 and 3.19, the following equation is obtained for the displacement 

at damage onset. 

 

 

 

 

where 𝛿ଵ,௜  and 𝛿ଵ௠,௜  (𝑖 = 𝛪, 𝐼𝐼)  are the relative displacements in each mode 

corresponding to the damage initiation for the pure mode and mixed-mode, respectively. 

Subsequently, the equivalent mixed-mode displacement is defined as: 

 

 

 

 

and mixed-mode ratio 𝛽௜ (𝑖 = 𝛪, 𝐼𝐼) is defined as the relative displacement: 

 

 

 

 

The mixed-mode relative displacement at the onset of the damage 𝛿ଵ௠  and the 

corresponding relative displacement for each mode 𝛿ଵ௠ ,௜ (𝑖 = 𝛪, 𝐼𝐼) are given as: 

 

 

 

 

 

 

 

 

 

Because a quadratic relative displacement criterion similar to that in Eq. 3.20 holds at the 

onset of the softening process, the mixed-mode relative displacement at the stress 

softening onset 𝛿ଶ௠  and the corresponding relative displacement for each mode 

𝛿ଶ௠,௜ (𝑖 = 𝐼, 𝐼𝐼) are obtained as: 

ቆ
𝛿ଵ௠,௶
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= 1,                                        (3.20) 

𝛿௠ = ට𝛿௶
ଶ + 𝛿ூூ

ଶ  ,                                        (3.21) 

𝛽௜ =
𝛿௜

𝛿௶
 .                                        (3.22) 

𝛿ଵ௠ = 𝛿ଵ,௶𝛿ଵ,ூூඨ
1 + 𝛽ூூ

ଶ

𝛿ଵ,ூூ
ଶ + 𝛽ூூ

ଶ 𝛿ଵ,௶
ଶ   ,                                        (3.23) 
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The energy release rate in each mode at complete failure, 𝐺௜ (𝑖 = 𝐼, 𝐼𝐼), can be obtained 

from the area of the trapezoid shown in Fig. 3.8, as: 

 

 

 

 

where 𝜎௨௠,௜ and 𝛿௨௠,௜ (𝑖 = 𝛪, 𝐼𝐼) are the maximum stress and the relative displacement 

at which complete failure occurs in modes I and II, respectively. Substituting Eq. 3.27 

into the linear fracture criterion in Eq. 3.16, the ultimate mixed-mode relative 

displacement 𝛿௨௠  and the corresponding relative displacement for each mode 

𝛿௨௠,௜ (𝑖 = 𝛪, 𝐼𝐼) are derived as: 

 

 

 

 

 

 

 

 

3.5.2 Cohesive damage model based on power-law criterion 

For the power-law fracture criterion, Eq. 3.17, the same trapezoidal CZM modeling 

framework as that of the linear criterion is provided in Eqs. 3.18–3.26. Substituting Eqs. 

3.22 and 3.27 into Eq. 3.17, the power-law criterion for the trapezoidal CZM is derived 

as: 

 

 

𝛿ଶ௠ = 𝛿ଶ,௶𝛿ଶ,ூூඨ
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2
൫𝛿ଶ௠,௜ − 𝛿ଵ௠,௜ + 𝛿௨௠,௜൯ ,                                        (3.27) 
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ଶ ) − 𝛿ଵ௠(𝛿ଶ௠ − 𝛿ଵ௠)(𝑒௶𝐺ூூ௖ + 𝛽ூூ
ଶ 𝑒ூூ𝐺௶௖)

𝛿ଵ௠(𝑒௶𝐺ூூ௖ + 𝛽ூூ
ଶ 𝑒ூூ𝐺௶௖)

,            (3.28) 
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Thus, from Eqs. 3.21 and 3.30, 𝛿௨௠ and 𝛿௨௠,௜ for power-law criterion are given by: 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the traction–separation behaviors predicted by the linear and power-law fracture 

models were the same up to the onset of softening, and the difference appeared only in 

the softening process. 

3.5.3 Damage evolution in CZM 

For the trapezoid in Fig. 3.8, the damage parameter 𝑑௠ is determined. 

in the plateau region of the trapezoid, 

 

 

 

 

in the stress softening part, 

 

 

 

 

where 𝛿௠ is the current relative displacement, 𝛿ଵ,௠ and 𝛿ଶ,௠ are the first and second 

inflection points of the trapezoid. The maximum relative displacement 𝛿௨,௠  is the 

displacement at which complete failure occurs. The softening behavior after the damage 

evolution defined in Eq. 3.34 can be expressed as: 
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𝜎௜ = (1 − 𝑑௜)𝑒௜𝛿௜   (𝑖 = 𝛪, 𝐼𝐼).         (3.35) 
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When the linear fracture criterion is employed, the damage parameter is expressed 

as a function of 𝛿ଵ௠, 𝛿ଶ௠ and 𝛿௨௠ (see Eqs. 3.23, 3.25, 3.28). In the case of the power-

law criterion, 𝛿ଵ௠ and 𝛿ଶ௠ are expressed the same equations as linear fracture criterion, 

and 𝛿௨௠ is given by Eq. 3.31. 

Thus, when the coordinates of each point of the trapezoid under mixed modes and 

the relationship between the equivalent displacement and damage variable are determined, 

the damage evolution can be predicted. Specifically, for the case of using the linear 

fracture criterion, several CZM FE simulations of the fracture process of adhesive joints 

under mixed modes have been published, where they employed a user-defined subroutine 

[9-13]. 

Instead of writing the subroutine, the FE analysis software ABAQUS allows us to 

perform the CZM simulation using damage datasets in tabular form, which comprises the 

damage variables and relative displacements after damage initiation for each mode ratio 

𝑚. The mode ratio, defined by the energy release rate 𝑚 = 𝐺ூூ 𝐺்⁄ , in Eq. 3.36 is written 

as a function of the stiffness 𝑒ூ, 𝑒ூூ and the mixed-mode ratio 𝛽ூூ. 

 

 

 

In the present simulation, the damage data from m = 0 (pure mode I) to m = 1 (pure 

mode II) for every mode ratio of 0.1, i.e., m = 0, 0.1, 0.2, …, and 1, were prepared in a 

tabular input file. The damage data for a given mode ratio were automatically calculated 

via interpolation using the ABAQUS software. 

3.6 CZM FE modeling 

To estimate the damage evolution behavior in the mixed-mode CZM, it is necessary 

to determine the traction–separation trapezoids under mode I and II loadings. 

The load–displacement curves for these specimens were estimated based on the 

following boundary conditions. In a previous study, the DCB specimen shown in Fig. 3.9 

was used for mode I fracture toughness tests [7], and its FE model is illustrated in Fig. 

3.10 (a). The specimen arms were modeled using plane strain 4-node quadrilateral shell 

elements (CPE4: ABAQUS). The adhesive layer was modeled using 4-node cohesive 

elements (COH2D4: ABAQUS), including a trapezoidal cohesive damage model. The FE 

model for the DCB test comprised a combination of rigid beams and links that reproduced 

the experimental test. The displacements of the upper and lower arms were applied 

through links. 

 

𝑚 =
𝑒ூூ𝛽ூூ

ଶ

𝑒௶ + 𝑒ூூ𝛽ூூ
ଶ .                               (3.36) 
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Fig. 3.10 (b) shows the FE model for the ENF test. The specimen was modeled using 

plane strain 4-node quadrilateral shell elements (CPE4: ABAQUS). The adhesive layer 

was modeled using 4-node cohesive elements (COH2D4: ABAQUS), including a 

trapezoidal cohesive damage model. The ENF specimen was subjected to a three-point 

bending loading, as shown in Fig. 3.10 (b). The loading cylinder and support are defined 

based on the geometry of the circular arc. For the contact between the arc curve and the 

mesh, Coulomb friction of 𝜇 = 0.1 was assumed. 

The traction–separation trapezoids were determined such that the area bounded by 

them matched the energy release rates in the plateau region of the R-curves of the DCB 

and ENF tests for modes I and II, respectively. Under the above constraint, the maximum 

tractions, 𝜎௨,ூ and 𝜎௨,ூூ , were determined iteratively such that the load–displacement 

curves calculated by the CZM FE simulation produce the best fit to the corresponding 

 
Fig. 3.9 Shape and sizes of adhesively bonded DCB specimen [7]. 

 

Fig. 3.10 Boundary conditions and mesh patterns for FE analysis for DCB 

and ENF specimens. 
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experimental results in the DCB and ENF tests. 

The determined traction–separation trapezoids for pure modes I and II are 

illustrated in Fig. 3.11. The CZM parameters of modes I and II are listed in Table 2. Figs. 

3.12 (a) and (b) display the calculated and experimental load–displacement curves for the 

mode I and mode II tests, respectively. As shown in these figures, the predicted load–

displacement curves agree well with the experimental curves for both the DCB and ENF 

tests, and the differences in the peak load values between the calculation and the 

corresponding experiment are less than 2%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11 Traction–separation laws for pure mode Ⅰ and Ⅱ loading 

conditions. 

Table 2 CZM parameters under pure modes I and II. 
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To confirm the validity of the cohesive model using the tabular damage input file, a 

simple FE analysis using a one-element FE model was conducted under several mixed-

mode conditions. The analytical model is illustrated in Fig. 3.13. A simple cohesive 

element corresponding to the adhesive layer was modeled using 4-node cohesive element 

(COH2D4: ABAQUS). The CZM parameters listed in Table 2 were used in the FE model. 

The displacements of the two lower-side nodes were constrained, while displacements 

𝛿௑  and 𝛿௒  were applied to the two upper-side nodes in the 𝑋  and 𝑌  directions, 

 
Fig. 3.12 Comparison of numerical and experimental load-

displacement curves for DCB and ENF specimens. 

 

Fig. 3.13 Comparison of traction–separation curves derived from the 

theoretical equations and those obtained from one-element CZM FE 

calculations under various mixed-mode conditions. 
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respectively. The relationship between 𝛿௑ and 𝛿௒ was determined using Eq. 3.36 for a 

given mode ratio 𝑚. 

The traction–separation curves obtained from the one-element FE calculation using 

the linear (𝑛 = 1.0) and power-law (𝑛 = 1.8) fracture models were compared with the 

theoretical curves under the three mixed-mode conditions 𝑚 = 0.2, 0.5, and 0.8, as 

shown in Fig. 3.13. The results calculated using the one-element FE model agree well 

with the theoretical results irrespective of the fracture model and mixed mode. Therefore, 

the FE analysis with tabular-form input data for 11 discrete mode ratios (m = 0, 0.1, 0.2, 

…, 1) is sufficiently accurate. 

3.7 CZM FE simulation and discussion 

The CZM FE model for the mixed-mode F-S DCB is shown in Fig.3.14. This model 

had the same boundary conditions as those in a previous study [7]. The analytical 

procedure is described as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The adherends were modeled using 4-node plane strain shell elements (CPE4: 

ABAQUS), and the adhesive layer was modeled using 4-node cohesive elements 

(COH2D4: ABAQUS). Loading jigs featuring a mechanical link that allowed mixed-

mode conditions were modeled using a combination of beams and links. The mode ratio 

is calculated using the distance between the nodes of the beam elements corresponding to 

the length of the arm of the links in the experiment. In the CZM FE simulation, the beam 

with upper and lower supports was subjected to a fixture displacement 𝛿, as shown in 

Fig. 3.14. The friction coefficient between adherend and support was set to 𝜇 = 0.1. The 

 
Fig. 3.14 Boundary conditions and mesh pattern for FE analysis for mixed-

mode F-S DCB. 
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mechanical properties of the adherends used in this analysis are listed in Table 1, and the 

CZM parameters of the adhesive layer are summarized in Table 2. Viscosity was included 

in the cohesive elements to improve the convergence of the calculations; the viscosity 

parameter was set to 0.001. The simulations were performed using a linear model (𝑛 =

1.0) and a power-law model (𝑛 = 1.8) for mode ratios of 𝑚 = 0.21, 0.5, 0.68 and 0.8. 

Comparisons between the experimental load–displacement curves obtained in a 

previous study [7] and the CZM FE simulations under various mixed-mode conditions 

are shown in Fig. 3.15. Both the experimental and simulated load–displacement curves 

exhibit a peak load followed by a gradual decrease for both the linear and power-law 

models, irrespective of the mixed-mode conditions. The initial slopes of the estimated 

curves agree well with those of the experimental curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.15 Comparison of numerical and experimental load–

displacement curves for various mixed-mode ratios. 

Table 3 Peak loads in mixed-mode DCB experiments and the 

corresponding CZM FE simulations. 
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The peak loads calculated using the linear model (𝑛 = 1.0) and the power-law 

model (𝑛 = 1.8), along with the experimental results, are summarized in Table 3. In this 

table, the ratio of the simulated to the experimental loads is indicated, wherein the ratio 

ranges from 0.901 to 1.002 for the linear fracture model (𝑛 = 1.0), and 0.970 to 1.017 for 

the power-law model (𝑛 = 1.8). The maximum error in the linear model was as high as 

10%; however, it provided conservative estimates of the fracture load for the overall mode 

ratios. In comparison with the case using the linear model, the calculations using the 

power-law fracture criterion were closer to the experimental results (the maximum error 

was 3%). These results are directly related to the accuracy of the calculation of the energy 

release rate depending on the model, as shown in Fig. 3.7. 

3.8 Conclusions 

To investigate how accurately the CZM can predict the load–displacement curves 

in mixed-mode F–S DCB tests, FE CZM simulations were performed, where two types 

of fracture criteria, specifically, linear and power-law type models, were employed. 

1. The fracture toughness value under mode II condition during stable crack propagation 

was defined at the minimum of 𝑑𝐺 𝑑𝑎௘⁄  in the R-curve which was obtained by 

CBBM. 

2. A mixed-mode CZM using the power-law fracture criterion (Eqs. 3.30-3.32) was 

presented in this work, wherein the damage evolution was expressed by the 

trapezoidal model. 

3. The traction–separation trapezoids of the cohesive elements were determined 

iteratively such that the load–displacement curves calculated by the CZM FE 

simulation provided the best fit to the corresponding experimental results in the DCB 

and ENF tests, under the constraint that the area bounded by the trapezoid was equal 

to the energy release rate in the plateau region of R-curve. 

4. Using both fracture criteria, CZM FE simulations of the mixed-mode F-S DCB were 

conducted using ABAQUS software. The load–displacement curves calculated using 

the power-law fracture criterion are closer to the experimental results (the maximum 

errors in the peak load calculated using the power-law model were 3%, whereas they 

were 10% in the linear model). Consequently, it was concluded that nonlinear fracture 

modeling is vital for accurate strength analysis of mixed-mode adhesive joints. 
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Chapter 4 Elastic plastic analysis of adhesive joints considering anisotropic and 

hydrostatic stresses 

4.1 Introduction 

For the use of adhesively bonded joints to expand, the reliability of joint strength 

based on stress analysis should be clarified. Therefore, it is important to determine the 

accurate stress distribution in the adhesive layer. The use of a proper material model that 

realistically describes the stress–strain responses of an adhesive is crucial. High-

toughened adhesives (e.g., polyurethanes and rubber-modified epoxy) exhibit significant 

nonlinear stress–strain behavior. Hence, for an accurate stress analysis of adhesive joints, 

the nonlinearity of the materials should be considered. 

For nonlinear stress analysis, hyper-elastic models such as the Ogden [1] and 

Mooney–Rivlin [2, 3] models have been used for ductile adhesives (i.e., polyurethanes). 

The elastic–plastic analysis using the von Mises (isotropic) yield criterion has been 

employed for epoxy adhesives [4, 5], where the effect of hydrostatic stress on plasticity 

was ignored. Although, some studies revealed that hydrostatic stress significantly affects 

the yield stress of epoxy adhesives [6-10]. 

According to these previous studies, the effect of hydrostatic stress on yield behavior 

is expressed using linear and exponent Drucker–Prager models [7-10]. What is important 

here is the method used to determine the yield criterion. A set of material parameters of 

the exponent Drucker–Prager model was primarily determined using stress–strain curves 

under simple tensile and shear loading conditions. However, the stress multiaxialities in 

these tests were relatively low (the hydrostatic stress was 1 3⁄  of the yield stress in 

uniaxial tension and zero in shear). The applicability of this model to the higher stress 

multiaxiality must be verified because many other scenarios have an extremely high stress 

multiaxiality of the adhesive layer, such as in the butt-joint tension and at the crack tip in 

the double cantilever beam (DCB) test. 

One of the characteristics of the Drucker–Prager model is that it can express the 

realistic shear/tensile yield–stress ratio of adhesives (c.f., 1 √3⁄  in the von Mises model) 

through hydrostatic-stress-dependent modeling. Alternatively, the flexible shear–tensile 

stress ratio can also be described using the hydrostatic-stress-independent model of 

plasticity through anisotropy modeling (e.g., the Hill’48 model [11]). 

This study aimed to clarify whether hydrostatic stress modeling is a key parameter 

for a highly toughened epoxy adhesive by performing finite element (FE) stress–strain 

analyses of bulk uniaxial tension, simple shear, and butt-joint tension using the exponent 

Drucker–Prager plasticity models. The Drager-Prager model describes the normal-shear 

strength ratio by the stress-triaxiality effect (by 𝜆-parameter). However, it is also possible 
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by using an anisotropic (hydrostatic-stress independent) plasticity model, e.g., Hill’48 

model. Therefore, interest of the study was whether the hydrostatic-stress dependent 

material modeling is necessary or not for the stress analysis of adhesive bonded joints, 

specifically for butt-joint tension with high stress-multiaxiality. In the field of plasticity, 

the Hill’48 yield criterion is the first anisotropic plasticity model, and it is most popular 

and still widely used for the stress-strain analysis in various industries. The anisotropic 

yield function is a hot topic even today in the plasticity world, thus after Hill’48 model, 

more sophisticated models were presented, e.g., Yld2000-2d model [12], 6th order stress 

polynomial model [13] and Bezier interpolation model [14]. However, the formulations 

of these models are rather complicated, which include a lot of material parameters, 

therefore the simplest Hill’48 model was used for the discussion of hydrostatic-stress 

effect in the analysis of adhesive joint. The FE simulation results were compared with the 

results of digital image correlation (DIC) experiments. Specifically, for the Drucker–

Prager model, our further interest was whether a set of material parameters determined 

from the bulk uniaxial tension and simple shear test is sufficient for the analysis of 

extremely high-stress multiaxiality, i.e., butt-joint tension. 

4.2 Yield condition 

4.2.1 von Mises criterion 

Prior to the study, some basic essentials of yield criteria for describing the 

nonlinearity of the stress-strain relationship are summarized. Von Mises yield criterion is 

called the shear strain energy criterion. This criterion is defined as the material yielding 

when the shear strain energy reaches critical value of the total strain energy in multiaxial 

stress field. The total strain energy is defined by Eq. 4.1. 

 

 

 

 

 

 

 

where 𝑈଴ is total strain energy, 𝑈௩ is dilatational strain energy, and 𝑈ௗ is shear strain 

energy. Von Mises yield criterion is defined as the material yielding when the second 

term on the right side of Eq. 4.1, 𝑈ௗ reaches its limit value (𝑈ௗ = (1 + 𝜈)𝜎்
ଶ (3𝐸)⁄ ). 

For this reason, von Mises yield criterion ignores the dilatational strain energy devoted to 

the volume change for materials. Therefore, von Mises yield criterion is not affected by 

the hydrostatic stress 𝜎௠  (𝜎௠ = (𝜎ଵ + 𝜎ଶ + 𝜎ଷ) 3⁄ ) . Von Mises yield criterion is 

𝑈଴ = 𝑈௩ + 𝑈ௗ =
1 − 2𝜈

6𝐸
(𝜎ଵ + 𝜎ଶ + 𝜎ଷ)ଶ 

                            +
1 + 𝜈

6𝐸
{(𝜎ଵ − 𝜎ଶ)ଶ + (𝜎ଶ − 𝜎ଷ)ଶ + (𝜎ଷ − 𝜎ଵ)ଶ}            (4.1) 
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defined by Eq. 4.2. 

 

 

 

 

 

where 𝜎் is the tensile yield stress. 

4.2.2 The linear Drucker Prager criterion 

Since the hydrostatic stress effects the yield stress for adhesive joints, the 

consideration of the hydrostatic stress is necessary. The yield criterion that account for 

hydrostatic stress includes a series of the Drucker Prager yield criterion. A simple 

modification of the von Mises criterion that includes hydrostatic stress sensitivity is the 

linear Drucker Prager criterion. The linear Drucker Prager criterion is defined as follows: 

 

 

 

Here 𝑞 and 𝑝 are the equivalent stress and the hydrostatic pressure. The hydrostatic 

pressure can be also written by 𝑝 = −𝜎௠ = − ൫𝜎௫ + 𝜎௬ + 𝜎௭൯ 3⁄  using hydrostatic 

stress 𝜎௠. Where tan 𝛽 and 𝑑 are the slope and intercept of the linear yield surface in 

the 𝑝 − 𝑞 stress plane. Where 𝛽 is commonly referred to as the friction angle of the 

material. 

4.2.3 The hyperbolic Drucker Prager criterion 

The hyperbolic Drucker Prager criterion is defined as follows: 

 

 

 

𝜎்  is the tensile yield stress, 𝑑଴
ᇱ  is initial hardening parameter, 𝑑ᇱ  is hardening 

parameter, and 𝑝଴ is the initial hydrostatic tensile strength of material. 

4.2.4 The exponent Drucker Prager criterion 

The exponential Drucker Prager criterion is defined as follows: 

 

 

 

 

where 𝜎் is the tensile yield stress, 𝜎௠ is the hydrostatic component of stress, and 𝜆 

is the hydrostatic stress-sensitivity parameter, and 𝑏  is the exponent. 𝜆  also means 

𝐹 = 𝑞ଶ =
1

2
{(𝜎ଵ − 𝜎ଶ)ଶ + (𝜎ଶ − 𝜎ଷ)ଶ + (𝜎ଷ − 𝜎ଵ)ଶ} = 𝜎்

ଶ          (4.2) 

𝐹 = 𝑞 − 𝑝 tan 𝛽 − d                (4.3) 

𝐹 = ඥ(𝑑଴
ᇱ − 𝑝଴ 𝑡𝑎𝑛 𝛽)ଶ + 𝑞ଶ − 𝑝 𝑡𝑎𝑛 𝛽 − 𝑑ᇱ = 0               (4.4) 

𝑞௕ = 𝜆𝜎்
ଶ − 3(𝜆 − 1)𝜎்𝜎௠                (4.5) 
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anisotropic parameter depending on the test condition calculated using one of the 

equations from Eqs. 4.6 to 4.8. 

 

 

 

 

 

 

 

 

 

 

 

where 𝜎௖ is the compression yield stress, and 𝜎௦ is the shear yield stress. 

4.2.5 Case study of hydrostatic stress dependence 

The yield surface for various yield criteria described above is shown as in Fig. 4.1. 

The various parameters used for yield conditions are used of Table 1. Arbitrary values 

have been set for convenience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.1 Yield surface of the various criteria. 

𝜆 =
𝜎஼

𝜎்
                   (4.6) 

𝜆 =
𝜎஼

ଶ

3𝜎ௌ
ଶ                 (4.7) 

𝜆 =
3𝜎ௌ

ଶ

𝜎்
ଶ                 (4.8) 
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In Fig. 4.1, von Mises criterion shows that the yield stress is independent of 𝜎௠. The 

linear Drucker Prager criterion shows that the yield stress is linearly related to 𝜎௠ , 

indicating that the yield stress depends on the hydrostatic stress. The hyperbolic Drucker 

Prager criterion and the exponential Drucker Prager criterion have a nonlinear 

relationship between yield stress and 𝜎௠ , indicating that yield stress depends on 

hydrostatic stress. Therefore, a series of Drucker Prager criterion can be applied to the 

yield criterion of the adhesive while considering the hydrostatic stresses. 

4.3 Evaluation of stress–strain curves of adhesive 

4.3.1 Adhesive and adherend 

In this study, the exponential Drucker-Prager model was selectively employed 

among above several models to evaluate adhesive yield stress. In this model, the 

hydrostatic stress-sensitivity parameter 𝜆 must be obtained as shown in Eq. 4.5. The 

parameter 𝜆 can defines the hydrostatic stress-sensitivity and anisotropy of the yield 

stress. Here, 𝜆 was defined by Eq. 4.8, because in practice, adhesive joints are used 

under tensile and shear stress conditions. Therefore, tensile and shear tests should be 

performed to obtain stress–strain curves of the adhesive. The tensile test and shear test 

were performed using bulk adhesive specimen and thick adherend shear test specimen 

(TAST). In addition, stress–strain curves were evaluated using butt joints to assess the 

validity of the exponential Drucker-Prager model under extremely high-stress 

multiaxiality condition. The adhesives and adherends used for these three types of 

specimens are as follows. 

A rubber-modified epoxy adhesive film (AF163-2U, nominal thickness of 0.14 mm, 

3M) was used for the bulk adhesive specimen, thick adherend shear test specimen (TAST), 

and the butt joint. The adherends of the TAST specimen and the butt joint were composed 

of mild steel (JIS.SS400). 

4.3.2 Specimen manufacturing 

The shapes and dimensions of the bulk adhesive specimens are shown in Fig. 4.2 (a). 

The adhesive films were stacked in 36 layers on the release-treated plate, which was 

placed in a vacuum bag for a few minutes to avoid air inclusions. Subsequently, it was 

Table 1 Material properties for yield criteria. 
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clamped between release-treated plates via 3 mm-thickness gauges and cured at 120 ℃ 

for 1 h. After cooling to room temperature, the bulk adhesive plate was trimmed into 

dumbbell-shaped specimens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The shapes and dimensions of the TAST and joint specimens are shown in Figs. 4.2 

(b) and (c), respectively. Prior to bonding, a teflon film with release agent was placed into 

SS400 except for the bonding surface. Even if spew fillets are formed, they can be easily 

removed from the adherend. The SS400 surfaces were polished with emery paper #120, 

and then the abrasive surfaces were cleaned with acetone to remove dust and oil. Four 

layers of the film adhesive were stacked using vacuum bagging to avoid air contamination. 

A spacer was used to control the thickness, resulting in a nominal value of 0.4 mm. The 

assembled joints were clamped using steel jigs to prevent them from slipping out of 

alignment and cured in the thermostatic chamber at 120 ℃ for 1 h. Adhesive excess on 

the sides of joints was removed with a file and emery paper. 

4.3.3 Testing procedure 

Tensile test of the bulk adhesive, TAST specimen, and butt joint was performed at 

controlled room temperature using a universal testing machine (AG-IS, Shimadzu) 

 
Fig. 4.2 Geometry of bulk tensile specimen (a), thick adherend 

shear test specimen (b) and butt joint specimen (c). 
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equipped with a 50 kN load cell. The crosshead speed was 0.5 mm/min. The strain rate 

for bulk tensile test was 1.39 × 10ିସ (𝑠ିଵ) and for TAST and butt-joint tensile tests 

were 2.08 × 10ିଶ (𝑠ିଵ). As the tensile tests were carried out with uniform crosshead 

speeds for the bulk adhesive specimen and the adhesively bonded joints, the strain rates 

of both were differed. The effect of strain rate on the maximum shear stress was 

investigated for the TAST tests; the maximum shear stress at 1.39 × 10ିସ (𝑠ିଵ) was 

13% lower than that 2.08 × 10ିଶ (𝑠ିଵ). The unified evaluation of strain rate is a subject 

for future research. 

To obtain the stress–strain curves of the bulk adhesive, TAST specimen, and butt 

joint, the relative displacement between the measurement points on the specimen was 

measured using DIC and calculated the strain based on the displacement. The 

measurement points of the bulk adhesive were located 1 mm from the center of the 

specimen, and the points of the TAST and butt joints were located on the adherend in the 

vicinity of the respective adhesive layers. The details of these points are described in the 

following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A schematic of the experimental configuration is shown in Fig. 4.3. The full-field 

displacements of the specimens were obtained using two separate cameras as shown in 

this figure. For synchronized recording with a sampling frequency of 1.0 Hz, both the 

 

Fig. 4.3 Illustration of tensile test for bulk and adhesively bonded 

joints with full-field strain measurement using DIC system. 
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image pair and load cell signals were accumulated on a personal computer. Additionally, 

random speckle patterns were sprayed on the specimen surfaces to obtain accurate 

deformations. The DIC data were recorded using a machine vision camera (GS3-U3-

51S5M-C, Point Grey Research) with a C-mount lens (Xenoplan 1.9/35, Schneider 

KREUZNACH), having a resolution of 2448×2049 pixels, and the pixel size was 

approximately 0.03 mm. Commercial DIC software (VIC-3D, Correlated Solutions) was 

used to measure the displacements. 

4.4 Strain measurements for tensile and shear 

A typical contour plot of the Y-direction displacement of a bulk adhesive specimen 

under tensile loading obtained by DIC analysis was shown in Figure 4.4. The Y-direction 

is defined as the tensile direction. In all the subsequent figures, the Y-direction is assumed 

to be the tensile direction. As the specimen was pulled in the Y-direction, the displacement 

at the top was greater than that at the bottom. The strain 𝜀௒ of the bulk specimen was 

calculated by Eq.4.9. 𝑉ଵ and 𝑉ଶ are Y-directional displacements at points 𝑃ଵ and 𝑃ଶ 

in the center of the specimen. 𝑑 is the initial distance between the points 𝑃ଵ and 𝑃ଶ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜀௒ =
𝑉ଵ − 𝑉ଶ

𝑑
                                       (4.9) 

 
Fig. 4.4 Typical image of Y-directional displacement, 𝑉 for 

bulk specimen. 
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Figure 4.5 shows a typical contour image of the Y-directional displacement 𝑉 near 

the adhesive layer of the TAST specimen. Any cracks were not identified from the DIC 

images within the measurement range of the stress-strain curve. The 𝑉 distribution in 

the adhesive layer of the TAST specimens was almost uniform, except near the edges. 

The shear strain of the adhesive layer was calculated using the method described by 

Kosmann et al. [15]. To obtain the shear strain of the middle part of the adhesive layer, 

the Y-directional displacements 𝑉ଵ, 𝑉ଶ, 𝑉ଷ, 𝑉ସ at four points on the horizontal line of 

the left and right parts of the adherends, 𝑃ଵ , 𝑃ଶ , 𝑃ଷ , 𝑃ସ  were measured across the 

adhesive layer in the center of the specimen. Here, the adherend to the left of the adhesive 

layer was described as adherend 1, and the adherend to the right as adherend 2. The 

distances between 𝑃ଵ and 𝑃ଶ and between 𝑃ଷ and 𝑃ସ were defined as 𝑑ଵ and 𝑑ଶ, 

respectively. The shear strain between 𝑃ଵ  and 𝑃ଶ  on adherend 1, 𝛾௔ௗ௛௘ଵ , and that 

𝛾௔ௗ௛௘ଶ, were determined using the following equations. 

 

 

 

 

The distance between 𝑃ଶ  and 𝑃ଷ  across the adhesive layer was defined as 𝑑ଷ . The 

relative displacement 𝑉ଷ − 𝑉ଶ  between 𝑃ଶ  and 𝑃ଷ  consisted of the following three 

𝛾௔ௗ௛௘ଵ =
𝑉ଶ − 𝑉ଵ

𝑑ଵ
, 𝛾௔ௗ௛௘ଶ =

𝑉ସ − 𝑉ଷ

𝑑ଶ
                                     (4.10) 

 
Fig. 4.5 Typical image of Y-directional displacement, 𝑉 

for thick adherend shear test specimen. 
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components: the relative displacements in adherend 1, the adhesive layer, and adherend 

2. Therefore, the shear strain of the adhesive layer, 𝛾௔ௗ௛௘, was calculated by subtracting 

the first and third components of the relative displacement from 𝑉ଷ − 𝑉ଶ and dividing 

that by the thickness of the adhesive layer, 𝑡 as expressed in the following equation. 

 

 

 

 

The normal stress–normal strain and shear stress–shear strain curves for the bulk 

adhesive specimens and TAST specimens are shown in Figs. 4.6 (a) and (b), respectively. 

Here, the normal stress is the respective loads divided by the cross-sectional area. The 

shear stress is the respective loads divided by the adhesive area of the TAST specimen. 

In Fig.4.6 (a), only two test pieces were tested for the bulk specimens due to the difficulty 

of manufacturing specimens, where slight bubbles and wrinkles were observed in the 

lower strength specimen, so the higher strength curve was adopted as the representative 

stress-strain curve. Figures 4.6 (a) and (b) show the clear yielding behavior under both 

tensile and shear loading, and the slope of the stress–strain curve after yielding was 

significantly reduced under both tensile and shear loading conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝛾௔ௗ௛௘ =
(𝑉ଷ − 𝑉ଶ) − 0.5𝛾௔ௗ௛௘ଵ(𝑑ଷ − 𝑡) − 0.5𝛾௔ௗ௛௘ଶ(𝑑ଷ − 𝑡)

𝑡
                (4.11) 

 
Fig. 4.6 Experimental stress-strain curves obtained from bulk specimen (a) 

and thick adherend shear test specimen (b). 
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4.5 Determination of material parameters for the exponent Drucker–Prager model 

4.5.1 Material parameters 

The exponent Drucker–Prager criterion has been used to reproduce the behavior of 

toughened adhesives [7-10, 16]. This criterion is sensitive to the hydrostatic stress 

component, even with high stress values [7], and is adequate for analyzing many 

polymeric materials. The exponent Drucker–Prager criterion is defined as follows. 

 

 

 

where 𝜎௘  is the effective von Mises stress, 𝜎்  is the tensile yield stress, 𝜎௠  is the 

hydrostatic component of stress, and 𝜆 is the hydrostatic stress-sensitivity parameter, 

and 𝑏  is the exponent. Here, 𝜆  is frequently calculated using one of the following 

equations, depending on the test condition for the modeling material. 

 

 

 

 

 

 

 

 

 

where 𝜎஼  is the compression yield stress, 𝜏௒ is the shear yield stress. In this study, 𝜆 

was calculated using Eq. 4.15, which was obtained from the tensile and shear tests 

because adhesive-bonded joints are generally subjected to combined tensile and shear 

stresses. 

The hardening rule was defined by a hardening curve representing the stress and 

plastic strain values obtained from the tensile test of the bulk adhesive. Figure 4.7 shows 

the hardening curve of the adhesive. Finally, the flow parameter 𝛹, which is defined as 

the angle of dilation, is required for a high plastic strain behavior. The exponent Drucker–

Prager criterion was implemented in ABAQUS as a plastic model [17], and it is expressed 

as follows: 

 

 

 

where 𝑞 = 𝜎௘  and 𝑝 = −𝜎௠ . Comparing Eqs 4.12 and 4.16, the following equations 

𝜎௘
௕ = 𝜆𝜎்

ଶ − 3(𝜆 − 1)𝜎்𝜎௠                 (4.12) 

λ =
𝜎஼

𝜎்
                   (4.13) 

λ =
𝜎஼

ଶ

3𝜏௒
ଶ                 (4.14) 

λ =
3𝜏௒

ଶ

𝜎்
ଶ                 (4.15) 

𝑎𝑞௕ = 𝑝 + 𝑝௧                         (4.16) 
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were obtained: 

 

 

 

 

 

 

 

Because 𝑏 is typically 2 for polymeric materials [7], 𝑏 = 2 was used. 

Subsequently, the flow parameter 𝛹,  was defined as the angle of dilation by the 

following equation. 

 

 

 

 

where 𝜈௣ is the plastic component of Poisson’s ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑎 =
1

3𝜎்(𝜆 − 1)
                   (4.17) 

𝑝௧ = 𝑎𝜆𝜎்
ଶ                             (4.18) 

𝑡𝑎𝑛 𝛹 =
3(1 − 2𝜈௣)

2(1 + 𝜈௣)
                   (4.19) 

 
Fig. 4.7 Hardening curve obtained from tensile test of the bulk 

specimen. 
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4.5.2 Determination of the hydrostatic stress-sensitivity parameter 𝝀 

In order to define 𝜆 , 𝜎்  and 𝜏௒  must be obtained. In the plastic region, the 

longitudinal stress for tensile test 𝜎 and the shear stress for TAST 𝜏 are functions of 

the corresponding plastic strains 𝜀௣ and 𝛾௣ , respectively. From plasticity theory, 𝜎் 

and 𝜏௒ should be determined based on the plastic-work conjugate pairs of (𝜎, 𝜀௣) and 

(𝜏, 𝛾௣) which satisfy the following equation. 

 

 

 

 

For various values of plastic work 𝑤௣ , 𝜎்  and 𝜏௒  were determined as 𝜎  and 𝜏 

satisfying Eq. 4.20; subsequently, the parameter 𝜆 was calculated using Eq. 4.15. Figure 

4.8 shows the relation between 𝜆  and 𝑤௣ . As shown in this figure, initially, 𝜆 

increased with increasing 𝑤௣, then converged to an almost constant value. In the finite 

element analysis (FEA) described below, this convergence value was used for 𝜆. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑤௣ = න 𝜎𝑑𝜀௣ = න 𝜏𝑑𝛾௣                                      (4.20) 

 

Fig. 4.8 Relationship between hydrostatic stress sensitivity 

parameter and plastic work. 
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4.5.3 Determination of the flow parameter 𝜳 

In order to define 𝛹, the plastic component of Poisson’s ratio 𝜈௣ must be obtained. 

Here, 𝜈௣ was obtained using the longitudinal strain, 𝜀், transverse strain, 𝜀௧, Young’s 

modulus E, and elastic component of Poisson’s ratio 𝜈௘ as follows: 

 

 

 

 

 

 

 

 

 

 

From these data, the plastic component of Poisson’s ratio versus longitudinal plastic strain 

was constructed, as shown in Fig. 4.9. This figure shows that initially, 𝜈௣  decreased 

rapidly with increasing 𝜀்
௣ , then converged to an almost constant value. In the FEA 

described below, the angle of dilation for FEA was calculated from Eq. 4.19 using the 

converged value of the plastic component of Poisson’s ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜈௣ =
−𝜀௧

௣

𝜀்
௣                             (4.21) 

𝜀்
௣

= 𝜀் −
𝜎

𝐸
                       (4.22) 

𝜀௧
௣

= 𝜀௧ + 𝜈௘
𝜎

𝐸
                   (4.23) 

 
Fig. 4.9 Relationship between plastic component of 

Poisson’s ratio and plastic strain. 
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4.5.4 Material parameters determination for the Hill’48 model 

The exponential Drucker-Prager model can describe the anisotropy of yield stress 

by using hydrostatic sensitivity parameter 𝜆 . However, it is also possible by using 

another anisotropic (hydrostatic-stress independent) plasticity model. A typical 

anisotropic material model is the Hill’48 criterion [11], which is an extension of the von 

Mises yield criterion. The Hill’48 yield criterion is expressed as Eq. 4.24. 

 

 

 

 

 

 

 

The anisotropy parameters F, G, H, L, M, and N were determined using the following 

procedure. Parameters F, G and H were set to 1 and L and M were 3 on the assumption 

that the anisotropy does not appear in normal stresses, and 𝜎ଶଷ and 𝜎ଷଵ shear stress 

components. Parameter N, which determines the anisotropy of normal to shear stress, was 

determined from Drucker-Prager’s 𝜆-parameter, such as 𝑁 = 𝜎்
ଶ 𝜏௒

ଶ⁄ = 3 𝜆⁄ . 

4.6 Comparison of experimental and simulated stress–strain curves 

4.6.1 FE models 

To compare the experimentally obtained and simulated normal stress–normal strain 

curve of the bulk adhesive and shear stress–shear strain curve in the adhesive layer of the 

TAST specimen, the FE analysis of the bulk adhesive and TAST specimen under tensile 

loading was conducted. The FEA was performed using the ABAQUS standard, 

considering geometrical nonlinearity. The dependence of the modulus and hardening 

behavior on the strain rate was not included in the analysis. The material properties of the 

adhesive were determined using the exponent Drucker–Prager model. In addition, FEA 

utilizing the von Mises and Hill’48 model was conducted in the same manner to compare 

the adhesive yield stress. The material constants used for FEA are summarized in Tables 

4.2 and 4.3. 

 

 

 

 

 

 

𝑓(𝜎) =
1

2
{𝐹(𝜎ଶଶ − 𝜎ଷଷ)ଶ + 𝐺(𝜎ଷଷ − 𝜎ଵଵ)ଶ + 𝐻(𝜎ଵଵ − 𝜎ଶଶ)ଶ} 

              +𝐿𝜎ଶଷ
ଶ + 𝑀𝜎ଷଵ

ଶ + 𝑁𝜎ଵଶ
ଶ  −

1

3
(𝐹 + 𝐺 + 𝐻)𝜎௘

ଶ = 0           (4.24) 
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Figures 4.10 show the boundary conditions for the bulk and TAST specimens, where 

the bulk specimen was a 1/4 symmetric model, and the TAST specimen was the full 

model. The mesh sizes of the FE models for the bulk and TAST were used for 0.5 mm 

and 0.4 mm, respectively. It is recognized that bulk tensile model has adequate mesh sizes 

because stress concentration does not occur. The reason why TAST model used coarse 

 

Fig. 4.10 Boundary conditions for bulk and thick adherend shear test 

specimens. 

Table 4.2 Material properties based on exponent Drucker-Prager 

model. 

 

Table 4.3 Anisotropic parameters for Hill’48 model. 
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mesh is to improve the convergence of the nonlinear analysis. The shear stress in TAST 

was evaluated at the center of the adhesive layer, where stress was in a state of essentially 

uniform over the overlap, rather than at the end of the joint where stress concentration 

occurs. Stress was evaluated with coarser meshes and fine meshes in advance to confirm 

there have no difference. As shown in Figs. 4.10, uniform vertical and horizontal 

displacements were applied to the upper and right surfaces of the bulk and TAST 

specimens, respectively. Moreover, the vertical displacements of all nodes at the bottom 

and horizontal displacements of all nodes on the left side were constrained for the bulk 

specimen, whereas the horizontal displacements of all nodes on the left edge and vertical 

displacement of one node on the left corner were constrained for the TAST specimen. 

The bulk and TAST specimens were analyzed using four-node plane stress elements 

(CPS4, ABAQUS) and four-node plane strain elements (CPE4, ABAQUS), respectively. 

4.6.2 Results of FEA 

Figures 4.11 shows the representative experimentally obtained stress-strain curves 

for tensile test and shear test compared to simulated results. Simulation results involve 

the exponent Drucker–Prager, Hill’48, and von Mises models which were applied to the 

adhesive elements in FE model. In Fig. 4.11 (a), the experimental stress–strain curve 

under tensile conditions was consistent with the simulated curves from the exponent 

Drucker–Prager, Hill’48, and von Mises models. This was because the simulated curves 

were calculated using the same tensile plastic-hardening data as the input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11 Comparison between simulation results and experimental data. 



70 

 

Subsequently, as shown in Fig. 4.11 (b), the yield stress under shear loading 

conditions simulated using the von Mises model was approximately 30% lower than the 

experimental yield stress, and the slope of the simulated stress–strain curve after yielding 

was greater than that of the experimental curve. When the experimental and simulated 

curves were compared using the Hill’48 and exponent Drucker–Prager model, the yield 

stress almost agreed with that of the experimental curve, whereas the difference was 

confirmed in strain hardening behavior between the experimental curve and the analysis 

curves. In this case, void formation or crack initiation were suspected, but these were not 

confirmed by DIC observation. Because the DIC captured images only on the surface but 

not bulk inside. Even if the damage evolution is neglected, it is not surprising that shear 

and tension have different hardening characteristics, because ‘strain hardening is a unique 

function of the plastic strain (or plastic work)’ is just a simple assumption which comes 

from metal plasticity theory, but it has not proven yet for polymers. Even for metallic 

plasticity, such stress-state dependent hardening behavior was recently observed, and 

discussed as ‘anisotropic hardening’ [18]. 

The yield stress estimated using the exponent Drucker–Prager model almost 

consistent with the experimental. Because the hydrostatic component of stress 𝜎௠ = 0 

under shear stress condition, substituting this into the yield condition Eq. 4.16 of the 

exponent Drucker–Prager model, the following equation was obtained: 

 

 

 

This equation implies that by multiplying the tensile yield stress estimated from the von 

Mises model by √𝜆, the obtained stress is equal to the experimental yield stress. Because 

the results of this operation were the same as those in the Hill’48 model, the estimated 

curves for the exponent Drucker–Prager model agreed with those of the Hill’48 model. 

4.7 Estimation of stress–strain relation for the butt joint based on the exponent 

Drucker–Prager model 

4.7.1 Experimental stress–strain curve for the butt joint 

For accurate stress and strain analyses of a wider range of adhesive joints, it is 

necessary to investigate which model can be adapted to estimate the stress–strain curve 

of the adhesive layer, even when the stress multiaxiality of the adhesive layer is high, as 

in adhesively bonded butt joints. In this section, the stress–strain curves of the butt joints 

were estimated using the exponent Drucker–Prager and Hill’48 models. 

To determine the stress–strain curve of the adhesive layer of the butt joint, the strain 

𝜎௘ = √𝜆𝜎்                   (4.25) 
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of the adhesive layer from the relative displacement of the adherend near the adhesive 

layer was calculated using DIC, as in the case of the TAST specimen. Because the stress 

distribution in the adhesive layer of a butt joint is uniform, except near the edges [19], the 

strain in the adhesive layer was measured at the center of the butt joint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 shows a typical contour image of the y-directional displacement near the 

adhesive layer. The strain in the adhesive layer was calculated via the Eq. 4.26 using the 

Y-directional displacement 𝑉ଵ  at the 𝑃ଵ  point approximately 0.5 mm above the 

adhesive layer–upper adherend interface, the Y-directional displacement 𝑉ଶ at the 𝑃ଶ 

point approximately 0.5 mm below the adhesive layer–lower adherend interface, and the 

thickness 𝑡 of the adhesive layer. 

 

 

 

 

Although the distance between 𝑃ଵ  and 𝑃ଶ  was 2.5 times the thickness of the 

adhesive layer, because the Young's modulus of the adherend was more than 100 times 

that of the adhesive layer, the deformation of the adherend was negligibly small, and the 

relative displacement between 𝑃ଵ and 𝑃ଶ could be considered the relative displacement 

between the upper and lower interfaces of the adhesive layer. Therefore, in Eq. 4.26, the 

deformation of the adherends is ignored when calculating the strain in the adhesive layer. 

𝜀௔ௗ௛௘ =
𝑉ଵ − 𝑉ଶ

𝑡
                   (4.26) 

 

Fig. 4.12 Typical image of Y-directional displacement, 𝑉 for butt joint. 
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The stress was calculated by dividing the tensile load by the cross-sectional area of the 

bonded joint. 

The black curve in Fig. 4.13 shows the experimental stress–strain curve of the 

adhesive layer of the butt joint. As shown in this figure, compared with the stress–strain 

curves of the bulk adhesive specimen and TAST specimens shown in Fig. 4.6, the fracture 

strain of the butt joint was smaller than that of the bulk adhesive or TAST specimens, and 

the slope of the stress–strain curve after yielding was larger than that of the bulk adhesive 

or TAST specimens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7.2 Comparison of experimental and simulated stress–strain curves  

The method for simulating the stress–strain curve of the adhesive layer of the butt 

joint is described in this section. Figure 4.14 shows the boundary conditions of the butt 

joint. The butt joint specimen was modeled using plane-strain four-node quadrilateral 

elements (CPE4, ABAQUS). The adhesive elements used were 0.02 mm. It was well 

known that stress distribution in butt-joint was uniform except near the edge. Further 

subdivision of the mesh was not necessary since the analysis aim to evaluate uniform 

stress distribution at the center of the adhesive layer. The FEA was performed using a 

one-quarter model. The displacements in the 𝑋 and 𝑌 directions on the left and bottom 

sides were constrained by symmetrical boundary conditions. The load was applied to the 

top nodes of the specimen with controlled displacement. The mechanical properties of 

the adherends were the same as those of the TAST specimens. The adhesive layer of the 

 

Fig. 4.13 Comparison between simulation results and 

experimental data for butt joint. 
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butt joint was modeled using the exponent Drucker–Prager and Hill’48 models, and the 

material properties used are listed in Tables 4.2 and 4.3. However, for the value of the 

parameter 𝜆 in Table 4.2, not only 1.639 shown in the table but also several larger values 

were used in the FEA to discuss the effect of the hydrostatic stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimated stress–strain curves of the adhesive layer, in which the exponent 

Drucker–Prager and Hill’48 models were applied, are superimposed on the experimental 

curve in Fig. 4.13 using colored plots. The analysis curves with Drucker-Prager model 

were only available for the strain range of the plots, because iterative solution of nonlinear 

analysis was not converged above the plots. When the Drucker-Prager yield condition is 

applied to butt joints, it is inferred that the yield stress is excessively lower than in the 

analysis with the yield condition assuming iso-volumetric changes, due to the expansion 

stress acting on the adhesive layer. This would have made convergence of the residual 

forces difficult, resulting in divergence of the solution, and the FEA estimation curve 

would have been obtained only to a lower strain than the experimental curve. The stress–

strain curve calculated using the Hill’48 model significantly overestimated the 

experimental curve. This significant discrepancy was caused by the fact that despite the 

large expansion stress acting on the adhesive layer of the butt joint under tensile loading, 

the Hill’48 model only considers the anisotropy of yielding under tension and shear 

loadings but does not consider the effect of hydrostatic stress. 

The adhesive used in this experiment was a rubber-modified epoxy adhesive, and it 

is well known that when the expansion stress acts on the adhesive layer, the rubber 

 

Fig. 4.14 Boundary conditions for butt joint. 
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particles dispersed in the adhesive become voided, and the multiaxial stress state is 

relieved [20-22]. This also indicates that the effect of hydrostatic stress must be 

considered when estimating yielding behavior. 

For the exponent Drucker–Prager model, the hydrostatic stress-sensitivity parameter 

𝜆 is not only the ratio of shear yield stress to tensile yield stress but also affects the 

sensitivity of hydrostatic stress to the yield behavior. As shown in Fig. 4.13, the estimated 

stress with 𝜆 = 1.639, which could reproduce the yield stresses under tensile and shear 

loading conditions, overestimated the experimental stresses by approximately 30%. The 

figure shows that the estimated curve at 𝜆 = 2.1  was the most asymptotic to the 

experimental curve. These results showed that 𝜆 that could reproduce the experimental 

stress–strain curve was affected by the stress multiaxiality. In conventional analysis, 𝜆 

is treated as a constant value. However, the results presented above indicated that 𝜆 was 

affected by the stress multiaxiality of the adhesive layer. 

Generally, the parameter 𝐻 , shown in Eq. 4.27, is used to indicate the stress 

multiaxiality. 

 

 

 

 

Here, 𝜎௠ and 𝜎௘ are the hydrostatic component and effective von Mises stress, in 

the elastic region, respectively. The effect of 𝐻 on 𝜆 is shown in Fig. 4.15, where 𝜆 is 

the value that reproduced the stress–strain curves of the bulk specimen, TAST specimen, 

and butt joint, and 𝐻  is the corresponding stress multiaxiality parameter of these 

specimens. This figure shows that 𝜆 was constant below 𝐻 = 1 3⁄  but increased when 

approaching to 𝐻 = 3 in this study. In most studies on the estimation of stress–strain 

curves with the exponent Drucker–Prager model for adhesives, 𝜆, which was fitted to the 

experimental stress–strain curves, was obtained from tensile and shear tests. Only Dean 

et al. [7] estimated 𝜆 fitted to experimental stress–strain curve of the butt joint and their 

result showed that 𝜆 was constant and independent of 𝐻, as indicated by open circles in 

Fig. 4.15. Because very few studies on the determination of 𝜆 in highly multiaxial stress 

conditions have been conducted, the relationship between 𝜆  and 𝐻  is not clear. 

However, note that 𝜆  is not always constant but possibly increases when 𝐻  in the 

adhesive layer becomes considerably high, as observed in this study. For adhesive joints 

with high stress multiaxiality in the adhesive layer, such as butt joints, the estimated stress 

using 𝜆 fitted under low stress multiaxiality conditions may be higher than the actual 

stress, depending on the type of adhesive. 

𝐻 =
𝜎௠

𝜎௘
                   (4.27) 
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4.8 Conclusions 

An elastic–plastic model of adhesives applicable to a wide range of stress 

multiaxialities was explored for the film adhesive AF163-2U. The main conclusions are 

as follows: 

1. The exponent Drucker–Prager and Hill’48 models were selected as elastic–plastic 

models applicable to low-stress multiaxial conditions. Subsequently, the parameters 

for these models were determined to fit the experimental yield stresses under tensile 

and shear loading conditions, where bulk adhesive specimens and TAST specimens 

were used. The hydrostatic stress sensitivity parameter for the exponent Drucker–

Prager model was determined based on the plastic-work conjugate concept under 

tensile and shear loading conditions. 

2. A tensile test of the adhesively bonded butt joint was conducted to obtain the stress–

strain curves of the adhesive layer under high-stress multiaxiality conditions. In this 

experiment, the strain of the adhesive layer was calculated based on the relative 

displacement between two points on the adherend in the vicinity of the adhesive layer 

using DIC. 
3. The obtained experimental stress–strain curve of the butt joints was compared with 

the estimated curves based on the exponent Drucker–Prager and Hill’48 models. As 

a result, the estimated stresses from Hill’48 model significantly overestimated the 

experimental stresses. For the exponent Drucker–Prager model, the estimated stress 

 
Fig. 4.15 Effect of stress multiaxiality parameter on 

hydrostatic stress sensitivity parameter. 
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with 𝜆 = 1.639, which could reproduce the yield stresses under tensile and shear 

loading conditions, overestimated the experimental stresses by approximately 30%, 

whereas the stress estimated with 𝜆 = 2.1  was in close agreement with the 

experimental stresses. Thus, it was confirmed that 𝜆 fitted to the experimental stress 

is not always constant but increases with the stress multiaxiality in the adhesive layer. 
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Chapter 5 Conclusions 

5.1 Summaries of this thesis 

The purpose of this study was to assess the experimental methods and finite element 

simulation methods for predicting the strength of toughened epoxy adhesive joints. In 

order to investigate the influence of the fracture toughness of adhesively bonded joints on 

the accuracy of FE simulation, the experimental test and their fracture behavior under the 

mixed-mode conditions were evaluated and validated. The effect of hydrostatic stress on 

yield stress in the multiaxial stress field in the adhesive joints was also evaluated and 

verified. As a result, the following findings were obtained. 

In chapter 2, fracture toughness tests using toughened epoxy adhesive joints were 

conducted to obtain R-curves under the various mixed mode conditions. It was clarified 

that complicated crack propagation path of the fracture surface of the toughened adhesive 

joint affects the mechanism of the R-curve characteristic in Mode II dominant region of 

energy release rate in the mixed-mode conditions. The R-curves found that the total 

energy release rate 𝐺்  was almost constant irrespective of crack length in Mode I 

dominant region, whereas in Mode II dominant region, 𝐺் increased up to crack length 

reaches approximately 10 mm, after that, it remains at constant value. 

In chapter 3, CZM simulations of fracture toughness tests under the various mixed 

mode conditions were performed using trapezoidal traction–separation law. The failure 

criteria were employed linear and power-law type models. CZM parameters of 𝐺ூ஼ and 

𝐺ூூ஼  were defined as the energy release rate in the plateau region of R-curve. The 

simulation results found that a power-law fracture model with 𝑛 = 1.8  which 

determined by experimental results was suitable and reproduced the peak load of the 

experimental load–displacement curves. 

In chapter 4, the stress–strain curves were evaluated for butt joint tensile tests with 

high stress-multiaxiality by using exponential Drager-Prager model which could define 

hydrostatic stress sensitivity. The exponential Drucker Prager model could reproduce the 

yield stresses for butt-joint tensile tests by adjusting the hydrostatic stress sensitivity 

parameter 𝜆 . The exponential Drucker–Prager model with 𝜆 = 1.639  which was 

defined under tensile and shear loading conditions overestimated the yield stress of butt 

joint tensile test. This result showed that 𝜆 is not always constant and should be set an 

appropriate value depending on the stress multiaxiality parameter 𝐻  in the adhesive 

layer. 

A series of this studies have found that R-curves under the mixed mode conditions 

is crucial for toughened epoxy adhesive joints. The R-curve characteristic in the mixed 

mode conditions would contribute in improving the accuracy of CZM analysis. In the 
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case of stress analysis for butt joints, which are subject to high hydrostatic stress, it is 

clear that setting the appropriate hydrostatic stress sensitivity parameter could improve 

the accuracy of the analysis. 

 

5.2 Expected outcomes and future work 

Since modern adhesives are highly specialized, it is critical that selecting the proper 

one for specific needs. The consideration of the adhesive from among many adhesives 

that suits the applications has delayed the design development, because it takes a lot of 

time and costs. In this respect, if the R-curve could be used as one of the alternative 

options to select the best adhesive, it will contribute to improving the efficiency of 

designing adhesive structures. 

Generally, adhesive selection has been determined by an adhesive expert based on 

experience, prior knowledge and trial and error. Adequate simulation tools to support 

adhesive bonding in the design processes is lacking in the R&D department of a company. 

In that context, the proposal of the crack propagation analysis for the peak load of the 

adhesive joints may contribute to simple and accurate strength prediction of the 

mechanical design in modern industry. 

To prevent adhesive failure, the reliability of stress analysis for adhesively bonded 

joint is crucial. Adhesive joints cause stress concentration at the edge. Therefore, more 

accurate method of estimating stress is needed. The evaluation of the yield conditions and 

plastic behavior of toughened epoxy adhesive at different stress multiaxialities could 

contribute to improving the accuracy of stress evaluation of adhesive joints. 

This study is only basic research on the fracture toughness and material yield 

conditions for toughened epoxy adhesive. There are some issues that should be 

considered in the future. The evaluation of the damage length at stress whitening region 

in the crack tip is just a simple evaluation of the external observation, so more detail 

internal microscopic fracture mechanism is needed. The peak load predicted by CZM was 

not only determined by the energy-based failure criterion but was affected by other 

parameters. Therefore, it is necessary to investigate how CZM parameters should be 

determine more appropriate. The stress multiaxialities is not uniform in actual bonded 

joints. It is necessary to develop a calculation system that selects alternative hydrostatic 

stress sensitivity parameters according to the stress multiaxialities. 

Further research is needed to resolve the remaining issues. 
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