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Chapter 1

Introduction

1.1 Background

Optimization is everywhere and it is such an important paradigm by itself with a wide range

of applications. For most of the applications in engineering and industry, the minimal cost

and energy consumption, or maximal profit, output, performance, and efficiency are the

parameters to be optimized. In reality, resources, time, and money are always limited, con-

sequently, optimization is very important in practice (Yang, 2010b; Yang and Koziel, 2011).

Many real-world problems may be formulated as optimization problems of parameters with

variables in continuous optimization problems.

Optimization is collection of mathematical principles and methods used for solving

quantitative problems in many disciplines. The quantitative problems in different disci-

plines have important mathematical elements in common. The development of optimiza-

tion techniques has paralleled advances not only in computer science but also in operations

research, numerical analysis, game theory, mathematical economics, control theory, and

combinatorics.

In mathematics and computer science, an optimization problem is the problem of find-

ing the best solution from all feasible solutions. Optimization problems can be divided into

two categories depending on whether the variables are continuous or discrete. An optimiza-

tion problem with discrete variables is known as a discrete or combinatorial optimization

problem. The other one is mostly used problem as continuous optimization problem. In
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continuous optimization, the variables in the model are nominally allowed to take on a

continuous range of values, usually real numbers. This feature distinguishes continuous

optimization from discrete or combinatorial optimization, in which the variables may be

binary, integer or more abstract objects drawn from sets with finitely many elements.

The most widely used model for continuous optimization problem R = (S , ω, f ) is

composed of the following parts:

• S is a search space on the set of n continuous variables

• ω is a set of constraints among the variables

• f is the objective function to be minimized: S ∈ <n →<

A maximization problem can be expressed by replacing the objective function f by

- f . It is called an unconstrained optimization problem when ω = ø on above continuous

optimization problem model. When each variable has lower and upper bounds, it becomes

bounds constraints optimization problems.

In optimization problem, the best values are determined from all feasible solutions of

a given problem; the aim of optimization is to obtain relevant parameter values that enable

an objective function to generate the minimum or maximum value (Civicioglu and Besdok,

2013). Continuous optimization problems are usually difficult to solve when they arise

from real-world optimization problems (Jones and Pevzner, 2004). The search space relates

to complex landscape characteristics such as non-linear, rotated or non-separable objective

functions, objective functions may have the features of ill-conditioned or smooth local

irregularities and objective functions may have multiple local optima.

Test functions are commonly used to evaluate continuous optimization algorithms. The

test functions defined by IEEE Congress on Evolutionary Computation (CEC) are invalu-

able resources for solving the optimization problems with swarm intelligence (SI) and evo-

lutionary algorithms (EAs) algorithms. The CEC 2013 (CEC’13) (Liang et al., 2013a) test

functions were defined by modifying and extending the CEC’05 (Suganthan et al., 2005)

test functions. CEC’13 test function are composed of unimodal, multimodal and com-

position functions. The approaches or algorithms for solving this real parameter single

objective optimization were designed without making use of exact equations of the test
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functions. As the extended form of CEC’13 test suite, benchmark test functions of CEC

2014 (CEC’14) (Liang et al., 2013b) were developed with several novel features such as

novel basic problems, composing test problems by extracting features dimension-wise from

several problems, graded level of linkages, rotated trap problems. There are four types of

functions defined in CEC’14, namely, unimodal, simple multimodal, hybrid and composi-

tion functions. Effective and efficient optimization algorithms are required to solve those

much difficult problems.

The optimization methods started from the classical optimization methods and then de-

veloped in many types such as linear programming, non-linear programming, geometric

programming, dynamic programming, integer programming and evolutionary program-

ming. Among the optimization methods, downhill simplex method (Nelder and Mead,

1965) as linear programming method, Powell’s method (Powell, 1964), Newton’s method

(Qi and Sun, 1993) and gradient descent method (Burachik et al., 1996) as non-linear pro-

gramming methods have been widely applied as the mathematical programming optimiza-

tion methods. In the past decades, different kinds of SI based algorithms or EAs have

been designed and applied to solve real-parameter continuous optimization problems. Be-

sides the SI based algorithms and EAs, hybrid evolutionary classical methods and other

non-evolutionary methods such as simulated annealing (Johnson and Aragon, 1989) and

tabu search (Glover et al., 1995) have been applied to solve the continuous optimization

problems.

Swarm Intelligence (SI) is the discipline that deals with natural and artificial systems

composed of many individuals which interact each other by collective behavior of decen-

tralized and self-organized form. As discipline of artificial intelligence, SI has attracted

the interests of many research scientists from the late 1980s. SI techniques are population

based stochastic methods used in continuous optimization problems in which the collective

behavior of relatively simple individuals arises from their local interactions with their en-

vironment to produce functional global patterns. Bonabeau et al. (1999) defined SI as “any

attempt to design algorithms or distributed problem-solving devices inspired by the collec-

tive behavior of social insect colonies and other animal societies.” Their colonies ranging

from a few animals to millions of individuals, display fascinating behaviors that combine

efficiency with both flexibility and robustness (Camazine et al., 2001). The individuals in
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the system are relatively homogenous (i.e., either identical or belonging to a few topolo-

gies) and the interactions among the individuals come from the communication with each

other directly or through the connections with environments.

Various kinds of SI based algorithms have been proposed since the end of the last cen-

tury, e.g., particle swarm optimization (PSO) (Kennedy and Eberhart, 1995), ant colony

optimization (ACO) (Dorigo et al., 1996) and artificial bee colony (ABC) (Karaboga and

Basturk, 2007). Since the computational modeling of SI algorithms were proposed, SI

algorithms represented as meta-heuristic approaches are applied for solving function opti-

mization problems and real-world problems in the fields of computer sciences, engineering,

economics, bioinformatics, operational research and industries. The effectiveness and effi-

ciency of those algorithms have been testified through experiments.

Evolutionary computing (EC) (Bäck et al., 1997) is an area of computer science that

inspired from natural evolution based on Darwinian evolution principles to solve compu-

tational problems. In artificial intelligence, EAs is subset of EC, generic population-based

meta-heuristic optimization algorithms. Given a population of individuals within some en-

vironment that has limited resources, competition for the resources causes natural selection

as evolution process, in turn, the individual with higher fitness survive. A set of candidate

solutions is provided for a certain problem and selected the better ones for next generation

according to quality (fitness) function with higher values. The essential metaphor of EC

relates the natural evolution to trail-and-error problem solver.

The widely used forms of evolutionary algorithms (EAs) are genetic algorithm (GA)

(Holland, 1975), differential evolution (DE) (Storn and Price, 1997), evolutionary pro-

gramming (EP) (Fogel, 1966), genetic programming (GP) (Koza, 1992) and evolutionary

strategies (ES) (Rechenberg, 1973; Schwefel, 1974). These algorithms are robust, adaptive

and have been applied in a wide variety of theoretical and practical problems involving

search and optimization tasks.

The ABC algorithm was introduced by Karaboga (2005) as a technical report, then its

performance was measured using benchmark optimization functions (Karaboga and Bas-

turk, 2007). The study by Karaboga and Akay (2009) showed that ABC algorithm per-

formed significantly better or at least comparable to other SI based algorithms or EAs

such as GA, DE, and PSO algorithms. Many modified versions of ABC algorithms which
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modified some parameters or hybridized with another algorithms have been proposed and

the convergence performances have been testified by the experiments. These ABC algo-

rithms are superior to other algorithms in terms of its simplicity, flexibility and robustness

when solving the continuous optimization problems. Along with the advantages of the im-

proved versions of ABC algorithms, however, a few disadvantages still exist. For example,

ABC algorithms have low convergence speeds when they solve unimodal functions, low

exploitation abilities, and are also easily trapped in local optima when they solve com-

plex multimodal functions. Inspired by self adaptive mechanism, incorporated with DE

and PSO algorithms, an improved hybrid ABC (IHABC) algorithm will be proposed to

overcome those disadvantages, which focused on the predominance of hybridizing other

algorithms easily. The comparison experiments will be implemented with the parameters

setup for IHABC algorithm. More specifically, CEC’13 test suite benchmark problems

will be adopted and comparative experiments with IHABC, standard ABC, DE, and PSO

algorithms will be implemented.

Furthermore, in order to overcome the drawbacks such as random uniform initialization

loses the effectiveness when the dimension size is rather higher or lower fitness individu-

als have low probability for selected, levy flight-based hybrid ABC (LFHABC) and self

adaptive hybrid enhanced ABC (SAHEABC) algorithms will be proposed. LFHABC al-

gorithm will be proposed by using levy flight (Brown et al., 2007; Pavlyukevich, 2007) for

initialization, chaotic opposition-based learning (OBL) (Tizhoosh, 2005) for scout bees to

combine with IHABC algorithm. SAHEABC algorithm will be then proposed by utilizing

the self adaptive mechanism on increasing the probability of lower fitness individuals in on-

looker bees and combined it with LFHABC algorithm. The comparative experiments will

be implemented for LFHABC and SAHEABC algorithms to demonstrate the effectiveness

and efficiency of the proposed extended ABC algorithms. More specifically, the CEC’13

test suite benchmark problems will be adopted to show the performance of LFHABC algo-

rithm, the CEC’14 test suite benchmark problems will be used to testify the performance

of SAHEABC algorithm. Finally, comparative experiments using SAHEABC, the stan-

dard ABC, state-of-the-art ABC algorithms of BsfABC and IABC, NRGA and SHADE

algorithms will be implemented and the comparison results will be discussed.
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1.2 Goal of the Thesis

As one of the representative SI based algorithms, ABC has been proposed and modified

in various versions. Although the modified ABC algorithms have achieved better perfor-

mance, there are still disadvantages exist. The main goal of this thesis is achieving extended

ABC algorithms which have much higher performance compared with other SI based al-

gorithms and EAs. The extended ABC algorithms will be applied to CEC’13 and CEC’14

benchmark test functions seen as continuous optimization problems and verify the conver-

gence performance through comparative experiments.

More specifically, the extended ABC algorithm of IHABC is proposed firstly for im-

proving the exploitation ability and convergence speed. Comparison experiments for IHABC,

ABC, DE and PSO algorithms are implemented on the CEC’13 benchmark test problems to

testify the effectiveness and efficiency of IHABC algorithm. The extended ABC algorithms

of LFHABC and SAHEABC are proposed in order to overcome the drawbacks that the ran-

dom uniform initialization loses the effectiveness when dimension size is rather higher and

lower fitness individuals have low probability for selected. The comparative experiments

are implemented for LFHABC and SAHEABC algorithms to confirm the effectiveness

and efficiency of the these algorithms. The CEC’13 test suite benchmark problems are

adopted by LFHABC algorithm to verify the convergence performance, the CEC’14 test

suite benchmark problem is utilized to testify the convergence performance of SAHEABC

algorithm. Finally, the competitive performance of SAHEABC algorithm is demonstrated

through implementing the comparative experiments with standard ABC, state-of-the-art

ABC algorithms of BsfABC and IABC, NRGA and SHADE algorithms.

1.3 Structure of the Thesis

The structure of the thesis is organized as follows.

The continuous optimization problems adopted as the benchmark test functions are

introduced in Chapter 2. The history review of the test functions are specifically given and

the representative benchmark test functions for CEC’13 and CEC’14 are adopted as the

benchmark test functions as described in more detailed ways in Section 2.2 and Section
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2.3.

The bio-inspried algorithms which include SI based algorithms and EAs are introduced

in Chapter 3. Artificial bee colony (ABC) and particle swarm optimization (PSO) as the

main SI based algorithms are introduced firstly in Section 3.1.1 and Section 3.1.2. ABC

algorithm is proposed based on the introduction of real bees’ behavior of self-organization,

stigmergy and division of labor. The classical EAs of genetic algorithm (GA), NRGA,

differential evolution (DE) and SHADE algorithms are then given the explanations in more

detail.

In Chapter 4, the representative modified versions of ABC algorithms and the state-

of-the-art ABC algorithms are described firstly and the improved hybrid ABC (IHABC) is

proposed in Chapter 4.2, IHABC algorithm is implemented on the CEC’13 benchmark test

functions and then comparison experiments which conducted with ABC, IHABC, DE and

PSO algorithms are also implemented to testify the effectiveness and efficiency of IHABC

algorithm.

Chapter 5 proposes further extended levy flight hybrid ABC (LFHABC) and self adap-

tive hybrid enhanced ABC (SAHEABC) algorithms. LFHABC is implemented on CEC’13

benchmark test functions and then SAHEABC algorithm is implemented on CEC’14 bench-

mark test functions which are extended versions of CEC’13. Comparison experiments

which conducted by ABC, SAHEABC, IABC, BsfABC, NRGA and SHADE algorithms

are also implemented to testify the effectiveness and efficiency of SAHEABC algorithm.

Finally, Chapter 6 makes a conclusion for the thesis.

Following the contents of above mentioned chapters, CEC’13 test functions and 2-

dimensional landscape figures, CEC’14 test functions and 2-dimensional landscape figures

are described in Appendices A and B respectively.



Chapter 2

Continuous Optimization Problems

2.1 Background

A comprehensive collection of continuous optimization problems have been presented as

benchmark functions to validate and compare different optimization algorithms. The main

category for general continuous optimization problems is test functions. Test functions

were proposed as artificial problems, can be used to evaluate the performances of optimiza-

tion algorithms from diverse sides and difficult situations, such as velocity of convergence,

precision, robustness and general performance. The test functions have the characteristics

of single global minimum, multiple global minima in the presence of many local min-

ima, long narrow valleys, quadratic ill-conditioned and smooth local irregularities. These

test functions could be applied to test different algorithms in diverse scenarios (Yang and

Koziel, 2011; Yang, 2010b).

The history of the test functions started from middle of last century. The test functions

were proposed for evaluating the mathematic optimization and many of the functions are

still nowadays utilized to evaluate the performance of continuous optimization problems.

The well-known test functions presented as the standard benchmark functions were Rosen-

brock function (Rosenbrock, 1960), Griewank function (Griewank, 1981), Ackey function

(Ackley, 1987), Rastrigin function (Torn and Zilinskas, 1989), Schwefel function (Schwe-

fel, 1981) and Schaffer function (Schaffer, 1984). These test functions have been used to

8
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evaluate and testify the improvements of optimization algorithms by comparative experi-

ments.

De Jong (1975) proposed the first sets of test functions composed of five functions

which represent the common difficulties in optimization problems in an isolated manner.

The brief descriptions of these five functions are shown as following:

• Sphere function: is smooth, unimodal and symmetric

f1(x) =
D∑

i=1

x2
i (2.1)

Where, −5.11 ≤ xi ≤ 5.12, min( f1(0, ..., 0))=0, D is the dimensional size.

• Rosenbrock function: having very narrow ridge, and the tip of the ridge is very sharp

f2(x) =
D−1∑
i=1

(100(x2
i − xi+1)2 + (xi − 1)2) (2.2)

Where, −5.11 ≤ xi ≤ 5.12, min( f2)= f2(1, ..., 1)=0, D is the dimensional size.

(a) De Jong function f1 (b) De Jong function f2

Figure 2.1: 2-dimensional landscapes for De Jong test functions f1 and f2

• Step function: representative of the problem of flat surfaces which are obstacles for

optimization algorithms
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f3(x) = 6 · n +
5∑

i=1

[xi] (2.3)

Where, −5.11 ≤ xi ≤ 5.12, min( f3)= f3([-5.12, -5), ..., [5.12, 5))=0.

• Quartic function: simple unimodal function padded with noise

f4(x) =
D∑

i=1

ix4
i + gauss(0, 1) (2.4)

Where, −1.27 ≤ xi ≤ 1.28, min( f4)= f4(0, ..., 0)=0, D is the dimensional size.

(a) De Jong f3 (b) De Jong f4

Figure 2.2: 2-dimensional landscapes for De Jong test functions f3 and f4

• Foxholes function: having many local optima

f5(x) = 0.002 +
25∑
j=1

1
j +

∑2
i=1(xi − ai j)6

(2.5)

Where, −65.535 ≤ xi ≤ 65.536,

(ai j)= −32 −16 0 16 32 −32 · · · 9 16 32

−32 −32 −32 −32 −32 −16 · · · 32 32 32


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min( f5)= f5(-32, 32) ≈ 1.

Figure 2.3: 2-dimensional landscapes for De Jong test function f5

These test functions were used to test the performance of GA firstly and then adopted

by various optimization algorithms to verify the effectiveness. Following De Jong’s test

functions, Bersini et al. (1996) organized the first international contest on evolutionary

optimization (ICEO) at the IEEE international conference on evolutionary computation. A

benchmark set of five functions was provided with different characteristics of uni-modality,

multi-modality, separability and non-separability for different dimension sizes of five and

ten. The different algorithms for the attendants were compared on the continuous optimiza-

tion problems. Moreover, for testing the different algorithms on combinatorial problems,

classical TSP problem composed of a set of small and large, symmetric and asymmetric

instances was proposed and the comparison experiments were implemented.

Benchmark procedures for continuous optimization problems have been developed widely

since the genetic and evolutionary computation conference (GECCO) and the congress on

evolutionary computation (CEC) which devoted to test the reliability, efficiency and vali-

dation of optimization algorithms.

GECCO was set up to benchmark both stochastic and deterministic continuous op-

timization algorithms when Black Box Optimization Benchmarking (BBOB) workshops
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were held in 2009, 2010, 2012 and 2013 (Hansen, 2009; El-Abd, 2010). GECCO presents

the latest high-quality results in the growing field of genetic and evolutionary computation

such as GA, GP, ES, EP, ACO, biological applications and more. Current BBOB func-

tions include 24 noise-free real-parameter single objective benchmarking functions which

have the characteristics of separable, low or moderate conditioning, high conditioning and

unimodal, multi-modal with adequate or weak global structure. All benchmark functions

are scalable with the dimension. Most functions have no specific value of their optimal

solution. There are also 30 noisy functions included in BBOB functions which composed

of three kinds of noise functions, namely, moderate noise, severe noise and highly multi-

modal with severe noise and the description of these noise functions are shown as Table 2.1.

The benchmark functions of BBOB 2010 with noise are described as referred to Finck et

al. (2010). In this benchmarking suite, three different noise models are used, namely, gaus-

sian noise, uniform noise and cauchy noise. Following the introduction of the functions

shown as in Table 2.1, the 2-dimensional landscapes of these functions are illustrated as

Figures 2.4-2.13. In these figures, functions F1.1-F1.3 and F2.1-F2.3 are sphere and rosen-

brock functions with moderate gaussian, moderate uniform and moderate noises; functions

F3.1-F3.3 and F7.1-F7.3 are sphere, rosenbrock, step ellipsoid, ellipsoid and different pow-

ers functions with moderate gaussian, moderate uniform and moderate noises; functions

F8.1-F8.3 and F10.1-F10.3 are schaffer’s F7, composite griewank-rosenbrock, gallagher’s

gaussian peaks 101-me functions with moderate gaussian, moderate uniform and moderate

noises corresponding to the functions as shown in Table 2.1.

(a) F1.1 (b) F1.2 (c) F1.3

Figure 2.4: 2-dimensional landscapes for functions F1.1, F1.2 and F1.3
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Table 2.1: BBOB 2010 Noisy Functions

Func. Type Func. Name
Moderate
noise

Sphere with moderate gaussian, uniform and seldom cauchy noise
Rosenbrock with moderate gaussian, uniform and seldom cauchy noise

Severe noise

Sphere with gaussian, uniform and seldom cauchy noise
Rosenbrock with gaussian, uniform and seldom cauchy noise
Step ellipsoid with gaussian, uniform and seldom cauchy noise
Ellipsoid with gaussian, uniform and seldom cauchy noise
Different Powers with gaussian, uniform and seldom cauchy noise

Severe noise
for multi-
modal

Schaffer’s F7 with gaussian, uniform and seldom cauchy noise
Composite Griewank-Rosenbrock with gaussian, uniform, seldom cauchy noise
Gallagher Gaussian Peaks 101-me with gaussian, uniform, seldom cauchy noise

(a) F2.1 (b) F2.2 (c) F2.3

Figure 2.5: 2-dimensional landscapes for functions F2.1, F2.2 and F2.3

Availability of the benchmark of CEC provides the platform for comparing new opti-

mization algorithms to the state-of-the-art ones. CEC benchmark is the widely used for

evaluating the test functions which cover a wide range of specialized optimization prob-

lems. CEC’05 (Suganthan et al., 2005) was proposed for the special session on real pa-

rameter optimization of CEC 2005. CEC’05 benchmark test functions are composed of

25 functions including 5 unimodal and 20 multi-modal functions, each of which is freely

scalable. It specifies problem dimensionality, defines the domains of variables, termination
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(a) F3.1 (b) F3.2 (c) F3.3

Figure 2.6: 2-dimensional landscapes for functions F3.1, F3.2 and F3.3

(a) F4.1 (b) F4.2 (c) F4.3

Figure 2.7: 2-dimensional landscapes for functions F4.1, F4.2 and F4.3

(a) F5.1 (b) F5.2 (c) F5.3

Figure 2.8: 2-dimensional landscapes for functions F5.1, F5.2 and F5.3
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(a) F6.1 (b) F6.2 (c) F6.3

Figure 2.9: 2-dimensional landscapes for functions F6.1, F6.2 and F6.3

(a) F7.1 (b) F7.2 (c) F7.3

Figure 2.10: 2-dimensional landscapes for functions F7.1, F7.2 and F7.3

(a) F8.1 (b) F8.2 (c) F8.3

Figure 2.11: 2-dimensional landscapes for functions F8.1, F8.2 and F8.3
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(a) F9.1 (b) F9.2 (c) F9.3

Figure 2.12: 2-dimensional landscapes for functions F9.1, F9.2 and F9.3

(a) F10.1 (b) F10.2 (c) F10.3

Figure 2.13: 2-dimensional landscapes for functions F10.1, F10.2 and F10.3

error values and the maximum number of function evaluations for the optimization algo-

rithms. The published research papers using CEC’05 benchmark function set currently can

be found more than 1257 citations in google scholar (as of December 2015).

CEC’13 and CEC’14 were proposed by extending CEC’05 in more diverse and complex

types. These benchmark functions play an important role in the assessment of the state-of-

the-art algorithms in the continuous optimization fields. CEC’13 and CEC’14 are adopted

as the efficient benchmark test functions to evaluate the extended ABC algorithms proposed

in Chapter 4 and Chapter 5.

Continuous optimization problems are typically solved using algorithms that generate

a sequence of values of the variables, known as iterates, that converge to a solution of the



17

problem. In deciding how to step from one iterate to the next, the algorithm makes use

of knowledge gained at previous iterates, and information about the model at the current

iterate, possibly including information about its sensitivity to perturbations in the variables.

The continuous nature of the problem allows sensitivities to be defined in terms of first and

second derivatives of the functions that define the models. The aim of optimization is

to obtain the relevant parameter values that enable an objective function to generate the

minimum or maximum value (Civicioglu and Besdok, 2013).

2.2 Benchmark Test Functions for CEC’13

Single objective optimization algorithms are the basis of the more complex optimization

algorithms such as multi-objective or constrained optimization algorithms. Research on

the single objective optimization algorithms will contribute the development of the opti-

mization algorithms in more complicated ways. In the recent years, various kinds of novel

optimization algorithms have been proposed to solve real-parameter optimization prob-

lems. CEC’05 and CEC’13 test suites are the widely used benchmark test functions for

real-parameter optimization problems.

CEC’13 test suite plays an important role in swarm intelligence and evolutionary com-

putation fields because it provides a set of 28 benchmark functions with different prop-

erties that can be used to evaluate the performance of various algorithms or methods and

compare those algorithms in more systematic manner by utilizing the size of problems,

dimensionality of the functions, termination criteria and initialization scheme. All the test

functions are minimization problems, the aim is to minimize the objective function f(x),

where, x = [x1, x2, ..., xD]T , D is the number of dimension size. The 28 numerical test func-

tions are minimization problems classified by function characteristics into the following

three groups, namely, unimodal functions, multi-modal functions and composition func-

tions. The definitions of basic functions for these test functions and the properties of these

test functions are described as following and the CEC’13 test functions and the correspond-

ing 2-dimensional landscape figures are given in Appendix A.

1). Unimodal functions (F1-F5): the basic functions f1(x) through f5(x) are shown as

the following Eqs. (2.6)-(2.10).
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• Sphere function: Separable. D indicates the dimensional size.

f1(x) =
D∑

i=1

x2
i (2.6)

• Rotated High Conditioned Elliptic function: Non-separable, quadratic ill-conditioned,

smooth local irregularities. High Conditioned Elliptic function is shown as Eq. (2.7).

D indicates the dimensional size.

f2(x) =
D∑

i=1

(106)
i−1
D−1 x2

i (2.7)

• Rotated Bent Cigar function: Non-separable, smooth but narrow ridge. Bent Cigar

function is shown as Eq. (2.8). D indicates the dimensional size.

f3(x) = (x1)2 + 106
D∑

i=2

(xi)2 (2.8)

• Rotated Discus function: Non-separable, asymmetrical, smooth local irregularities,

with one sensitive direction. Discus function is shown as Eq. (2.9). D indicates the

dimensional size.

f4(x) = 106(x1)2 +

D∑
i=2

(xi)2 (2.9)

• Different Powers function: Separable, sensitivities of the zi-variables are different.

Powers function is shown as Eq. (2.10). D indicates the dimensional size.

f5(x) =

√√
D∑

i=1

|xi|2+4 i−1
D−1 (2.10)

2). multi-modal functions (F6-F20): the basic functions f6(x) through f15(x) are shown

as the following Eqs. (2.11)-(2.20).
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• Rotated Rosenbrock function: Non-separable, having a very narrow valley from lo-

cal optimum to global optimum. Rosenbrock function is shown as Eq. (2.11). D

indicates the dimensional size.

f6(x) =
D−1∑
i=1

(100(x2
i − xi+1)2 + (xi − 1)2) (2.11)

• Rotated Schaffers F7 function: Non-separable, asymmetrical, local optima’s number

is huge. Schaffers F7 function is shown as Eq. (2.12). D indicates the dimensional

size.

f7(x) = (
1

D − 1

D−1∑
i=1

(
√

zi +
√

zisin2(50z0.2
i )))2 (2.12)

Where, zi =

√
x2

i + x2
i+1 for i = 1, 2, ...,D

• Rotated Ackley function: Non-separable, asymmetrical. Ackley function is shown

as Eq. (2.13). D indicates the dimensional size.

f8(x) = −20exp(−0.2

√√
1
D

D∑
i=1

x2
i ) − exp(

1
D

D∑
i=1

cos(2π(xi))) + 20 + e (2.13)

• Rotated Weierstrass function: Non-separable, asymmetrical, continuous but differ-

entiable only on a set of points. Weierstrass function is shown as Eq. (2.14). D

indicates the dimensional size.

f9(x) =
D∑

i=1

(
20∑

k=0

[0.5kcos(2π3k(xi + 0.5))]) − D
20∑

k=0

[0.5kcos(2πbk · 0.5)] (2.14)

• Rotated Griewank function: Rotated, non-separable. Griewank function is shown as

Eq. (2.15). D indicates the dimensional size.
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f10(x) =
D∑

i=1

x2
i

4000
−

D∏
i=1

cos(
xi√

i
) + 1 (2.15)

• Rastrigin function: Separable, asymmetrical, local optima’s number is huge. Rastri-

gin function is shown as Eq. (2.16). D indicates the dimensional size.

f11(x) =
D∑

i=1

(x2
i − 10cos(2πxi) + 10) (2.16)

• Rotated Rastrigin function: Non-separable, asymmetrical, local optima’s number is

huge.

• Non-Continuous Rotated Rastrigin function: Rotated, non-separable, asymmetrical,

local optima’s number is huge, non-continuous.

• Schwefel function: Rotated, non-separable, asymmetrical, local optima’s number is

huge and second better local optimum is far from the global optimum. Schwefel

function is shown as Eq. (2.17). D indicates the dimensional size.

f12(x) = 418.9829 × D −
D∑

i=1

g(xi) (2.17)

g(xi) =


xisin(|xi|1/2), i f |xi| ≤ 500

(500 − mod(xi, 500))sin(
√
|500 − mod(xi, 500)|) − (xi−500)2

10000D , i f xi > 500

(mod(|xi|, 500) − 500))sin(
√
|mod(|xi|, 500) − 500|) − (xi+500)2

10000D , i f xi < −500

• Rotated Schwefel function: Non-separable, asymmetrical, local optima’s number is

huge and second better local optimum is far from the global optimum

• Rotated Katsuura function: Non-separable, asymmetrical, continuous everywhere

yet differentiable nowhere. Katsuura function is shown as Eq. (2.18). D indicates

the dimensional size.
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f13(x) =
10
D2

D∏
i=1

(1 + i
32∑
j=1

|2 jxi − round(2 jxi)
2 j )

10
D1.2 − 10

D2 (2.18)

• Rotated Lunacek Bi Rastrigin function: Non-separable, asymmetrical, continuous

everywhere yet differentiable nowhere

• Expanded Griewank’s Plus Rosenbrock function: Non-separable. Expanded Griewank’s

Plus Rosenbrock function is shown as Eq. (2.19).

f14(x) = f7( f4(x1, x2)) + f7( f4(x2, x3)) + ... + f7( f4(xD−1, xD)) + f7( f4(xD, x1)) (2.19)

• Expanded Scaffer F6 function: Non-separable, asymmetrical. Expanded Scaffer F6

function is shown as Eq. (2.20).

f15(x) = g(x1, x2) + g(x2, x3) + ... + g(xD−1, xD) + g(xD, x1) (2.20)

Where, g(x, y) = 0.5 + sin2(
√

x2+y2)−0.5
(1+0.001(x2+y2))2

3). Composition functions (F21-F28): composed of several basic functions as shown in

Eqs. (2.21) and (2.22).

Comparing with the previous composition functions in CEC’05, the composition func-

tions in CEC’13 merge the properties of the sub-functions better and keeps continuous

around the global or local optima. The composition functions are given as Eqs. (2.21) and

(2.22), where, F(x) is new composition function, gi is ith basic function used to construct

the composition function defined as Fi’=Fi − F∗i , n is the number of basic functions, biasi

defines which optimum is global optimum, oi is the new shifted optimum position for each

gi(x), σi and λi are used to control each gi(x)’s coverage range and height.

F(x) =
n∑

i=1

{ωi ∗ [λigi(x) + biasi]} + F∗ (2.21)
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wi is the weight value for each gi(x) defined as following equation and then the weight

ωi =
wi∑n

i=1 wi
will be normalized.

wi =
1√∑D

j=1(x j − oi j)2
exp(−

∑D
j=1(x j − o2

i j)

2Dσ2
i

) (2.22)

• Composition function 1 (n=5,Rotated)

• Composition function 2 (n=3,Unrotated)

• Composition Function 3 (n=3,Rotated)

• Composition Function 4 (n=3,Rotated)

• Composition Function 5 (n=3,Rotated)

• Composition Function 6 (n=5,Rotated)

• Composition Function 7 (n=5,Rotated)

• Composition Function 8 (n=5,Rotated)

The detailed description of the CEC’13 test suite is available in Liang et al. (2013a).

CEC’13 test functions F1 - F20 are composed of f1 - f17. The function error values are

defined as F∗i − Fi(x∗) and these values are calculated when the experiments implemented.

The test functions defined by CEC’13 are listed on Table 2.2, the global optimal values are

given on the right column of this table.

The bound constraints are used to define the lower and upper bounds on the values

for each variable. In the case of the bound constraints, a solution S ∈ S is often given

by S = (x1, x2, ..., xD) and xi ∈ [Ai, Bi], where [Ai, Bi] is the search interval of dimension

i, where i ∈ 1, 2, ...,D. Particularly, if all variables are within the same range, all the

bound constraints change between xi ∈ [A, B]. Bound constraints arise in many practical

problems, and are frequent in the benchmark problems for continuous optimization that

currently play an important role in the evaluation of continuous optimization algorithms.

Given o = [o1, o2, ..., oD]T , the shifted global optimum distributed randomly in the range

[−80, 80]D, all test functions are shifted to o and are scalable. For convenience, the same

bound constraint ranges are defined as [−100, 100]D for all test functions.
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Table 2.2: CEC 2013 Test Functions

Type Func. No. Func. Name F∗i = Fi(x∗)

Unimodal

F1 Sphere -1400
F2 Rotated High Conditioned Elliptic -1300
F3 Rotated Bent Cigar -1200
F4 Rotated Discus -1100
F5 Different Powers -1000

Multi-modal

F6 Rotated Rosenbrock -900
F7 Rotated Schaffers F7 -800
F8 Rotated Ackley -700
F9 Rotated Weierstrass -600

F10 Rotated Griewank -500
F11 Rastrigin -400
F12 Rotated Rastrigin -300
F13 Non-Continuous Rotated Rastrigin -200
F14 Schwefel -100
F15 Rotated Schwefel 100
F16 Rotated Katsuura 200
F17 Lunacek Bi Rastrigin 300
F18 Rotated Lunacek Bi Rastrigin 400
F19 Expanded Griewank’s Plus Rosenbrock 500
F20 Expanded Scaffer F6 600

Composition

F21 Composition Function 1 (n=5,Rotated) 700
F22 Composition Function 2 (n=3,Unrotated) 800
F23 Composition Function 3 (n=3,Rotated) 900
F24 Composition Function 4 (n=3,Rotated) 1000
F25 Composition Function 5 (n=3,Rotated) 1100
F26 Composition Function 6 (n=5,Rotated) 1200
F27 Composition Function 7 (n=5,Rotated) 1300
F28 Composition Function 8 (n=5,Rotated) 1400

2.3 Benchmark Test Functions for CEC’14

CEC’14 benchmark test functions are developed based on the definition of CEC’13 test

functions with several novel features which are novel basic problems, composing test prob-

lems by extracting features dimension-wise from several problems, graded level of link-

ages, rotated trap problems, and so on (Liang et al., 2013b).
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There are some differences for CEC’14 test suite from CEC’13 test suite: each function

has a shift data shown as in oii = [oi1, oi2, ..., oiD]T ; rotation matrixes are assigned to each

function and each basic function, the rotation matrix for each subcomponents are generated

from standard normally distributed entries by Gram-Schmidt orthonormalization with con-

dition number c that is equal to 1 or 2; CEC’14 test suite has 6 hybrid functions additionally.

In order to testify the effectiveness and efficiency of the proposed extended ABC algorithms

in this thesis, CEC’14 is introduced and utilized by the comparative experiments.

CEC’14 benchmark test functions are classified to four groups by function properties,

namely, unimodal functions, simple multi-modal functions, hybrid functions and compo-

sition functions, however, the first two groups and the last group are similar as the test

functions defined by CEC’13. The definitions of basic functions for these test functions

and the properties of these test functions are described as the previous Section 2.2 and the

additional basic functions of HappyCat and HGBat are described as Eqs. (2.23) and (2.24).

TheCEC’14 test functions and the corresponding 2-dimensional landscape figures are given

in Appendix B.

• Unimodal functions (F1-F3)

• Simple multi-modal functions (F4-F16)

• Hybrid functions (F17-F22)

• Composition functions (F23-F30)

The basic additional functions f16 and f17 used by simple multi-modal functions F13

and F14 are defined as Eqs. (2.23) and (2.24).

• HappyCat function:

f16(x) = |
D∑

i=1

x2
i − D|1/4 + (0.5

D∑
i=1

x2
i +

D∑
i=1

xi)/D + 0.5 (2.23)

• HGBat Function:

f17(x) = |(
D∑

i=1

x2
i )2 − (

D∑
i=1

xi)2|1/2 + (0.5
D∑

i=1

x2
i +

D∑
i

xi)/D + 0.5 (2.24)
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CEC’14 benchmark test functions are listed on Table 2.3. CEC’14 test functions and

the 2-dimensional landscape figures are given in Appendix B.

The hybrid function F(x) is given as Eq. (2.25), where, gi(x) is ith basic function used

to construct the hybrid function, N is the number of basic functions, z = [z1, z2, ..., zN],

z1 = [yS 1 , yS 2 , ..., yS n1
], z2 = [yS n1+1 , yS n1+2 , ..., yS n1+n2

], ..., zN = [yS ∑N−1
i=1 ni+1

, yS ∑N−1
i=1 ni+2

, ..., yS D],

y = x − oi, S = randperm(1 : D), pi is used to control the percentage of gi(x), ni is the

dimension for each basic function
∑N

i=1 ni = D, n1 = p1D, n2 = p2D, ..., nN−1 = pN−1D,

nN = D −∑N−1
i=1 ni.

F(x) = g1(M1z1) + g2(M2z2) + ... + gN(MNzN) + F∗(x) (2.25)

The composition functions are given as Eqs. (2.21) and (2.22), where, functions gi are

defined as Fi’=Fi − F∗i .

2.4 Summary

The review for the history of test functions were described, the brief history of test functions

and the test function suites were then analyzed. Availability of the benchmark of CEC pro-

vides the platform for comparing new optimization algorithms to the state-of-the-art ones.

CEC benchmark is the widely used for evaluating the test functions which cover a wide

range of specialized optimization problems. The representative benchmark test functions

of CEC’13 and CEC’14 which were introduced based on the CEC’05 test functions were

given the definitions in more detailed ways.
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Table 2.3: CEC 2014 Test Functions

Type Func. No. Func. Name F∗i = Fi(x∗)

Unimodal
F1 Rotated High Conditioned Elliptic 100
F2 Rotated Bent Cigar 200
F3 Rotated Discus 300

Multi-modal

F4 Shifted and Rotated Rosenbrock 400
F5 Shifted and Rotated Ackley 500
F6 Shifted and Rotated Weierstrass 600
F7 Shifted and Rotated Griewank 700
F8 Shifted Rastrigin 800
F9 Shifted and Rotated Rastrigin 900

F10 Shifted Schwefel 1000
F11 Shifted and Rotated Schwefel 1100
F12 Shifted and Rotated Katsuura 1200
F13 Shifted and Rotated HappyCat 1300
F14 Shifted and Rotated GHBat 1400
F15 Expanded F4 plus F7 1500
F16 Shifted and Rotated Expanded Scaffer’s F6 1600

Hybrid

F17 Hybrid Function 1 (N=3) 1700
F18 Hybrid Function 2 (N=3) 1800
F19 Hybrid Function 3 (N=4) 1900
F20 Hybrid Function 4 (N=4) 2000
F21 Hybrid Function 5 (N=5) 2100
F22 Hybrid Function 6 (N=5) 2200

Composition

F23 Composition Function 1 (N=5) 2300
F24 Composition Function 2 (N=3) 2400
F25 Composition Function 3 (N=3) 2500
F26 Composition Function 4 (N=5) 2600
F27 Composition Function 5 (N=5) 2700
F28 Composition Function 6 (N=5) 2800
F29 Composition Function 7 (N=3) 2900
F30 Composition Function 8 (N=3) 3000



Chapter 3

Bio-inspired Algorithms

3.1 Swarm Intelligence (SI) Algorithms

In the last few decades, many algorithms were proposed by mimicking the successful char-

acteristics of the complex systems inspired from nature. Although the nature-inspired al-

gorithms are in their early-stage with short history, they have great potential properties of

flexibility, effectiveness and efficiency compared with traditional methods such as steep-

est decent, linear programming and dynamic programming which generally fail to solve

such large-scale problems especially with nonlinear objective functions. By far the major-

ity of nature-inspired algorithms are based on the successful characteristics of biological

systems, therefore, the largest fraction of nature-inspired algorithms are biology-inspired,

or bio-inspired for short (Fister et al., 2013).

Bio-inspired algorithms are problem solving approaches based on the structure and

functioning of complex natural systems in an adaptable reactive distributed manner. They

are population based algorithms, usually bottom-up, decentralized approaches (Ding, 2009)

which provide simple solutions to complex problems that would be hard for traditional

computing approaches to solve. Bio-inspired algorithms also have good performance for

the tasks with poorly defined, have improvement scope and innovation for largely unex-

plored fields.

A common feature of all population-based algorithms is that the population consist-

ing of possible solutions to the problem is modified by applying some operators on the

27
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solutions depending on the information of their fitness. Hence, the population is moved to-

wards better solution areas of the search space. Two important classes of population based

optimization algorithms are SI based algorithms and EAs.

SI based algorithms have been developed by drawing inspiration from the behavior of

some social living beings, such as ant or termite colonies, bird flocks, fish schools and

honey bees. These social insects or animals are composed of multiple individuals and the

individuals are relatively homogeneous; the interactions among the individuals are based

on the collective behaviors of decentralized and self-organization.

The fundamental principles for SI are described as follows (Mahale and Chavan, 2012).

• Proximity principle: the population should have the capablity of simple computation

related to its surrounding environment;

• Quality principle: the population should be able to respond to quality factors such as

food and safety in the environment;

• Diverse response principle: the population should not be concentrated in narrow

region. The distribution should be designed so that each agent will be protected

maximally with environmental fluctuations;

• Stability and adaptability principle: the population should not change its mode of

behavior every time the environment changes because mode changing costs energy.

The agents in SI based algorithms follow very simple rules although there is no cen-

tralized control structure instructing how individual agents should behave. The interactions

among such agents display impressive cognitive abilities. Instead of being centrally con-

trolled and regulated by the orders of a single well-informed individual, taking the social

insect colonies as an example, most of them operate through a process of self-organization,

in which each worker’s actions are governed by a set of relatively simple behavioral rules.

Most of the complex patterns and behaviors of insect colonies are emergent properties of

the actions of individual workers, and are not controlled by any single individual (Moussaid

et al., 2009). Individual social insects organize and coordinate their actions by the mecha-

nism of stigmergy (Bonabeau et al., 1999). Stigmergy is a mechanism of spontaneous, in-

direct coordination among agents or actions that influence collective behavior intelligently
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(Marsh and Onof, 2008). In order to effectively coordinate their behaviors, individuals

within a colony must have some means of communicating with each other. Stigmergy

allows the communication among workers to take place indirectly, by means of environ-

mental cues, thereby eliminating the need for direct interactions between individuals. The

detail statements of self-organization and stigmergy will be given in Section 3.1.1.1. There

are many phenomena of the behaviors through self-organization, for example, nest build-

ing and forging in honey bees, food transportation in ant colony, fish schooling and bird

flocking.

Representative SI based algorithms are ABC, PSO and ACO algorithms. In addition,

many other SI based algorithms have been proposed such as cuckoo search (CS) (Yang and

Deb, 2009), firefly algorithm (FA) (Yang, 2010a), artificial fish school algorithm (AFSA)

(Yun, 2010), bat algorithm (BA) (Yang, 2010c), ant lion optimizer (Mirjalili, 2015), drag-

onfly algorithm (Mirjalili, 2015), grey wolf optimizer (Mirjalili et al., 2014). As their

representatives, four algorithms of ACO, CS, FA and AFSA are described as following.

•Ant colony optimization (ACO): taken inspiration from the foraging behavior of some

ant species. These ants deposit pheromone on the ground in order to mark some favorable

path that should be followed by other members of the colony. ACO exploits a similar

mechanism for solving optimization problems. The first ACO algorithm is known as Ant

System and was proposed in the early nineties. Since then, several other ACO algorithms

have been proposed. With regard to the process of ACO algorithm, after initializing param-

eters and pheromone trails, the main loop consists of three main steps. First, ants construct

solutions to the problem instance under consideration, biased by the pheromone informa-

tion and possibly by the available heuristic information. Once the ants have completed their

solutions, these may be improved in an optional local search phase. Finally, before the start

of the next iteration, the pheromone trails are adapted to reflect the search experience of

the ants;

• Cuckoo search (CS): based on the interesting breeding behavior of brood parasitism

of certain species of cuckoos by laying their eggs in the nests of other host birds (of other

species). Each cuckoo lays one egg at a time, and dumps its egg in randomly chosen nest;

the best nests with high quality of eggs will carry over to the next generations; the number

of available host nests is fixed, and the egg laid by a cuckoo is discovered by the host bird
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with a probability, the host bird can build a completely new nest through throwing the egg

away or abandoning the nest. CS was proposed based on the above principles and applied

on optimization problems and other real world applications;

• Firefly algorithm (FA): inspired by the flashing behavior of fireflies. The main pur-

pose for a firefly’s flash is to act as a signal system to attract other fireflies. All fireflies

are unisexual, so that any individual firefly will be attracted to other fireflies; attractive-

ness is proportional to their brightness, and for any two fireflies, the less bright one will be

attracted by the brighter one; however, the apparent brightness decreases as their mutual

distance increases; If there are no fireflies brighter than a given firefly, it will move ran-

domly. The brightness should be associated with the objective function. In recent years,

more than twenty variants of FA such as discrete FA, multi-objective FA, chaotic FA and

hybrid FA algorithms have been developed and applied to various fields of optimization,

image processing, clustering, feature selection and fault detection;

• Artificial fish school algorithm (AFSA): is inspired by the collective movement of the

fish and their various social behaviors. Based on a series of instinctive behaviors, the fish

always try to maintain their colonies and accordingly demonstrate intelligent behaviors.

AFSA builds some artificial fish, which search an optimal solution in solution space (the

environment in which AF live) by imitating fish swarm behavior. The basic behaviors of

AF are prey, swarm and follow. The fish perceives the concentration of food in water to

determine the movement by vision or sense and then chooses the tendency in the prey

behavior; In swarm behavior, the fish will assemble in groups naturally in the moving

process, which is a kind of living habits in order to guarantee the existence of the colony and

avoid dangers; In the moving process of the fish swarm, when a single fish or several fish

find food, the neighborhood partners will trail and reach the food quickly in the following

behavior;

Various modified SI based algorithms have been also proposed and applied to opti-

mization problems in the real-world. Their effectiveness and efficiency have been testified

through experiments. The main SI algorithms are ABC and PSO involved in this thesis.

The extended ABC algorithms will be proposed in Chapter 4 and Chapter 5. PSO algo-

rithm as one of the representative SI algorithms is introduced to compare with extended

ABC algorithms. The statements of ABC and PSO algorithms are given in Sections 3.1.1-
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3.1.2.

3.1.1 Artificial Bee Colony (ABC)

Real Bee Behavior

Facing a life-or-death situation, a honey bee swarm engages in a complex decision-making

process involving multiple, simultaneous interactions among hundreds of individuals who

have no leadership at all.

The collective intelligent behavior of insect or animal groups in nature such as flocks

of birds, swarms of ants and termites, schools of fish, colonies of bees have attracted the

attention of researchers (Cuevas et al., 2013). Entomologists have studied this collective

phenomenon to model biological swarms while engineers have applied these models as a

framework for proposing various kinds of SI based algorithms.

The recent developments do not only have consequences on the study of social insects,

but also provide us with powerful tools to transfer knowledge about social insects to the

field of intelligent system design. In effect, a social insect colony is undoubtedly a decen-

tralized problem-solving system, comprised of many relatively simple interacting entities

(Bonabeau et al., 1999). Every insect of the colony seems to have its own responsibility,

the seamless integration of the individuals does not require the central control.

A swarm of honey bee is very attractive in nature that the swarm allocate the task more

dynamically and adapt to environment by collective intelligent manner.

Honey bees are one kind of the most fascinating insects on the earth. Aside from mak-

ing delicious honey, honey bees are amazing because their behavior attracts researchers to

study the bee colony. The honey bees have the photographic memories, space-age sensory

and navigation systems, they have the intelligent behavior of selecting nest sites. Addi-

tionally, honey bees possess a number of characteristics which contribute to their making

decision for success, including self-organization, stigmergy, and division of labor. They

have direct and indirect communication systems which allow them to coordinate their ac-

tivities and engage in decentralized problem-solving and intelligent decision-making. And,

like all social insects, they have the opportunity to engage in social learning by interacting

with simple other entities in their social group. While groups of insects possess collective
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intelligence, the individuals within those groups have complex cognitive abilities. Self-

organization, stigmergy and division of labor three component keys in bee colony described

as following.

� Self-organization

Self-organization (SO) is one of the key issues for generating collective intelligence.

Bonabeau et al. (1997a) describe self-organization as a set of dynamical mechanisms whereby

structures appear at the global level (macroscopic level) of a system from interactions

among its lower-level (microscopic level) components. In a SO system, each of the covered

units may respond to local stimuli individually and act together to accomplish a global task

via division of labor without any centralized control. SO refers to a broad range of com-

plex higher-order pattern-formation process in both physical and biological systems, such

as sand grains assembling into ripple dunes, birds flying in swarm, fish joining together in

schools, ants transporting in colony and bees working together in colony.

In short, the modeling of social insects by means of SO can help to design artificial

distributed problem-solving devices to solve the problems. The paths to problem solving

are not predefined but rather emergent in these systems, and result from interactions among

individuals and between individuals and their environment as much as from the behavior

of the individuals themselves. Taking the honey bees as an example, foraging is the most

important behavior in the hive. Colony-level exploitation of nectar sources emerges auto-

matically as each bee follows a few simple behavior rules, each bee has limited knowledge

of the array of available nectar sources in the field (Seeley, 1999). Each bee needs only

have knowledge of the nectar source at which she is presently feeding. Efficient exploita-

tion of the food source can occur without any bees comparing the relative profitabilities of

the nectar sources (Camazine et al., 1991). Therefore, using a swarm intelligent system to

solve a problem requires a thorough knowledge not only of what individual behavior must

be implemented but also of what interactions are needed to produce such global behavior.

According to Bonabeau et al. (1999), positive feedback, negative feedback, multiple

interactions and fluctuations are the four characteristics for SO. In terms of honey bees, the

basic elements on SO relies are as follows:
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• Positive feedback: as the nectar amount of food sources increases, the number of

onlookers visiting them also increases

• Negative feedback: the exploration process of a food source abandoned by bees is

stopped

• Fluctuations: the scouts carry out a random search process for discovering new food

sources

• Multiple interactions: bees share their information about food source positions with

their nest mates on the dance area

� Stigmergy

In stigmergic labor, it is the product of work previously accomplished, rather than di-

rect communication among nest mates, that induces the insects to perform additional labor

(Wilson, 1971). The individuals could act independently without direct interaction or so-

phisticated communications. Therefore, stigmergic process is a sequence of indirect stimu-

lus or responses behaviors and contributes to the coordination between insects through the

environment.

Michener (1974) described many activities in bee colonies that result in nest structures,

conditions of brood or stored food, to which other bees respond. Referring to this as social

interactions by indirect communicating, where the construct is made for other primary

objectives, not for signaling, although the information content becomes essential for colony

integration. In nectar source decision making in honey bees, it is less clear if only direct

communication through the recruitment dances of the bees produce the SO behavior, or if

also the indirect communication given by the waiting time for downloading the honey is

affecting the collective behavior (Seeley et al., 1991). In the process of recruiting other

bees, waggle dance works as the stigmergy mechanism. It is an advertisement for the

food source of the dancer. Another forager can leave own food source and watch out for

the well advertised food source (Seeley, 1992). A forager randomly follows dances of

multiple recruiting foragers and seems to respond randomly as well. Especially she does

not compare several dances. A dance does not seem to contain any information that helps to
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choose a food source (Wedde et al., 2004). Upon their return from a foraging exploration,

bees inform the distance, direction, and quality of a flower site to their fellow foragers by

making waggle dances. In this way, if a good flower site is exploited, then the numbers of

foragers at this site are reinforced.

Stigmergy is often associated with flexibility: when the environment changes because

of an external perturbation, the insects respond appropriately to that perturbation, as if it

were a modification of the environment caused by the colony’s activities. In terms of honey

bees, the bee colony can collectively respond to the perturbation with individuals exhibiting

the same behavior. They show how stigmergy can easily be made operational because of

the simplicity of the behaviors involved.

� Division of Labor

The division of labor is the specialization of cooperating individuals who perform spe-

cific tasks and roles. Division of labor is one of the most well explored phenomena in the

study of the behavior of social insects (Robinson, 1992). As the SO and stigmergy, division

of labor is also the key property for honey bees to obtain swarm intelligent behaviors.

The division of labor is accomplished by the behavioral flexibility of individual work-

ers, which can be characterized by individual specialization and role plasticity (Holldobler

and Edward, 2009). Individual specialization makes honey bees to implement different

search modes referring to the individual preference for different tasks. Role plasticity

makes the honey bees to convert the characters caused by the changing environment. Colony

of bees responds to the internal and external changing conditions by adjusting the ratios of

individual workers engaged in the foraging tasks. Individuals have the ability to learn,

behave flexibility and achieve the effective task allocation and survives through mutual co-

operation with other individuals in changing environment. In addition, the individuals have

the property of robustness and endow the colony with the ability to function even though

some individuals may fail to perform their task. With these properties, honey bees make

the individuals have the ability to switch tasks quickly and accurately, in the meantime,

make them have the plasticity ability to adapt to changing environments dynamically.
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Standard ABC Algorithm

The social insect colonies include ants, termites, bees, and wasps, and the other animal

societies. They live together in self-organized cluster, they engage in a variety of complex

tasks not practiced by the multitude of solitary insects. Besides the above mentioned three

components keys, complex hive building, communication, guarding, navigation, environ-

ment control and foraging are the behaviors that honey bees have developed to survive

successfully among the social insects. The food foraging is one of the major tasks for the

honey bees as charming characteristic.

According to Karaboga et al. (2014), the inspiration from the bees’ behavior related to

the food sources, employed foragers and unemployed foragers are concluded as follows:

• Food Sources: In order to select a food source, a forager bee evaluates several prop-

erties related with the food source such as its closeness to the hive, richness of the

energy, taste of its nectar, and the ease or difficulty of extracting this energy. For

the simplicity, the quality of a food source can be represented by only one quantity

although it depends on various parameters as mentioned above;

• Employed foragers: An employed forager is employed at a specific food source

which she is currently exploiting. She carries information about this specific source

and shares it with other bees waiting in the hive. The information includes the dis-

tance, the direction and the profitability of the food source;

• Unemployed foragers: A forager bee that looks for a food source to exploit is called

unemployed. It can be either a scout who searches the environment randomly or an

onlooker who tries to find a food source by means of the information given by the

employed bee. The mean number of scouts is about 5-10%.

The food foraging is organized by the bee colony by recruiting bees for different jobs.

The recruitment is accomplished by the foraging bees through exchanging the information

which is the most important occurrence in the formation of collective knowledge. While

examining the entire hive it is possible to distinguish some parts that commonly exist in

all hives. The most important part of the hive with respect to exchanging information is



36

the dancing area where the forager bees perform dance to communicate with their fellow

bees inside the hive and recruit them. Bees that decide foraging without any guidance

from other bees are called scouts. Bees that attend to the waggle dance at the dance floor

can decide which food source to go based on its quality. The quality of a food source is

proportional to the quantity of nectar found there, and this information is transmitted by

changing the intensity of the waggle dance and through antennae contacts. The better the

food source, the more intense is the dance and the contacts (Reinhard and Srinivasan, 2009).

There is a greater probability of onlookers choosing more profitable sources since more

information is circulating about the more profitable sources. Employed foragers share their

information with a probability which is proportional to the profitability of the food source,

and the sharing of this information through waggle dancing is longer in duration. Hence,

the recruitment is proportional to profitability of a food source (Tereshko and Loengarov,

2005).

Figure 3.1 illustrates the basic foraging behavior of the bees (Camazine et al., 1991;

Karaboga et al., 2014). It is assumed that there are two discovered food sources of A

and B in the fields of M and N. Food sources FS exist in the fields of M and N besides

A and B. Potential foragers P1 and P2 are set as unemployed foragers. They have no

information about the food sources around the hive. There are two possible selections for

such a unemployed foraging bee:

1. It can become a scout bee and begin to search the nectar around the hive sponta-

neously (shown as S on Fig. 3.1)

2. It can be recruited as a follower and begin to search for a food source by watching

the waggle dances (shown as R on Fig. 3.1)

After searching the food source, the bees can memorize the location of the nectars and

then start to exploit them instantly. The bees will become employed forager bees and then

they take the nectars from the food source fields and returns to the hive and unload them.

After unloading the nectars, the forager bees may become one of the following bees:

• It might become an free follower after relinquishing the food source and go back to

dance area (FF)



37

Figure 3.1: Flowchart for foraging behavior of honey bees

• It might dance and then recruit hive mates and return to the same food source field

(DR)

• It might continue to forage from the same food source field without recruiting hive

mates (CF)

ABC algorithm is a swarm based meta-heuristic algorithm introduced by Karaboga

(2005) that mimics the food foraging behavior of honey bees following the fundamental

principles as mentioned at the beginning of this section. Then ABC has successfully been

applied to numerical optimization problems as mentioned in Chapter 1.
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In the ABC algorithm, the artificial bee colony associated with the foraging task com-

prises three kinds of bees: employed bees, onlooker bees, and scout bees. In ABC al-

gorithm, the food sources represent the candidate solutions or possible solutions and the

nectar amount of the food source represents the fitness associated with the solution for the

optimization problem. And each of the food sources is exploited by only one employed bee

hence the number of food sources are equal to the number of employed bees.

In the initial phase of foraging, bee explores the environment randomly in search of

food sources. When the forager bee finds the food source it becomes employed bee. Em-

ployed bees search for food source sites by modifying the site in their memory, evaluating

the nectar amount of each new source, and memorizing the more productive site through a

selection process. These bees share information related to the quality of the food sources

they exploit in the “dance area”. The number of employed bees is equal to the number of

food sources for the hive. Onlooker bees search for food sources based on the information

coming from employed bees within the hive. As such, more beneficial sources have higher

probability to be selected by onlookers. Onlooker bees choose the food sources by watch-

ing the waggle dances performed by employed bees. Waggle dances are performed by

individual foragers on returning to the nest and convey information about the direction and

distance of the forage site visited by the dancing bees. When the food source is abandoned,

a new food source is randomly selected by a scout bee to replace the abandoned source.

The number of food sources in ABC algorithm is equivalent to the number of solutions

in a population for an optimization problem. The number of nectar sites of a food source

represents the fitness cost of the associated solution. The flowchart of ABC is shown as

Fig. 3.2.

The main steps of ABC algorithm are shown as following:

1. Initialize the population of solutions xi j with Eq. (3.1);

xi j = xmin, j + rand[0, 1](xmax, j − xmin, j) (3.1)

Where, i ∈ 1, 2, ..., S N and j ∈ 1, 2, ...,D are randomly selected indexes, S N is the

number of food source, and D is the dimension size
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Figure 3.2: Flowchart for ABC algorithm

2. Evaluate the population;

3. Initialize cycle to 1, this number is counting the iteration cycle of this algorithm;

4. Produce new solutions vi for the employed bees by using xi j mentioned in Eq. (3.1);

vi j = xi j + φi j(xi j − xk j) (3.2)

Where φi j is uniformly distributed random number in the range [-1,1]; i, k ∈ 1, 2, ..., S N
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are randomly selected indexes with k different from i, and j ∈ 1, 2, ...,D is a randomly

selected index

Then the solutions are evaluated according to fitness value f iti in minimization prob-

lem, where fi is the cost value of solution vi.

f iti =

1/(1 + fi), i f fi ≥ 0

1 + | fi|, i f fi < 0
(3.3)

5. Apply the greedy selection process for the employed bees according to the fitness

values of current and the greatest one;

6. If the solution is not improved, then modify the value of trail, which is incremented

by one in each fail or is set zero in each successful try carried out by an employed

bee;

7. Calculate probability values Pi for the solutions using Eq. (3.4);

Pi =
f iti∑S N

n=1 f itn
(3.4)

Where f iti is the fitness value of solution i as defined in Eq. (3.3).

8. Produce new solutions vi for the onlooker bees from solutions xi using Eq. (3.1)

which is selected depending on Pi then evaluate them;

9. Apply the greedy selection process for the onlooker bees according to the fitness

values of current value and the greatest one;

10. If the solution is not improved, then the value of trail is modified, which is incre-

mented by one in each fail or is set to zero in each successful try carried out by an

onlooker bee;

11. Determine the abandoned solution through the number of limit for the scout bee, if it

exists, then replaced with a new random solution using Eq. (3.1);
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12. Memorize the best solution achieved so far;

13. Let cycle = cycle +1;

14. Repeat cycles 4-13 until cycle reaches a predefined maximum cycle number (MCN).

ABC algorithm has been applied to several fields in various ways, for example, opti-

mization problem (Karaboga and Basturk, 2008), training neural networks (Karaboga and

Akay, 2007); applied to protein structure prediction (Benı́tez and Lopes, 2010); solving

sensor deployment problem (Udgata et al., 2009); applied to engineering design optimiza-

tion (Akay and Karaboga, 2010a); solving wireless sensor network problem (Okdem et

al., 2011); solving redundancy allocation problem (Yeh and Hsieh, 2011); applied to data

mining (Celik et al., 2011) and solving job shop scheduling (Yin et al., 2011). As one of

the prominent SI algorithms in recent years, ABC algorithm will be adopted to solve these

benchmark problems defined by the CEC’13 and CEC’14 test functions in the thesis. As

an example for applying ABC to optimization problem, it is shown as following:

To minimize f (x) = x2
1 + x2

2, where, −5 ≤ x1, x2 ≤ 5

Control parameters of ABC Algorithm are set as: Colony size (CS) = 6, dimension of

the problem, D = 2, Limit for scout, L = (CS*D)/2 = 6.

First, initialize the positions x of 3 food sources (CS/2) of employed bees, randomly

using uniform distribution in the range (-5, 5):


1.4112 −2.5644

0.4756 1.4338

−0.1824 −1.0323


f (x) values are:


8.5678

2.2820

1.0990


According to the fitness function Eq. (3.3), initial fitness vector is:
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
0.1045

0.3047

0.4764


The maximum fitness value is 0.4764, it indicates the quality of the best food source.

One cycle of ABC algorithm is conducted and the position, function value and the fitness

vector are calculated according to Eqs. (3.1-3.4):

// For employed bees step:

1st employed bee: v0 = (2.1644,−2.5644), where φ0 = 0.805, f(v0)=11.261, fitness

value is 0.0816; solution 0 could not be improved because 0.0816 ¡ 0.1045 according to

greedy selection between x0 and v0, and then increase the trial counter.

2nd employed bee: v1 = (0.4756, 1.6217), where φ0 = 0.0762, f(v1)=2.856, fitness

value is 0.2593; solution 1 could not be improved because 0.2593 ¡ 0.3047 according to

greedy selection between x1 and v1, and then increase the trial counter.

3rd employed bee: v2 = (−0.0754,−1.0323), where φ0 = −0.0672, f(v0)=1.0714, fit-

ness value is 0.4828; solution 2 is improved because 0.4828 ¿ 0.4764 according to greedy

selection between x0 and v0, set its trial counter as 0 and replace the solution x2 with v2.

Then the positions are reset as following:


1.4112 −2.5644

0.4756 1.4338

−0.0754 −1.0323


f (x) values are:


8.5678

2.2820

1.0714


Fitness vector is:
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
0.1045

0.3047

0.4828


Probability values Pi is calculated by means of their fitness using Eq. (3.4):


0.1172

0.3416

0.5412


// For onlooker bees step:

1st onlooker bee: i=2, v2 = (−0.0754,−2.2520), f(v2)=5.0772 and the fitness value is

0.1645; solution 2 could not be improved because 0.1645 ¡ 0.4828 according to greedy

selection between x2 and v2, and then increase the trial counter.

2nd onlookerw bee: i=1, v1 = (0.1722, 1.4338), f(v1)=2.0855 and the fitness value

is 0.3241; solution 1 is improved because 0.3241 ¿ 0.3047 according to greedy selection

between x1 and v1, and set its trial counter as 0 and replace the solution x1 with v1. Then

the positions are reset as following:


1.4112 −2.5644

0.1722 1.4338

−0.0754 −1.0323


f (x) values are:


8.5678

2.0855

1.0714


Fitness vector is:


0.1045

0.3241

0.4828


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3rd employed bee: i=2, v2 = (0.0348,−1.0323), f(v2)=1.0669 and the fitness value

is 0.4838; solution 2 is improved because 0.4828 ¿ 0.4828 according to greedy selection

between x2 and v2, set its trial counter as 0 and replace the solution x2 with v2. Then the

positions are reset as following:


1.4112 −2.5644

0.1722 1.4338

0.0348 −1.0323


f (x) values are:


8.5678

2.0855

1.0669


Fitness vector is:


0.1045

0.3241

0.4838


// Memorize the best: Best = (0.0348, -1.0323)

// For scout bee step:

TrialCounter = 
1

0

0


There is no abandoned solution since L = 6. If there is an abandoned solution (trial

counter value is higher than L), generate a new solution randomly to replace with the aban-

doned one.

// Cycle = Cycle+1

The above procedure is continued until the termination criterion is reached.
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3.1.2 Particle Swarm Optimisation (PSO)

Particle swarm optimization (PSO) proposed by Kennedy and Eberhart (1995), is a SI

oriented stochastic, population based global optimization technique. The PSO uses a sim-

ple mechanism that mimics swarm behavior in birds flocking and fish schooling to guide

the particles to search for global optimal solutions. Due to its unique searching mech-

anism, simple concept, computational efficiency, and easy implementation, it has rapidly

progressed in recent years and with many successful applications seen in solving real world

optimization problems (Li and Engelbrecht, 2007; Krohling and Coelho, 2006; Liu et al.,

2007).

In PSO, the term particles refer to population members which are mass-less and volume-

less, could be called “points”. Velocities and accelerations are more properly applied to

particles with an arbitrarily small mass and volume.

A swarm is similar to population, while a particle is similar to an individual. In sim-

ple terms, the particles are “flown” through a multidimensional search space, where the

position of each particle is adjusted according to its own and neighbor’s experience. Each

particle in the swarm has four vectors, its current position, best position found so far, the

best position found by its neighborhood so far and its velocity. Each particle adjusts its po-

sition in the search space based on the best position reached by itself personal best (pbest)

and best position reached by its neighbor (gbest) during the search process.

In the PSO algorithm, the cognitive component (individual learning) of a particle, which

is proportional to its pbest position, and the social component (cultural transmission) gen-

erated by the swarm are generated while a particle is developing a new situation. This

situation enables the PSO algorithm to effectively find the global optimum solutions by

searching through the local solutions.

The standard PSO algorithm starts from the initialization step composed of a popu-

lation of random number solutions. With the fitness value for evaluation, particles move

iteratively through D-dimensional search space to find new solutions.

In each iteration, each particle updates its velocity and position as follows:

vi,d = ωvi,d + c1r1(pi,d − xi,d) + c2r2(pg,d − xi,d) (3.5)
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Figure 3.3: Flowchart of PSO algorithm

xid = xid + vid (3.6)

Where v represents particle velocity and x represents particle position, i ∈ 1, 2, ..., M,

d ∈ 1, 2, ...,D , M is the total number of particles in the swarm, ω is the inertia weight,

r1, r2 are random numbers in the range [0,1], c1, c2 are acceleration coefficients, pi,d is the

personal best (pbest) and pg,d is the global best (gbest).

The flowchart of PSO algorithm is shown as Fig. 3.3. The process of the PSO flowchart

is explained as following:
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1. Create a population of agents (particles) with uniformly distributed random numbers;

2. Evaluate each particle’s position and velocity;

3. Determine the pbest and gbest;

4. Update the particle’s position and velocity;

5. Repeat the steps 2-4 until terminal criteria are met, if it is not, then return to step 2

and evaluate the new population.

PSO algorithm is attractive that there are few parameters to train, therefor, it has been

used for wide range of applications which focused on a specific requirement. The appli-

cations vary from evolving artificial neural networks, system design, classification, pattern

recognition, scheduling, signal processing, decision making to multi-objective optimization

problem.

3.2 Evolutionary Algorithms (EAs)

EA algorithms are stochastic search and optimization heuristics using computational mod-

els of evolutionary processes derived from biology with beginning their existence during

the late 1960s and early 1970s. The evolutionary process is the key element in the design

and implementation of computer based problem solving systems. Different from the tra-

ditional calculus based optimization strategies, EAs are based on a population of encoded

tentative solutions which are processed with some evolutionary operators such as recombi-

nation and mutation to find a optimal solution. The search and optimization process follows

the principle of the Darwinistic evolution theory of “survival of the fittest” to generate suc-

cessively better results over generations to finally approximate the optimal solutions. The

EAs use three main principles of natural evolution: reproduction, natural selection and

diversity of species, maintained by the differences of each generation with the previous.

To solve optimization problems with an evolutionary heuristic, the individuals of a pop-

ulation have to represent a possible solution of a given problem and the selection probability

is set proportional to the quality of the represented solution (Streichert, 2002). Evolution

of the population then takes place after the repeated application of the above steps.
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Figure 3.4: The general flowchart for EA

An EA uses mechanisms inspired by biological evolution, such as reproduction, muta-

tion, recombination, natural selection and the survival of the fittest. The general flowchart

of EA is shown as in Fig. 3.4. The process of the EA flowchart is explained as following:

1. The initial population is generated randomly;

2. Evaluate the fitness value of the individuals in the initial population;

3. The individuals with higher quality (better fitness) value are selected according to the

evaluation;
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4. New individuals are generated from parents through the genetic operators with crossover

and (or) mutation;

5. Repeat the steps 2-4 until terminal criteria are met, if it is not, then return to step 2

and evaluate the new population.

As the classical EAs, GA, DE and their extended versions of Non-uniform Real-coded

GA (NUGA) and SHADE algorithms have been proposed. The interpretations of NUGA

and SHADE algorithms are given in the following sections and then adopted as the algo-

rithms used to compare with extended ABC algorithms in Chapter 4 and Chapter 5.

3.2.1 Genetic Algorithm (GA)

Genetic algorithm (GA) is a stochastic optimization algorithm based on the concepts of bi-

ological evolutionary theory (Holland, 1975). GA starts off with a population of randomly

generated chromosomes and advances toward better chromosomes by applying genetic op-

erators, modeled on the genetic processes occurring in nature. The chromosomes represent

set of genes, which code the independent variables. Every chromosome represents a solu-

tion of a given problem. An individual, its vector of variables, are used as another word for

a chromosome.

A set of different chromosomes (individuals) forms a generation, the chromosomes are

evaluated as possible solutions. Based on these evaluations, an offspring population is cre-

ated using a mechanism of selection and applying genetic operators such as crossover and

mutation. The selection of individuals is performed by survival of the fittest. There are

several kinds of selection mechanisms as fitness proportional selection, ranking selection,

roulette wheel selection and tournament selection. For the selection mechanisms, the user

has to provide means to determine the relative fitness of the individuals. The individuals

with higher fitness are selected for next step of crossover. Crossover is the first step for re-

production process. In this process, the genes of the parents are used to form an entirely new

chromosome. There are one-point crossover, two-point cross over and uniform crossover

for the crossover operator. Mutation is a genetic operator used to maintain genetic diversity

from one generation of a population of chromosomes to the next. Mutation operator has

serval types as bit string, flip bit, uniform, non-uniform and gaussian mutations.
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The operation of a standard GA is described as following steps:

1. Randomly generate an initial population;

2. Compute the fitness of the population;

3. Create an intermediate population by using a selection operator;

4. Generate a new population by applying crossover and mutation operators;

5. Increase the generation number and go back to step 3 when termination condition is

not met.

GA is a very effective way of quickly finding a reasonable solution to a complex prob-

lem, it can do an excellent job of searching through a large and complex search space. You

may know exactly what you want a solution to do but have no idea how you want it to go

about doing it. This is where GA thrives. GA produces solutions that solve the problem in

ways you may never have even considered. The applications of GA are involving various

fields in the real-world, for example, state assignment problem, economics, scheduling,

traveling salesman problem and computer-aided design. Specifically, GA is often applied

as an approach to solve global optimization problems.

3.2.2 Non-uniform Real-coded GA (NRGA)

From the statistical data, the best so far solution obtained is xb,t (where b denotes the best

and t is the current iteration number). The individual is bounded between values a and b

(with a as lower bound xL and b as upper bound xU). The location of the individual after

performing three basic operations of selection, crossover and mutation is x (Yashesh et al.,

2014).

The mapping function is:

m(ζ) = kζη (3.7)

where ζ = (x− a)/(b− a). Using this mapping equation, x is mapped to x∗. x∗ is nearer

to the best ever solution xb,t.
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k = (η + 1)(
b − a

xb,t − a
)η (3.8)

When x ∈ (a, xb,t), the mapped value x∗ for one-dimensional space is :

x∗ = a + [(x − a)(xb,t − a)η]1/(η+1) (3.9)

The point x used above is one of the vector form X with its coordinates as xi (where

i = 1, 2, ..., n ).

Two kinds of methods for mapping were implemented. First method was the variable-

wise mapping approach, where the components of X (i.e. xi ) were pushed towards the

corresponding components of Xb,t (i.e. xb,t
i ) just like in one-dimensional case.

x∗i = xiL + [(xi − xiL)(xb,t
i − xiL)η]1/(η+1) (3.10)

The second method was vector-wise mapping. The parameterized value of the mapped

point X∗ is d∗ using the following equation:

d∗ = a + [(−a)(1 − a)η]1/(η+1) (3.11)

X∗ = X + d∗(Xb,t − X) (3.12)

It is clearly noticed that higher the value of η, more will be the pushing done and so the

solutions will start accumulating nearer and nearer to the best ever point Xb,t. If the value

of η is set too large right from the start, then the amount of exploration will be reduced and

there will be higher chances of getting premature convergence.

NRGA was proposed to improve the performance by controlling the diversity of pop-

ulation and avoiding premature convergence through the experiments based on CEC’14

real-parameter numerical optimization (Yashesh et al., 2014).
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3.2.3 Differential Evolution (DE)

DE is a population-based stochastic search technique proposed by Storn and Price (1997).

It has several attractive features of simple, but powerful, effective and efficient for global

optimization in continuous search domain. It is significantly faster and robust for solving

numerical optimization problems. DE has been successfully applied in diverse fields such

as mechanical engineering (Rogalsky et al., 2000; Joshi and Sanderson, 1999), and train-

ing neural network (Ilonen et al., 2003). In DE, there exist many trial vector generation

strategies out of which a few may be suitable for solving a particular problem. Moreover,

three crucial control parameters involved in DE, i.e., population size, scaling factor, and

crossover rate, may significantly influence the optimization performance of the DE. There-

fore, to successfully solve a specific optimization problem at hand, it is generally required

to perform a time-consuming trial-and-error search for the most appropriate strategy and to

tune its associated parameter values.

The general mutation type for DE is DE/x/y/z, where x represents a string denoting the

base vector to be perturbed, y is the number of difference vectors considered for pertur-

bation of x, and z stands for the type of crossover being used (exp indicates for exponen-

tial and bin stands for binomial). There are 5 types of mutations, namely, “DE/rand/1”,

“DE/best/1”, “DE/current-to-best/1”, “DE/rand/2” and “DE/best/2” shown as following:

• “DE/rand/1”

Vi,G = xr1,G + F · (xr2,G − xr3,G) (3.13)

• “DE/best/1”

Vi,G = xbest,G + F · (xr1,G − xr2,G) (3.14)

• “DE/current-to-best/1”

Vi,G = xi,G + F · (xbest,G − xi,G) + F · (xr1,G − xr2,G) (3.15)
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• “DE/rand/2”

Vi,G = xr1,G + F · (xr2,G − xr3,G) + F · (xr4,G − xr5,G) (3.16)

• “DE/best/2”

Vi,G = xbest,G + F · (xr1,G − xr2,G) + F · (xr3,G − xr4,G) (3.17)

Where, the indices r1, ..., r5 are randomly selected from [1,N] such that they differ from

each other as well as i, xbest,G is the best individual in population in generation G. The

parameter F ∈ [0, 1] controls the magnitude of the differential mutation operator.

DE algorithm aims at evolving a population of D-dimensional parameter vectors seen as

individuals, which encode the candidate solutions xi,G as a population for each generation

G, where i = 1, 2, ...,NP. The initial vector population is chosen randomly. As a rule,

a uniform probability distribution is provided for all random decisions unless otherwise

stated. DE generates new parameter vectors by adding the weighted difference between two

population vectors to a third vector on the mutation step. The mutated vector’s parameters

are then mixed with the parameters of another predetermined vector, the target vector, to

generate the trial vector. If the trial vector yields a lower cost function value than the target

vector, the trial vector replaces the target vector in the following generation. The last step

is selection. Basic operating steps for DE algorithm are described as follows:

�Mutation

For each target vector xi,G, where i = 1, 2, ...,NP, G is the generation number.

A mutant vector Vi,G for “DE/rand/1” is generated as follows:

Vi,G = xr1,G + F · (xr2,G − xr3,G) (3.18)

The random indexes r1, r2, r3 ∈ 1, 2, ...,NP are mutually different integers. F is scale

factor.
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� Crossover

In order to increase the diversity of the perturbed parameter vectors, crossover operator

is introduced to generate a trial vector ui,G:

u j,i,G =

v j,i,G i f rand[0, 1] ≤ CR or j = jrand

x j,i,G otherwise
(3.19)

In Eq. (3.19), rand[0,1] is a uniform random number generator with outcome [0,1]. CR

is the crossover constant selected from [0,1], j is dimension size chosen from j ∈ 1, 2, ...,D

, and jrand is a random integer from [0, D-1] generated for each i.

� Selection

To decide whether the target or trial vector survives to the next generation, the trial

vector ui,G is compared to the target vector xi,G using the greedy criterion. If vector ui,G

yields a smaller cost function value than xi,G, then xi,G+1 is set to ui,G; otherwise, the old

value xi,G is retained.

xi,G+1 =

ui,G i f f (ui,G) < f (xi,G)

xi,G otherwise
(3.20)

3.2.4 SHADE

• 1. JADE

JADE ( Zhang and Sanderson, 2009; Tanabe and Fukunaga, 2013) is a DE variant that

has a mutation strategy “DE/current-to-pbest” with external archive, and that independently

controls CR and F for each individual component in an adaptive manner. An individual

component has same representative ways as that in the classical DE.

�Mutation Strategy



55

The mutation vector is generated by the strategy “DE/current-to-pbest/1”.

Vi,G = xi,G + Fi · (xpbest,G − xi,G) + Fi · (xr1,G − xr2,G) (3.21)

Where xr1,G is an individual component randomly selected from P and xr2,G is an indi-

vidual selected randomly from the union set P ∪ A. When the archive is not used, A= ∅.
xpbest,G is an individual component randomly chosen from the top 100p% individuals in P

with p ∈ [0, 1]. p is a constant.

� External Archive

JADE used an optional external archive in order to keep diversity. Parent vectors are

preserved when they are worse than trial vectors. P indicates the population. A is defined as

the archive that stores the individuals that are discarded at the selection process. Therefore,

A = ∅ at the beginning. Archive size | A | is set to same as the population size NP. The

randomly chosen variables are deleted to keep for newly inserted elements then the size of

archive exceeds | A |.

� Parameter Adaptation

Two variables µCR and µF , are provided for initial process with value of 0.5. At each

generation G and for each individual i, two parameters, CRi and Fi, are calculated as fol-

lows:

CRi = randni(µCR, 0.1) (3.22)

Fi = randci(µF , 0.1) (3.23)

CRi is a random number generated by normal distribution of mean µCR and standard

deviation 0.1, then it is converted to [0,1]. Similarly, Fi is a random number generated by

Cauchy distribution with location parameter µF and scale parameter 0.1, then it is converted

to 1 when Fi > 1, otherwise it is regenerated.
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� Crossover

Crossover is applied in the same way as in Eq. (3.19) with the modification of CRi.

u j,i,G =

v j,i,G i f rand[0, 1] ≤ CRi or j = jrand

x j,i,G otherwise
(3.24)

� Selection

Selection is produced by Eq. (3.20). CRi and Fi for generating ui,G are stored in S CR,G

and S F,G, respectively, in the case when xi,G+1 = ui,G. xi,G is stored in A when the archive

option is used.

The following parameter adaptations are produced when S CR,G and S F,G are not empty.

µCR,G+1 = (1 − c) · µCR,G + c · meanA(S CR,G) (3.25)

µF,G+1 = (1 − c) · µF,G + c · meanL(S F,G) (3.26)

Where c ∈ (0, 1) is a constant, meanA(S CR,G) is the arithmetic mean of S CR,G and

meanL(S F,G) is the Lehmer mean value calculated by following equation:

meanL(S F,G) =

∑
F∈S F,G

F2∑
F∈S F,G

F
(3.27)

Then, generation is renewed to calculate the next generation.

• 2. SHADE

SHADE (Tanabe and Fukunaga, 2013) is proposed as an extended JADE, but it adopts a

history of parameter adaptation of JADE. The new modification that controls the greediness

constant p is replaced with a variable pi to reduce the number of parameters.

� Parameter Adaptation
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In SHADE, MCR and MF as the memory areas, are provided for storing the parameters

used. Each memory has a maximum memory size of H.

MCR = MCR,0,MCR,1, ..., MCR,H−1 (3.28)

MF = MF,0,MF,1, ..., MF,H−1 (3.29)

At the initial step, all values are set to 0.5, then they are updated in the search process

using following equation:

MCR,k,G+1 =

meanWA(S CR,G) i f S CR,G , 0

MCR,k,G otherwise
(3.30)

MF,k,G+1 =

meanWL(S F,G) i f S F,G , 0

MF,k,G otherwise
(3.31)

Where k ∈ [0,H − 1] is the index which indicates the current place in the memory.

MCR,k,G means the kth element in memory area MCR means the value of CR at generation G

. k is set to 0 at the initialization and increased following update. k is set to 0 again when it

is increased to k = H−1. meanWA(S CR,G) and meanWL(S F,G) are weighted means calculated

by Eqs. (3.32)-(3.35), respectively.

meanWA(S CR,G) =
|S CR,G |∑

q=1

ωq · S CR,G,q (3.32)

ωq =
∆ fq∑|S CR,G |

q=1 ∆ fq

(3.33)

∆ fq =| f (uq,G) − f (xq,G) | (3.34)

meanWL(S F,G) =

∑|S F,G |
q=1 ωq · S 2

F,G,q∑|S F,G |
q=1 ωq · S F,G,q

(3.35)
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Therefore, CRi and Fi are calculated as follows in the same way of Eqs. (3.36) and

(3.37) as defined in JADE:

CRi = randni(MCR,ri , 0.1) (3.36)

Fi = randci(MF,ri , 0.1) (3.37)

Where, ri ∈ [0,H − 1] is random number.

�Mutation

SHADE has similar mutation strategy “DE/current-to-pbest/1” as adopted in JADE,

except that a constant p is replaced with:

pi = rand[pmin, 0.2] (3.38)

Where pmin is selected by the calculation of mutation.

3.3 Summary

Swarm intelligence based algorithms and evolutionary algorithms were introduced as bio-

inspired algorithms which proposed by mimicking the successful characteristics of the

complex systems inspired from nature. A swarm of honey bee is very attractive in na-

ture that the swarm allocates the task more dynamically and adapts to environment by

collective intelligent manner. Like all social insects, the honey bees have the opportunity

to engage in social learning by interacting with simple other entities in their social group,

while the group of insects possesses collective intelligence, the individuals within the group

have complex cognitive abilities. Self-organization, stigmergy and division of labor were

interpreted in the first section as three component keys in bee colony. Standard ABC algo-

rithm was inspired from the behavior of honey bees related to the food sources, employed

foragers and unemployed foragers with regards to the food foraging behavior. The ABC

algorithm was described in detailed explanations with the flowchart.



59

Following the introduction of ABC algorithm, PSO algorithm as one of the classical

SI based algorithms, GA and its extended version NRGA, DE and its extended version

SHADE which belong to EAs were given the explanations in more detail. These SI based

algorithms and EAs will be used to compare with the proposed extended ABC algorithms

in Chapter 4 and Chapter 5 and comparative analyses will be conducted to evaluate the

performance of them.



Chapter 4

Improved Hybrid ABC (IHABC)
Algorithm

4.1 Previous Research about ABC Algorithms

4.1.1 Modified Versions of ABC Algorithms

The standard ABC algorithm was proposed based on the results of some standard bench-

mark problems, however, as an initial proposal, it still has a considerable performance gap

with respect to state-of-the-art algorithms. In particular, it was found to have poor perfor-

mance on composite and non-separable functions, and have a slow convergence rate toward

high quality solutions. To improve the performance, the ABC algorithm has been extended

in a number of ways recently. Some of the improved versions of ABC algorithms are taken

as examples shown as Table 4.1.

In addition, ABC algorithm requires fewer training parameters, therefore combining it

with other algorithms is easier. ABC algorithm was combined with some other SI based

algorithms or EAs in order to enhance the performance of ABC. Many hybridized ABC

algorithms have been proposed and some of them are taken as the examples as shown

Table 4.2.

60
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Table 4.1: Improved versions of ABC algorithms

Algorithm Name Modifications and Improvements References

Modified ABC

using several selection strategies such as disruptive selec-
tion strategy, tournament selection strategy and rank selec-
tion strategy in order to improve the population diversity
and avoid the premature

Bao and Zeng
(2009)

Chaotic ABC
many chaotic maps for parameters adapted from the origi-
nal ABC were introduced to improve its convergence per-
formance

Alatas (2010)

G-best guided
ABC

incorporate the information of global best solution into the
solution search equation to improve the exploitation

Zhu and
Kwong (2010)

Incremental ABC
integrate the population growth and local search with stan-
dard ABC algorithm

Aydin et al.
(2011)

Best-so-far ABC
enhance the exploration and exploitation processes by bias-
ing the solution direction toward the best-so-far position

Banharnsakun
et al. (2011)

ABC with two
variants

improve the performance of the algorithm by using new
methods for the position update of the artificial bees

Diwold et al.
(2011)

Enhanced ABC
overcome the slow convergence speed of the ABC algo-
rithm by controlling the frequency of perturbation and mag-
nitude of perturbation

Akay and
Karaboga
(2012)

Improved ABC
improve the performance of the algorithm by using a modi-
fied solution search equation with chaotic initialization

Gao and Liu
(2012)

4.1.2 State-of-the-art Modified ABC Algorithms

In this thesis, the state-of-the-art ABC algorithms are introduced to compare the their per-

formance with proposed extended ABC algorithms. These state-of-the-art ABC algorithms

are representative with promising experimental performance proposed in various journal

papers. Best-so-far ABC (BsfABC) and incremental ABC (IABC) are described in follow-

ing sections as the representative ABC algorithms.

Best-so-far ABC (BsfABC) Algorithm

To enhance the exploitation and exploration processes, best-so-far ABC (BsfABC) algo-

rithm was proposed by Banharnsakun et al. (2011). In this BsfABC algorithm, three major

changes were introduced. All onlooker bees use the information from all employed bees
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Table 4.2: Hybridized ABC algorithms

Algorithm Name Modifications and Improvements References
Novel hybrid
ABC and Quan-
tum Evolutionary
Algorithm

avoid the premature convergence and find the optimal value
by adopting ABC to increase the local search capacity as
well as the randomness of the populations

Duan et al.
(2010)

Novel bi-group
differential artifi-
cial bee colony

improve the performance of ABC by combined with DE
through opposition-based learning for initial individuals
and performing the evolutions of two sub-groups

Bao and Zeng
(2011)

Hybrid ABC as-
sisted DE

enable significant reduction in population size required with
less convergence time and balance between local and global
search ability

Li et al. (2011)

Efficient and ro-
bust ABC

improve the convergence performance of ABC through
combinatorial solution search equation for accelerating the
search process, chaotic search technique and reverse selec-
tion based on roulette wheel, in addition, chaotic initializa-
tion for enhancing the global convergence ability

Xiang et al.
(2013)

Local global vari-
ant ABC

harness the local and global variant of PSO into ABC, the
variant can get high quality solutions efficiently through
solving a set of thirteen well known constrained bench-
marks problems and three chemical engineering problems

Sharma and
Pant (2013)

Enhanced ABC
improve the performance of exploitation and exploration
ability by introducing self-adaptive searching strategy and
artificial immune network operators

Chen and Xiao
(2014)

to make a decision on a new candidate food source. Thus, the onlookers can compare in-

formation from all candidate sources and are able to select the best-so-far position which

will lead to optimal solution. The new method used to calculate a candidate food source is

shown as Eq. (4.1).

vi j = xi j + φ × fb(xi j − xb j) (4.1)

where vi j is the new candidate food source for onlooker bee position i and dimension

j, j = 1, 2, ...,D, xi j is the selected food source position i in a selected dimension j, φ is a

random number selected from [-1,1], fb is the fitness value of the best food source so far,

xb j is the best-so-far food source in selected dimension j. A global search ability for the
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scout bee was introduced as shown in Eq. (4.2) for resolving the problem of trapping in

local optimum.

vi j = xi j + φi j[ωmax −
iteration

MCN
(ωmax − ωmin)]xi j (4.2)

where vi j is a new feasible solution of a scout bee that is modified from the current po-

sition of an abandoned food source (xi j) and φi j is a random number between [-1,1]. MCN

denotes maximum cycle number. The values of ωmax and ωmin represent the maximum and

minimum percentage of the position adjustment for the scout bee. The value of ωmax and

ωmin are fixed to 1 and 0.2, respectively.

Incremental ABC (IABC) Algorithm

Aydin et al. (2011) proposed another modified ABC algorithm named incremental ABC

(IABC) algorithm. IABC algorithm begins with few food sources. New food sources

are placed biasing their location towards the location of the best-so-far solution. This is

implemented as Eq. (4.3).

x
′

new, j = xnew, j + rand[0, 1](xgbest, j − xnew, j) (4.3)

where xnew, j is the randomly generated new food source location, x
′

new, j is the updated

location of the new food source, xgbest, j refers to best-so-far food source location.

Another modification is applied by the scout bees step in IABC. The difference is a

replacement factor parameter, R f actor, that controls how much of the new food source loca-

tions will be closer to the best-so-far food source. This modified rule is specified with Eq.

(4.4).

x
′

new, j = xgbest, j + R f actor(xgbest, j − xnew, j) (4.4)

The other difference between the standard ABC and IABC is that employed bees search

in the vicinity of xgbest, j instead of a randomly selected food source. This modification

boosts the exploitation behavior of the algorithm and helps to converge quickly towards

good solutions.
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The BsfABC and IABC algorithms are introduced to compare with SAHEABC algo-

rithm in Chapter 5, and the comparative performance of these algorithms will be evaluated

based on the CEC’14 test suite experiments.

4.2 Introduction of IHABC Algorithm

Exploration and exploitation are two key components for meta-heuristic algorithms ( Blum

and Roli, 2003; Rashedi, 2009). Exploration is the ability to expand the search space more

thoroughly and to help generate diverse solutions, and exploitation is the ability to find

optima around better solutions. Too much exploration will increase the probability of find-

ing the true optimum globally, but it may often reduce the speed of process with much

lower convergence rate. On the other hand, too much exploitation will make the optimiza-

tion process converse quickly, but it may lead to prematurely converge with local optimum,

sometime it may get wrong solution. Moreover, it will also reduce the probability of finding

the global optima. Exploration and exploitation play key roles in SI based algorithms and

EAs, they coexist in the evolutionary process of algorithms such as PSO, DE, and ABC, in

the meantime, they contradict each other.

Along with the advantages of the improved versions of ABC algorithms as analyzed in

Section 4.1, however, a few disadvantages still exist. For example, ABC algorithms have

low convergence speeds when they solve some unimodal and composition functions, have

low exploitation abilities, and are also trapped in local optima easily when they solve com-

plex multimodal functions (Karaboga and Akay, 2009). Inspired by self adaptive mech-

anism, incorporated with DE and PSO algorithms, an improved hybrid ABC (IHABC)

algorithm is proposed to overcome these disadvantages, and achieve better performance

with more higher convergence speed, exploitation ability and avoid trapped in local op-

timum through the characteristic of predominance of hybridizing other algorithms easily.

As the methods adopted for the proposed IHABC algorithm, self adaptive mechanism and

hybridization with DE and PSO algorithms are described as following.

In the standard ABC algorithm, a random perturbation is added to the current solution

to produce a new solution. This random perturbation is weighted by φi j selected from [-1,1]

and is a uniformly distributed real random number in the standard ABC. Too large or too
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small values will affect the convergence speed. Therefore, a self adaptive mechanism is

introduced to balance the exploration ability and the convergence speed of the algorithm

for employed bees. The self adaptive ABC approach has a very simple structure and is

easy to implement. φi j is changed with the cycle number according to a random value

called rand in the range [0,1] for food searching process of employed bee. φi j is defined as

φi j = 1 − 2 ∗ rand in the standard ABC and changed to self adaptive mechanism shown as

Eq. (4.5).

φi j =

−e
−0.12cycle

MCN , 0 ≤ rand ≤ 0.5

e
−0.12cycle

MCN , 0.5 < rand ≤ 1
(4.5)

The DE algorithm has been proved to be a simple yet powerful and efficient population

based algorithm for many global optimization problems. To further improve the perfor-

mance of the DE algorithm, researchers have suggested different schemes of DE (Das and

Suganthan, 2011). Like other evolutionary algorithms, DE also relies on an initial random

population generation and then improves its population via mutation, crossover and selec-

tion processes. The mutation equations for DE were shown as Eqs. (3.13)-(3.17) in Chapter

3. The searching food source process in ABC algorithm is similar to the mutation process

of DE. Moreover, the best solution in the current population is very useful for improving

convergence performance for DE. As one scheme of the mutations of DE, “DE/best/1” can

effectively maintain the population diversity. Therefore, the “DE/best/1” mutation strategy

is combined with the searching food process of ABC algorithm to produce a new search

equation (4.6) and improved the convergence ability.

vi j = xbest, j + φi j(xi j − xk j) (4.6)

Where i, k ∈ 1, 2, ..., S N are randomly selected indexes and k different from i; j ∈
1, 2, ...,D is a randomly selected index and φi j was given in Eq. (4.5).

According to the previous research of Kong et al. (2013), the search ability of the ABC

algorithm is good at exploration, but poor in terms of exploitation which affects the con-

vergence speed. Specifically, the relationship between employed bees and onlooker bees

are seen as relationship between exploration and exploitation, respectively. Employed bees
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explore new food sources and send information to onlooker bees, and onlooker bees exploit

the food sources explored by employed bees.

In the standard ABC algorithm, much time is required to find the food source due to

poor exploitation abilities. PSO is incorporated into ABC algorithm in order to improve the

exploitation ability of ABC algorithm. The equations of PSO are shown as Eqs. (3.5) and

(3.6). The modification for onlooker bee search solution is shown as Eq. (4.7) by taking

advantage of the search mechanism of PSO.

vi j = xi j + ϕi j(xi j − xk j) + ψi j(xbest, j − xi j) (4.7)

Where i, k ∈ 1, 2, ..., S N are randomly selected indexes and k different from i; j ∈
1, 2, ..., S N is a randomly selected index; xbest, j is the jth element of the best solution so far,

and ϕi j ∈ [−1, 1] and ψi j ∈ [0, 1.5] are uniformly distributed random numbers.

The main modifications for IHABC algorithm on the standard ABC are as follows.

• The modifications with Eqs. (4.5) and (4.6) substitute the Eq. (3.2) on step 4 of main

steps of standard ABC algorithm in Section 3.1 to balance the exploration ability and

the convergence speed of the algorithm for employed bees

• The modification with Eq. (4.7) substitutes the Eq. (3.2) on step 8 of main steps of

standard ABC algorithm in Section 3.1 to improve the exploitation ability of ABC

algorithm

4.3 Experimental Setup

ABC and IHABC algorithms are evaluated for all 28 test functions defined by CEC’13

test suite with parameters selected by comparing experiments on three dimension sizes,

i.e., 10 (10D), 30 (30D) and 50 (50D) respectively. The 28 test functions are executed 51

times with respect to each test function at each problem dimension size. The search range

is defined as [−100, 100]D.The algorithms are terminated when the MCN is reached for

function evaluations or the error value is smaller than 10−8. In the experiments, firstly, the

numbers of MCN are set for 10,000, 30,000, and 50,000 on 10D, 30D and 50D respectively

for standard ABC and IHABC algorithms.
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Table 4.3: Parameter adjustment experimental results

Limit/NP 20 50 100 150 200 300
50 -/-/- -/-/- -/-/- -/-/- -/-/- -/-/-

100 -/-/- -/-/- 10/30/- 10/-/50 -/-/- -/-/-
150 -/-/- 10/30/- 10/30/50 10/-/50 10/-/50 -/-/-
250 -/-/- 10/30/- 10/30/- -/30/50 -/30/50 -/-/-
400 -/-/- 10/-/- -/30/50 -/-/50 -/-/- -/-/-

Table 4.3 shows the parameter adjustment experimental results. If the IHABC algo-

rithm reaches the value of Limit, the position of food source can not be improved further

and a new position will be produced. NP is the number of population size. In this table,

“-/-/-” indicates the comparative performance of ABC algorithm on 10D, 30D and 50D. “-”

indicates that its performance is significantly worse than others on that dimension size.

According to Table 4.3, it is observed that ABC is not sensitive to the parameter choice

of much lower or higher population size and limit for 28 test functions defined by CEC’13.

Parameters of limit and NP are selected for 150 and 100 respectively by comparison ex-

periment. The food source number is set to half of the NP for 50, in the meantime, the

employed bee number and onlooker bee number is set to same as food source number. The

number of scout bee is set to1 for each cycle.

After the comparison of ABC and IHABC algorithms, comparative experiments for

ABC, IHABC, DE (Qin and Li, 2013) and PSO (Stephen et al., 2013) algorithms are con-

ducted. In the experiments, the numbers of MCN are set for 100,000, 300,000, and 500,000

on 10D, 30D, and 50D respectively. The experimental results are analyzed statistically us-

ing Wilcoxon rank sum test with significance level of 0.05.

4.4 Experimental Results

Table 4.4 illustrate the mean values of ABC and IHABC algorithms for 10,000, 30,000,

and 50,000 evaluations on 10D, 30D and 50D respectively.

After conducting comparison experiments between ABC and IHABC algorithms with
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Table 4.4: Function evaluations for ABC and IHABC on 10D, 30D and 50D

F./Eva. ABC(10D) IHABC(10D) ABC(30D) IHABC(30D) ABC(50D) IHABC(50D)
F1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F2 2.07e+06 1.63e+05 7.08e+06 2.67e+06 1.23e+07 8.94e+06
F3 4.96e+06 5.09e+05 2.63e+08 6.01e+06 7.43e+08 3.41e+07
F4 1.11e+04 1.21e+03 6.83e+04 4.00e+04 1.31e+05 9.42e+04
F5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F6 3.82e+00 7.13e+00 1.29e+01 3.31e+01 3.94e+01 4.72e+01
F7 3.56e+01 1.09e+01 1.01e+02 5.25e+01 6.51e+01 9.11e+01
F8 2.03e+01 2.02e+01 2.07e+01 2.09e+01 2.11e+01 2.10e+01
F9 5.41e+00 2.61e+00 2.79e+01 2.82e+01 5.66e+01 5.58e+01

F10 1.01e+00 6.35e-01 1.62e-01 3.13e-01 1.28e-01 3.11e-01
F11 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F12 2.75e+01 7.27e+00 2.41e+02 5.82e+01 6.42e+02 2.40e+02
F13 3.40e+01 8.05e+00 2.19e+02 1.20e+02 6.97e+02 3.57e+02
F14 9.59e-02 3.25e-03 7.51e-01 0.00e+00 2.53e+00 2.50e-03
F15 6.67e+02 4.80e+02 4.53e+03 3.67e+03 9.64e+03 7.09e+03
F16 6.49e-01 6.49e-01 1.22e+00 1.65e+00 1.68e+00 2.44e+00
F17 9.50e+00 1.01e+01 3.04e+01 3.04e+01 5.08e+01 5.08e+01
F18 3.73e+01 2.04e+01 2.77e+02 1.20e+02 6.93e+02 3.11e+02
F19 4.27e-02 2.49e-02 8.75e-01 2.04e-01 5.32e-01 1.23e+00
F20 3.26e+00 2.10e+00 1.43e+01 1.29e+01 2.44e+01 2.33e+01
F21 1.68e+02 3.30e+02 1.70e+02 3.15e+02 2.15e+02 7.57e+02
F22 1.31e+01 2.30e+01 2.51e+01 7.17e+01 1.54e+01 6.27e+01
F23 1.04e+03 5.61e+02 4.48e+03 4.20e+03 9.96e+03 9.30e+03
F24 1.32e+02 1.10e+02 2.88e+02 2.51e+02 3.06e+02 3.33e+02
F25 1.64e+02 1.24e+02 3.04e+02 2.81e+02 4.00e+02 3.87e+02
F26 1.38e+02 1.07e+02 2.00e+02 2.00e+02 2.01e+02 2.01e+02
F27 3.79e+02 3.59e+02 4.00e+02 4.00e+02 4.01e+02 4.01e+02
F28 1.82e+02 2.73e+02 1.70e+02 3.00e+02 4.00e+02 4.00e+02
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the function errors of mean value for evaluations, the number of better (+) , similar (≈) and

worse (-) performance of 28 test functions defined by CEC’13 are listed in Table 4.5. With

the dimension size increasing, the number of functions with better performance for IHABC

algorithm is decreasing. From Table 4.5, it is concluded that the number of functions with

better and similar performance of IHABC is much better than ABC, the both algorithms

have better performance for the multimodal functions.

Table 4.5: Comparison performance of IHABC versus ABC

IHABC VS. ABC 10D 30D 50D
+ 18 13 11
≈ 4 8 8
- 6 7 9

Figures 4.1-4.6 illustrate the convergence performance of the both algorithms ABC and

IHABC with function evaluations on 10D, 30D and 50D respectively. According to Figs.

4.1-4.4, the performance of IHABC for functions F2, F3, F12 and F13 is much better than

ABC on 30D and 50D, better than ABC on 10D, but not so significantly. The much better

performance could be seen for functions F4 on 10D, F7 on 10D and 30D, F10 on 10D, F14

on 30D and 50D, F18 on 10D and 50D, F20 on 10D and F23 on 10D, respectively according

to Table 4.4. The performance of IHABC is better than ABC but not so significantly for

the functions F15, F25 on 10D, 30D, 50D, F4 on 30D, F16 on 50D, F19 on 10D and 30D,

F20 and F23 on 30D and 50D and F26, F27 on 10D, respectively according to Table 4.4.

There is no significant difference for the convergence performance of function F20 with

both ABC and IHABC algorithms on 10D, 30D and 50D according to Fig. 4.5. The similar

performance could be seen for functions F24, F25, F26, and F27 on 10D, 30D and 50D

according to Table 4.4. The convergence performance is much similar for both ABC and

IHABC algorithms on 10D, 30D and 50D from Figure 4.6. The similar performance can

be seen for functions F8 and F24 on 10D, 30D, 50D, F10, F26, F27 on 30D and 50D, F13

on 10D and F17 on 30D, respectively according to Table 4.4.

The best results could be seen for functions F1, F5, and F11 on 10D, 30D and 50D

because all the function errors of the mean value reached zero.
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Figure 4.1: Convergence for F2 on D10, D30, and D50
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Figure 4.2: Convergence for F4 on D10, D30, and D50
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Figure 4.3: Convergence for F12 on D10, D30, and D50
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Figure 4.4: Convergence for F13 on D10, D30, and D50
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Figure 4.5: Convergence for F20 on D10, D30, and D50
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Figure 4.6: Convergence for F9 on D10, D30, and D50
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According to the above Tables 4.4-4.5 and Figs. 4.1-4.6 obtained from experimental re-

sults, ABC and IHABC algorithms were not much effective for unimodal functions except

for function F1, however, the performance of IHABC is much better than ABC algorithm.

For all the evaluations, functions F1, F5, and F11 got the best performance with the func-

tion errors of mean value reached zero and the performance of functions F8, F9 and F24

were much similar for all evaluation stages. It was also observed that IHABC algorithm

outperformed on those functions with the properties of non-separability, having many local

optima and second local optimum is far from the global optimum for the unimodal and

multi-modal functions.

After the comparison experiment of standard ABC and IHABC algorithms, the com-

parative experiments of IHABC, ABC, DE and PSO algorithms are implemented with the

function errors of mean values by the MCN numbers for 100,000, 300,000, and 500,000

evaluations on 10D, 30D and 50D, respectively. The parameters are set as same as shown

in Section 4.3. After the comparison experiment, the convergence performance with the

numbers of better (+) , similar (≈) and worse (-) of the function errors of mean value of

the IHABC algorithm versus ABC, DE and PSO algorithms are statistically analyzed as

demonstrated in Table 4.6 on 28 test functions defined by CEC’13.

Table 4.6: Comparison performance with function errors of mean value for IHABC algo-
rithm versus ABC, DE, and PSO algorithms

IHABC (10D) VS. ABC DE PSO
+ 7 19 24
≈ 15 6 4
- 6 3 0

IHABC (30D) VS. ABC DE PSO
+ 8 17 22
≈ 13 5 4
- 7 6 2

IHABC (50D) VS. ABC DE PSO
+ 10 14 15
≈ 10 6 9
- 8 8 4
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With the dimension size increases, the number of functions with better and similar con-

vergence performance of the IHABC decreased compared to ABC, DE and PSO algorithms

according to Table 4.6. It is concluded that the better and similar convergence performance

of IHABC algorithm are quite competitive to ABC, DE, and PSO algorithms. Especially,

the convergence performance is very significant when it is compared to PSO algorithm.

Figures 4.7-4.16 illustrate the box-plots for function errors of mean value of IHABC,

ABC, DE, and PSO algorithms on 10D, 30D and 50D, respectively. The numbers of “1, 2,

3, 4” indicate that the function errors of mean value of IHABC, ABC, DE, and PSO algo-

rithms on 10D, in the same way, the numbers of “5, 6, 7, 8” , and “9, 10, 11, 12” indicate

that the function errors of mean value of IHABC, ABC, DE, and PSO algorithms on 30D,

and 50D, respectively. Figs. 4.7 and 4.8 illustrate the box-plots for function errors of the

mean value of unimodal functions. According to Fig. 4.7, the convergence performance of

the IHABC algorithm is same as ABC, DE, and PSO algorithms for function F1 on 10D,

30D, and 50D, it is also observed that function F1 reached the best value of zero for func-

tion error of mean value. For Fig. 4.8, the convergence performance of IHABC algorithm

is competitive to ABC, but not better than DE, and PSO algorithms for function F4 on 30D

and 50D; DE algorithm gets the best convergence performance on 10D, 30D and 50D. For

the remaining unimodal functions, the performance of IHABC is the best on 10D and better

than ABC on 30D, DE is the best on 30D and 50D for function F2, the performance of all

algorithms are similar on 10D and 30D, but PSO performed the worst on 30D and 50D for

function F3. As a whole, the performance of IHABC was much competitive to others on

lower dimensional sizes of 10 and 30, but DE reached the best performance on 50D for

unimodal functions.

Figures 4.9-4.13 show the box-plots for function errors of mean value of multi-modal

functions. According to Fig. 4.9, the convergence performance of IHABC is quite similar

to ABC, DE, and PSO algorithms for function F8 on 10D, 30D, and 50D. With regard

to Fig. 4.10, it is observed that the convergence performance of IHABC algorithm for

function F13 is competitive to other algorithms, but the ABC algorithm is not better than

DE and PSO algorithms on 50D. Moreover, DE algorithm is better than ABC and PSO

algorithms on 30D and 50D. The convergence performance sequence for these algorithms

is IHABC, ABC, DE and PSO for function F14 on 10D, 30D, and 50D with respect to Fig.
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Figure 4.7: Box-plot of F1 for IHABC, ABC, DE and PSO on 10D, 30D and 50D
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Figure 4.8: Box-plot of F4 for IHABC, ABC, DE and PSO on 10D, 30D and 50D
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4.11, especially, ABC and IHABC algorithms reached the best performance.
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Figure 4.9: Box-plot of F8 for IHABC, ABC, DE and PSO on 10D, 30D and 50D

According to Fig. 4.12, it can be seen that the convergence performance of the IHABC

and ABC algorithms are very similar and better than DE and PSO algorithms for function

F17. The convergence performance of DE is better than PSO algorithm on 30D and 50D,

but worse on 10D. For Fig. 4.13, the convergence performance of IHABC is better than

ABC, but worse than DE and PSO algorithms on 30D and 50D for function F18. For

the remaining multimodal functions, it is observed that the convergence performance of

IHABC and ABC algorithms are competitive to DE and PSO algorithms, DE is much

better than PSO algorithm. Especially, functions F5 and F11 achieve the best performance

as function F1, functions F9 and F20 reach similar performance as function F8 for all four

algorithms. IHABC is much competitive to others on 10D and 50D, but ABC outperforms

than IHABC on 30D for function F6, DE and PSO have similar performance on 10D,

30D and 50D. The performance of IHABC is better than ABC and PSO on 10D, 30D and

50D, similar as DE on 10D but worse than DE on 30D and 50D for function F7. With

regard to function F10, the performance is much better or similar for all algorithms on all
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Figure 4.10: Box-plot of F13 for IHABC, ABC, DE and PSO on 10D, 30D and 50D
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Figure 4.11: Box-plot of F14 for IHABC, ABC, DE and PSO on 10D, 30D and 50D
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dimension sizes, but PSO is the worst. IHABC performs the best among them on 10D

and 30D, however, PSO reaches the best performance on 50D. Regarding to functions F15

and F16, the performance of IHABC and ABC is similar on 10D, ABC outperforms than

IHABC on 30D and 50D, but both ABC and IHABC algorithms are better than DE and

PSO algorithms. IHABC and ABC algorithms get the best performance on 10D, 30D and

50D, but PSO is the worst.
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Figure 4.12: Box-plot of F17 for IHABC, ABC, DE and PSO on 10D, 30D and 50D

Figures 4.14-4.16 illustrate the box-plots for function errors of mean value of composi-

tion functions. According to Fig. 4.14, the convergence performance of IHABC and ABC

algorithms is very similar, but much better than DE and PSO algorithms, the convergence

performance of DE algorithm is competitive to PSO algorithm on 10D, 30D, and 50D for

function F22. Figure 4.15 shows that IHABC gets better convergence performance than

ABC algorithm on 10D and 50D for function F24, however, DE reaches the best on 30D

and 50D. In addition, IHABC and ABC algorithms are very similar and much competitive

to DE and PSO algorithms. According to Fig. 4.16, HABC is very similar to ABC algo-

rithm, DE performs better than PSO algorithm on 10D, 30D and 50D for function F27. For
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Figure 4.13: Box-plot of F18 for IHABC, ABC, DE and PSO on 10D, 30D and 50D

the remaining composition functions, it is concluded that the convergence performance of

IHABC algorithm is better or similar to ABC algorithm; DE algorithm is competitive to

PSO algorithm. However, PSO performs well for functions F21 and F23 on 10D, 30D and

50D. IHABC reaches the best performance for function F25 on 10D, function F26 on 10D,

30D and 50D as well as function F28 on 50D.

According to the above analyses with Table 4.6 and Figs. 4.7-4.16 obtained from the

experimental results, it was concluded that IHABC and ABC algorithms were not so ef-

fective on unimodal functions except for function F1, but IHABC outperformed than ABC

algorithm. For multi-modal and composition functions, the convergence performance of

IHABC was the best as a whole, especially on lower dimensional sizes of 10 and 30. The

convergence performance of ABC was better than DE and PSO algorithms. DE outper-

formed than PSO algorithm. Functions F1, F5, and F11 reached the best convergence

performance with function errors of mean value of zero for all 10D, 30D, and 50D. It was

also observed that the performance of IHABC algorithm was better than ABC, DE and

PSO on those functions with the properties of non-separability, asymmetry, having many
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Figure 4.14: Box-plot of F22 for IHABC, ABC, DE and PSO on 10D, 30D and 50D
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Figure 4.15: Box-plot of F24 for IHABC, ABC, DE and PSO on 10D, 30D and 50D
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Figure 4.16: Box-plot of F27 for IHABC, ABC, DE and PSO on 10D, 30D and 50D

local optima and second local optimum is far from the global optimum for unimodal and

multi-modal functions.

4.5 Summary

The previous research about the modified versions of ABC algorithms and the state-of-the-

art modified ABC algorithms of BsfABC and IABC algorithms were introduced firstly.

In order to overcome the disadvantages such as low convergence speeds when they

solve unimodal functions, low exploitation abilities and easily trapped in local optima when

they solve complex multimodal functions, an improved hybrid ABC (IHABC) algorithm

was proposed inspired by self adaptive mechanism, incorporated with DE and PSO algo-

rithms.

Comparison experiments of ABC and IHABC algorithms were conducted for 28 test

functions defined by CEC’13 test suite. After the comparison of ABC and IHABC al-

gorithms, additional comparative experiments for ABC, IHABC, DE and PSO algorithms
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were implemented with the same parameter setups then the experimental results were ana-

lyzed statistically.

As the experimental results, IHABC and ABC algorithms were not effective on uni-

modal functions except for function F1, but IHABC outperformed than ABC algorithm,

the convergence performance of IHABC was the best as a whole for multi-modal and com-

position functions, especially on 10D and 30D. ABC algorithm outperformed than DE and

PSO algorithms DE is better than PSO algorithm. Functions F1, F5, and F11 reached the

best convergence performance with function errors of mean value of zero on 10D, 30D,

and 50D.



Chapter 5

Levy Flight-based Hybrid ABC
(LFHABC) and Self Adaptive Hybrid
Enhanced ABC (SAHEABC) Algorithms

5.1 Background

ABC algorithm has the characteristics which make it more attractive in SI algorithm: it has

few control parameters of population size, limit and MCN number; it has the advantages

of simple, flexible and robust; it has fast convergence speed and it is easy to hybrid with

other SI algorithms. In order to overcome the drawbacks such as low convergence speeds

when solving some unimodal and composition functions, low exploitation abilities, trapped

in local optima easily when they solve complex multimodal functions. The extended ABC

algorithm of IHABC was proposed in Chapter 4 and the comparative experiment’s results

showed that IHABC achieved the competitive performance of convergence speed and the

ability of controlling the balance of exploration and exploitation. However, a few shortcom-

ings still exist, for example, random uniform initialization loses the effectiveness for higher

dimensional size although plays a more important role in higher dimensional problems (up

to 50 dimensions), and lower fitness individuals have low probability to be selected as

onlooker bees according to the study by Richards and Ventura (2004).

To overcome these shortcomings, a levy flight-based hybrid ABC (LFHABC) algorithm

83
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is proposed by utilizing levy flight (Brown et al., 2007; Pavlyukevich, 2007) for initializa-

tion, chaotic opposition-based learning (OBL) for scout bee step (Tizhoosh, 2005) and then

combing them with IHABC algorithm in order to increase the population diversity with ex-

tending the search space information and accelerate convergence speed by using chaotic

OBL. Based on LFHABC algorithm, a self adaptive hybrid enhanced ABC algorithm (SA-

HEABC) is proposed by modifying the probability on onlooker bees in order to increase

exploitation ability and convergence ability by selecting probability for the lower fitness

individuals.

Comparative experiments are implemented for LFHABC and SAHEABC algorithms

to demonstrate the effectiveness of the algorithms; more specifically, CEC’13 test suite

benchmark problems are adopted by LFHABC algorithm and CEC’14 test suite benchmark

problems are utilized by SAHEABC algorithm and then the performance of the proposed

extended ABC algorithms are statistically analyzed. In addition, the standard ABC, IABC,

BsfABC algorithms are used to compare with SAHEABC algorithm, and the comparative

performance of these algorithms will be evaluated based on the CEC’14 test suite experi-

ments. Finally, additional extended comparison experiments are conducted using NRGA

and SHADE algorithms with above mentioned algorithms.

5.2 Introduction of LFHABC and SAHEABC Algorithms

In LFHABC algorithm, modifications of levy flight initialization, self adaptive mechanism

for employed bees and onlooker bees, and chaotic opposition based learning (OBL) for

scout bee are introduced for improving the convergence performance of standard ABC

algorithm based on the benchmark optimization problems.

Population initialization is a crucial step in SI algorithms because it can affect con-

vergence speed and the quality of the final solution. If information about the solution is

unavailable, then random initialization is the most commonly used method for generat-

ing an initial population. ABC algorithm produces the candidate solution from its parent

by a simple operation based on taking the difference of randomly determined parts of the

parent and a randomly chosen solution from the population, so it does not get better con-

vergence for initialization step. In order to increase the population diversity with extending
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the search space information, a levy flight distribution is introduced. In the past, the flight

behavior of animals and insects that exhibit important properties of levy flight have been

analyzed in various studies. This levy flight behavior has been applied to optimization and

search algorithms, and reported results show its importance in the field of solution search

algorithms (Yang and Deb, 2009, 2013). Recently, Yang proposed new meta-heuristic algo-

rithms, such as CS using levy flight. Levy flight is a random walk in which the step lengths

have a heavy-tailed probability distribution. Random step lengths drawn from a levy flight

distribution (Yang, 2010a; Viswanathan et al., 1996) are shown as Eq. (5.1).

L(s) ∼ |s|−1−β (5.1)

Where β (0 < β ≤ 2) is an index and s is the step length.

Initialization for LFHABC using levy flight is calculated as shown in Eq. (5.2).

xt+1
i j = xt

i, j + α ∗ levy(β) (5.2)

Where i ∈ 1, 2, ..., S N and j ∈ 1, 2, ...,D are randomly selected indexes, t is the iteration

number and set for 50, α is uniformly distributed number selected from U[0, 1].

The levy flight is produced using Eq. (5.3).

Levy(β) ∼ 0.01
(

u
|v|

)− 1
β

(xt
i, j − xt

best, j) (5.3)

Where i ∈ 1, 2, ..., S N and j ∈ 1, 2, ...,D are randomly selected indexes, xbest, j is best

solution found so far, u and v are derived from normal distributions shown as Eqs. (5.4)

and (5.5).

u ∼ N(0, σ2
u) v ∼ N(0, σ2

v) (5.4)

Where

σu =

(
Γ(1 + β)sin(πβ/2)
βΓ[(1 + β)/2]2(β−1)/2

)1/β

, σv = 1 (5.5)

The concept of opposition based learning (OBL) was introduced by Tizhoosh (Tizhoosh,

2005), and has been applied to accelerate reinforcement learning and back-propagation
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learning in neural networks (Viswanathan et al., 2006). The main idea behind OBL is to

improve the chance to start with a closer (fitter) solution by checking the opposite solution

simultaneously. By doing this, the closer one to solution which says as guess or opposite

guess can be chosen as initial solution. In fact, according to probability theory, the guess is

farther to solution than opposite guess in 50% of cases; for these cases staring with oppo-

site guess can accelerate convergence speed. According to Rahnamayan et al. (2008), OBL

was introduced to DE and improved the convergence performance. Therefore, to accelerate

convergence speed, chaotic OBL initialization approach is introduced for scout bees. Here,

a sinusoidal iterator is selected, and its equation is defined as Eq. (5.6).

chk j = sin(πchk−1, j) (5.6)

Where chk ∈ [0, 1] , k ∈ 1, 2, ..., Max, j ∈ 1, 2, ...,D

The initialization population for scout bees is produced by Eq. (5.7).

xi j = xmin, j + chk j(xmax, j − xmin, j) (5.7)

and the chaotic OBL initialization for scout is shown as Eq. (5.8).

oxi j = xmin, j + xmax, j − xi j (5.8)

Where ox indicates the opposition-based population.

S N individuals are selected from the set {X(S N) ∪ OX(S N)} as the initial scout bees

population, X is the population composed of xi j and OX is the population composed of oxi j.

In order to evaluate the performance of LF and chaotic OBL initialization, the random

initialization and LF with chaotic OBL initialization have been tested on the CEC’13 test

functions in terms of the population diversity. Population diversity is a measurement of the

cover degree ( Kuang et al., 2014), which is defined as follows:

Diversity =
1

S N

S N∑
i=1

√√√
1
D

D∑
j=1

(xi, j − x̄ j)2 (5.9)
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where, S N denotes the number of food sources, which is equal to the number of em-

ployed bees or onlooker bees. D is the dimension of the problem, and x̄ is the center

position of the colony.

The main modifications for LFHABC algorithm based on the IHABC algorithm are

described as follows.

• The modification with Eqs. (5.2)-(5.5) substitute the Eq. (3.1) on step 4 of main

steps of standard ABC algorithm in Section 3.2 to increase the population diversity

with extending the search space information

• The amendments with Eqs. (5.6) to (5.8) exchange the Eq. (3.1) on step 11 of main

steps of standard ABC algorithm in Section 3.2 to accelerate convergence speed by

using chaotic OBL initialization for scout bee.

5.3 Experimental Setup and Results for LFHABC

Comparative experiments are conducted on both the standard ABC and LFHABC algo-

rithms for 28 test functions defined by CEC’13 test suite with selected parameters of limit

for 150 and NP for 100 as same as used in IHABC algorithm. However, The maximum

evaluation sizes are set to 100,000, 300,000, and 500,000 on 10D, 30D and 50D in the

experiments, respectively. Each function of 28 test functions is executed 51 times with

respect to 10D, 30D and 50D.The food source number is set to half of the NP for 50, in

the meantime, the employed bee number and onlooker bee number is set to same as food

source number. The number of scout bee is set to 1 for each cycle.

When conducting the comparison experiments for ABC and LFHABC algorithms, the

diversities for both ABC and LFHABC algorithms are calculated using Eq. (5.9) and the

results are shown as Table 5.1 on 10D, 30D and 50 respectively. From this table, it is con-

cluded that the diversity of LFHABC is better than ABC in 10D, 30D and 50D, the greater

diversity provides more higher opportunity of finding more food sources and accelerates

the convergence speed. For testifying the effectiveness of LFHABC algorithm, additional

comparison experiments of LFHABC, standard ABC, DE, and PSO algorithms are imple-

mented. The statistical analyses are conducted with Wilcoxon rank sum test by significance
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level of 0.05.

Tables 5.2-5.4 illustrate the function errors of mean value of LFHABC, ABC, DE, and

PSO algorithms for 100,000, 300,000, and 500,000 evaluations of MCN on 10D, 30D

and 50D, respectively. The symbols of ”+”, ”≈” and ”-” indicate better, similar or worse

performance of LFHABC algorithm compared to ABC, DE and PSO algorithms. After

implementing comparative experiments on LFHABC, ABC, DE, and PSO algorithms, the

numbers of better, similar, and worse performance of mean values of these algorithms are

listed in Table 5.5 for 28 test functions.

When the dimension size increases, the number of functions in LFHABC algorithm

with better and similar performance decreased compared to the other algorithms for the

function errors of mean value according to Table 5.5. From the experimental results with

Tables 4.6 and 5.5, it is concluded that the number of the functions with better and similar

performance for LFHABC algorithm is more than IHABC algorithm on 10D, 30D and

50D. Especially, when it comes to compare with PSO algorithm, the performance for both

IHABC and LFHABC are so significantly competitive.
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Figure 5.1: Comparative convergence for F7 on 10D, 30D and 50D
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Table 5.1: Diversities for ABC and LFHABC on 10D, 30D and 50D

F. / Div. ABC(10D) LFABC(10D) ABC(30D) LFABC(30D) ABC(50D) LFABC(50D)
F1 1.39 1.35 0.45 0.48 0.40 0.12
F2 4.48 5.27 0.89 3.50 1.32 1.55
F3 1.71 1.83 0.84 2.46 1.08 1.13
F4 3.30 4.90 1.37 3.96 1.69 0.33
F5 0.61 0.58 0.22 0.62 0.23 0.09
F6 1.41 2.57 0.86 1.83 2.36 0.74
F7 4.13 5.66 0.93 3.38 0.97 1.78
F8 3.84 5.43 1.65 4.21 1.50 2.66
F9 3.11 4.56 1.06 5.90 1.42 2.86

F10 3.16 3.62 0.42 0.40 0.36 0.46
F11 1.71 1.28 0.57 0.74 0.48 0.36
F12 2.51 2.60 0.73 0.97 1.08 1.18
F13 3.10 2.85 0.80 0.99 0.99 1.22
F14 1.32 1.95 0.51 0.82 1.12 1.17
F15 3.57 5.33 1.72 2.12 1.57 2.45
F16 2.87 4.95 1.42 1.33 1.44 2.98
F17 0.58 0.66 0.33 0.29 0.25 0.47
F18 1.17 1.18 0.86 0.71 0.89 1.26
F19 3.16 4.02 0.80 0.45 0.80 0.58
F20 4.28 6.17 1.23 2.69 2.03 3.18
F21 2.92 3.14 2.80 1.42 0.83 1.35
F22 3.76 3.99 0.45 0.40 4.01 1.61
F23 3.29 4.49 1.52 2.45 1.85 3.16
F24 4.37 5.18 1.03 1.72 2.55 3.31
F25 3.09 5.52 1.68 2.43 1.84 2.50
F26 4.27 4.68 0.84 1.38 1.75 1.99
F27 2.40 4.77 1.14 1.93 2.15 2.77
F28 2.47 2.62 1.37 1.35 0.88 0.91
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Table 5.2: Function errors of mean value for LFHABC, ABC, DE and PSO on 10D

F./Eva. LFHABC ABC DE PSO
F1 0.00e+00 0.00e+00(=) 0.00e+00(=) 0.00e+00(=)
F2 2.20e+04 4.91e+05(+) 2.42e+03(-) 2.83e+05(+)
F3 7.27e+03 1.42e+05(+) 1.41e+00(-) 6.19e+05(+)
F4 3.50e+03 3.57e+03(≈) 2.71e+01(-) 6.76e+03(+)
F5 0.00e+00 0.00e+00(=) 0.00e+00(=) 0.00e+00(=)
F6 1.62e-03 3.77e-02(≈) 3.29e+00(+) 4.03e+00(+)
F7 3.72e+00 1.15e+01(+) 1.44e-03(-) 1.01e+01(+)
F8 2.02e+01 2.02e+01(=) 2.04e+01(≈) 2.03e+01(≈)
F9 2.61e+00 2.68e+00(≈) 1.14e+00(-) 3.47e+00(+)

F10 4.96e-01 4.68e-01(≈) 4.92e-02(-) 4.58e-01(≈)
F11 0.00e+00 0.00e+00(=) 1.14e+00(+) 4.83e+00(+)
F12 5.67e+00 9.23e+00(+) 8.24e+00(+) 1.09e+01(+)
F13 5.08e+00 1.03e+01(+) 1.21e+01(+) 1.83e+01(+)
F14 0.00e+00 0.00e+00(=) 2.20e+02(+) 2.91e+02(+)
F15 3.07e+02 2.71e+02(-) 1.13e+03(+) 5.93e+02(+)
F16 5.10e-01 3.29e-01(≈) 1.01e+00(+) 6.18e-01(≈)
F17 2.02e+00 2.13e+00(≈) 1.78e+01(+) 1.55e+01(+)
F18 2.23e+01 2.25e+01(≈) 3.16e+01(+) 2.64e+01(+)
F19 1.00e-06 1.00e-06(=) 1.07e+00(+) 6.56e-01(+)
F20 1.92e+00 2.13e+00(+) 2.36e+00(+) 2.73e+00(+)
F21 8.00e+01 1.43e+01(-) 3.73e+02(+) 2.59e+02(+)
F22 0.00e+00 1.73e-03(≈) 2.23e+02(+) 2.65e+02(+)
F23 3.50e+02 4.53e+02(+) 9.77e+02(+) 6.99e+02(+)
F24 1.09e+02 1.12e+02(≈) 2.02e+02(+) 2.00e+02(+)
F25 1.18e+02 1.19e+02(≈) 2.02e+02(+) 2.03e+02(+)
F26 1.07e+02 9.39e+01(-) 1.67e+02(+) 1.18e+02(+)
F27 3.20e+02 3.36e+02(+) 3.37e+02(+) 4.09e+02(+)
F28 4.80e+01 5.49e+01(+) 2.92e+02(+) 2.61e+02(+)
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Table 5.3: Function errors of mean value for LFHABC, ABC, DE and PSO on 30D

F./Eva. LFHABC ABC DE PSO
F1 0.00e+00 0.00e+00(=) 0.00e+00(=) 0.00e+00(=)
F2 4.83e+06 4.89e+06(≈) 1.54e+05(-) 5.02e+06(+)
F3 1.73e+07 5.07e+07(+) 3.65e+06(-) 2.85e+08(+)
F4 4.36e+04 4.73e+04(≈) 4.62e+02(-) 1.92e+04(-)
F5 0.00e+00 0.00e+00(=) 3.09e-05(≈) 0.00e+00(=)
F6 1.11e-02 3.29e+00(+) 1.98e+01(+) 2.38e+01(+)
F7 5.94e+01 7.54e+01(+) 1.58e+00(-) 6.45e+01(+)
F8 2.08e+01 2.08e+01(=) 2.09e+01(≈) 2.09e+01(≈)
F9 2.41e+01 2.45e+01(≈) 9.17e+00(-) 2.70e+01(+)

F10 2.18e-01 1.10e-01(≈) 7.62e-02(≈) 1.55e+00(+)
F11 0.00e+00 0.00e+00(=) 1.42e+01(+) 5.65e+01(+)
F12 1.17e+02 1.65e+02(+) 1.14e+02(≈) 9.05e+01(-)
F13 1.55e+02 2.15e+02(+) 1.53e+02(≈) 1.48e+02(≈)
F14 0.00e+00 1.65e-01(+) 5.72e+02(+) 1.95e+03(+)
F15 3.48e+03 2.91e+03(-) 7.01e+03(+) 4.00e+03(+)
F16 1.33e+00 9.26e-01(-) 2.45e+00(+) 1.70e+00(+)
F17 3.04e+01 2.92e+01(≈) 5.62e+01(+) 1.01e+02(+)
F18 1.98e+02 2.32e+02(+) 1.99e+02(≈) 1.88e+02(≈)
F19 9.53e-02 1.36e-01(≈) 3.93e+00(+) 6.29e+00(+)
F20 1.23e+01 1.25e+01(≈) 1.19e+01(≈) 1.18e+01(≈)
F21 2.10e+02 1.35e+02(-) 3.07e+02(+) 2.10e+02(=)
F22 4.00e+01 1.28e+01(-) 4.44e+02(+) 2.19e+03(+)
F23 4.15e+03 3.61e+03(-) 7.11e+03(+) 4.53e+03(+)
F24 2.45e+02 2.71e+02(+) 2.17e+02(-) 2.74e+02(+)
F25 2.71e+02 2.89e+02(+) 2.48e+02(-) 2.87e+02(+)
F26 2.00e+02 2.00e+02(=) 2.37e+02(+) 2.29e+02(+)
F27 4.00e+02 4.00e+02(=) 4.95e+02(+) 1.02e+03(+)
F28 1.08e+02 1.23e+02(+) 3.00e+02(+) 2.96e+02(+)
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Table 5.4: Function errors of mean value for LFHABC, ABC, DE and PSO on 50D

F./Eva. LFHABC ABC DE PSO
F1 0.00e+00 0.00e+00(=) 0.00e+00(=) 0.00e+00(=)
F2 1.51e+07 9.86e+06(-) 4.91e+05(-) 1.13e+07(-)
F3 2.99e+07 3.53e+07(+) 1.97e+07(-) 3.25e+09(+)
F4 9.85e+04 1.04e+05(+) 1.83e+03(-) 2.96e+04(-)
F5 0.00e+00 0.00e+00(=) 1.34e-04(≈) 0.00e+00(=)
F6 1.17e-01 2.98e+01(+) 4.46e+01(+) 4.65e+01(+)
F7 1.10e+02 1.30e+02(+) 1.24e+01(-) 1.17e+02(≈)
F8 2.10e+01 2.10e+01(=) 2.11e+01(≈) 2.11e+01(≈)
F9 5.11e+01 5.24e+01(≈) 2.94e+01(-) 5.57e+01(+)

F10 2.26e-01 1.16e-01(≈) 1.37e-01(≈) 1.01e+01(+)
F11 0.00e+00 0.00e+00(=) 3.64e+02(+) 1.20e+02(+)
F12 3.60e+02 5.35e+02(+) 2.94e+02(-) 2.24e+02(-)
F13 3.26e+02 5.79e+02(+) 3.50e+01(-) 3.54e+02(+)
F14 0.00e+00 1.42e+00(+) 1.25e+03(+) 3.69e+03(+)
F15 8.29e+03 6.64e+03(-) 1.38e+04(+) 8.85e+03(+)
F16 1.90e+00 1.47e+00(-) 3.25e+00(+) 2.49e+00(+)
F17 5.08e+01 4.89e+01(≈) 9.52e+01(+) 2.32e+02(+)
F18 2.00e+02 6.03e+02(+) 3.95e+02(+) 4.03e+02(+)
F19 4.38e-01 5.03e-01(≈) 5.89e+00(+) 1.83e+01(+)
F20 2.27e+01 2.35e+01(≈) 2.18e+01(≈) 2.15e+01(≈)
F21 4.55e+02 2.06e+02(-) 7.05e+02(+) 3.13e+02(-)
F22 0.00e+00 1.17e+01(+) 1.23e+03(+) 4.54e+03(+)
F23 8.32e+03 7.88e+03(-) 1.36e+04(+) 9.70e+03(+)
F24 3.35e+02 3.53e+02(+) 2.50e+02(-) 3.48e+02(+)
F25 3.70e+02 3.91e+02(+) 2.92e+02(-) 3.74e+02(≈)
F26 2.00e+02 2.01e+02(≈) 3.21e+02(+) 3.18e+02(+)
F27 3.83e+02 4.01e+02(+) 8.34e+02(+) 1.75e+03 (+)
F28 4.00e+02 4.00e+02(=) 5.16e+02(+) 4.00e+02(=)
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Table 5.5: Comparison performance with function errors of mean value of LFHABC algo-
rithm to ABC, DE and PSO algorithms

LFHABC (10D) VS. ABC DE PSO
+ 9 19 23
≈ 16 3 5
- 3 6 0

LFHABC (30D) VS. ABC DE PSO
+ 10 13 19
≈ 13 8 7
- 5 7 2

LFHABC (50D) VS. ABC DE PSO
+ 12 14 17
≈ 11 5 7
- 5 9 4
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Figure 5.2: Comparative convergence for F12 on 10D, 30D and 50D
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Figure 5.3: Comparative convergence for F13 on 10D, 30D and 50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
50
0

10
00

15
00

20
00

25
00

F18

Function Evaluations

Fu
nc

tio
n 

E
rr

or

ABC_50D
LFHABC_50D
ABC_30D
LFHABC_30D
ABC_10D
LFHABC_10D

Figure 5.4: Comparative convergence for F18 on 10D, 30D and 50D
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Figure 5.5: Comparative convergence for F24 on 10D, 30D and 50D
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Figure 5.6: Comparative convergence for F25 on 10D, 30D and 50D
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According to Figs. 5.1-5.4, the performance of LFHABC is much better than that of

ABC algorithm. Moreover, functions F2, F3, F4, and F6 achieve very competitive perfor-

mance by both LFHABC and ABC algorithms from Tables 5.2-5.4.

For Figs. 5.5-5.6, the performance of LFHABC is better than that of ABC algorithm,

but is not obvious. Further, functions F14, F19, and F22 achieve the similar performance

for both LFHABC and ABC algorithms according to Tables 5.2-5.4.

Very similar performance is achieved for both LFHABC and ABC algorithms as shown

in Fig. 5.7, and functions F20, F26, and F27 achieve similar results according to Tables

5.2-5.4. With regard to function F8, convergence performance is much similar for both

LFHABC and ABC algorithms as shown in Figure 5.8. Further, functions F1, F5, and F11

achieve the best performance by both LFHABC and ABC algorithms because all function

errors of mean value reached zero.
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Figure 5.7: Comparative convergence for F9 on 10D, 30D and 50D

With regard to functions F10, F15, F16, F17, F21, F23, and F28, the performance of

LFHABC is not better than that of the ABC algorithm on the same dimension sizes. More

specifically, the performance of LFHABC is not better than that of ABC algorithm for
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Figure 5.8: Comparative convergence for F8 on 10D, 30D and 50D

functions F15 and F21 on 10D, 30D, 50D, functions F10, F16, and F17 on 30D, 50D as

well as function F28 on 10D and 30D.

According to the above Tables 5.2-5.5 and Figs. 5.1-5.8 obtained from the experimen-

tal results, LFHABC and the standard ABC algorithms were not very effective at solving

unimodal functions except for function F1. For all evaluations, functions F1, F5, and F11

achieved the best performance because the function errors of mean value reached zero.

Moreover, function F8 had the same performance for all evaluation stages. At the mean-

time, the performance of LFHABC was better than IHABC algorithm according to Table

4.6 and Table 5.5.

It was also observed that the performance of LFHABC was better than ABC algorithm

on those functions with the properties of non-separability, having many local optima and

second local optimum is far from the global optimum, having vary narrow valley from local

optimum to global optimum, continuous everywhere yet differentiable nowhere and having

different properties around the local optima.
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5.4 Experimental Setup and Results for SAHEABC

In order to increase the probability of the lower fitness individuals to be selected through

modifying Pi used in Eq. (3.3) on step 4 of standard ABC algorithm in Section 3.2, self

adaptive mechanism is used to modify the value of Pi. The probability value Pi varies with

the updated cycle number, it also depends on the summation value of fitness and maximum

value of fitness. Pi is given in Eq. (5.10).

Pi = e
−0.18cycle

MCN
f iti

f itmax
+ (1 − e

−0.18cycle
MCN )

f iti∑S N
n=1 f itn

(5.10)

Where MCN is the maximum cycle number, f iti is the fitness value of solution i, f itmax

is the maximum fitness value.

SAHEABC algorithm is proposed based on LFABC algorithm, in addition, modifying

Eq. (3.3) on step 4 of standard ABC algorithm in Section 3.2 with Eq. (5.10).

The standard ABC, BsfABC, IABC and SAHEABC algorithms are evaluated for all 30

test functions defined by CEC’14 test suite with the selected parameters of limit for 150

and NP for 100 as same as used in IHABC algorithm. The food source number is set to

half of the NP for 50, in the meantime, the employed bee number and onlooker bee number

is set to same as food source number. The number of scout bee is set to 1 for each cycle.

The 30 test functions are executed 25 times with respect to each test function at each prob-

lem dimension size. The algorithms are terminated when the MCN is reached for function

evaluations or when the error value gets smaller than 10−8. In the experiments, MCN is

set for 10,000, 30,000, and 50,000 on 10D, 30D and 50D, respectively. The comparative

experiments for the standard ABC, BsfABC, IABC and SAHEABC algorithms are imple-

mented and also statistical analyses are made with Wilcoxon rank sum test by significance

level of 0.05.

Tables 5.7-5.9 illustrate the function errors of mean value for ABC, BsfABC, IABC,

and SAHEABC algorithms for 10,000, 30,000, and 50,000 evaluations on 10D, 30D and

50D, respectively. The symbols of ”+”, ”≈ ” and ”-” indicate better, similar or worse

performance of SAHEABC algorithm compared to ABC, BsfABC and IABC algorithms.

After implementing comparative experiments on the standard ABC, BsfABC, IABC
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Table 5.6: Function errors of mean value for the SAHEABC, ABC, BsfABC and IABC
and the signs for SAHEABC compared with ABC, BsfABC and IABC on 10D

F. SAHEABC ABC Sign BsfABC Sign IABC Sign
F1 4.35e+04 6.68e+04 ≈ 5.87e+04 + 4.58e+04 ≈
F2 2.66e+01 1.21e+01 - 4.56e+00 - 2.17e+01 ≈
F3 6.75e+01 3.34e+01 - 2.73e+02 + 1.11e+02 +
F4 4.41e-03 1.00e-02 + 8.04e-03 + 6.53e-03 +
F5 1.35e+01 8.44e+00 ≈ 1.83e+01 ≈ 1.22e+01 ≈
F6 8.87e-01 1.05e+00 ≈ 1.93e-01 + 1.46e-01 +
F7 5.94e-04 1.42e-03 ≈ 4.95e-04 ≈ 1.31e-02 ≈
F8 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈
F9 3.12e+00 4.47e+00 + 7.44e+00 + 6.03e+00 +

F10 0.00e+00 3.01e-01 ≈ 3.80e-02 + 0.00e+00 ≈
F11 5.84e+01 9.04e+01 + 6.52e+01 + 7.74e+01 +
F12 1.30e-01 1.02e-01 - 1.09e-01 - 1.104e-01 -
F13 8.21e-02 8.51e-02 ≈ 7.21e-02 ≈ 1.30e-01 +
F14 6.42e-02 1.11e-01 + 1.06e-01 + 1.20e-01 +
F15 5.19e-01 4.01e-01 ≈ 7.25e-01 + 6.17e-01 +
F16 1.38e+00 1.68e+00 + 1.87e+00 + 1.65e+00 +
F17 2.95e+04 6.33e+04 + 4.25e+04 + 3.92e+04 ≈
F18 5.55e+01 1.07e+02 + 8.53e+01 + 1.03e+02 +
F19 2.84e-01 1.86e-01 ≈ 2.34e-01 ≈ 2.76e-01 ≈
F20 2.58e+01 4.20e+01 + 9.32e+01 + 2.36e+01 ≈
F21 9.21e+02 3.13e+03 + 2.46e+03 + 1.83e+03 +
F22 6.31e-02 1.31e-01 + 1.46e+00 + 4.76e-01 +
F23 1.50e+02 1.05e+02 ≈ 1.05e+02 ≈ 5.64e+00 -
F24 1.10e+02 1.10e+02 ≈ 1.17e+02 + 1.15e+02 +
F25 1.17e+02 1.25e+02 + 1.34e+02 + 1.27e+02 +
F26 9.50e+01 9.99e+01 + 1.00e+02 + 9.82e+01 +
F27 4.54e+00 6.24e+00 + 1.21e+01 + 5.73e+00 +
F28 3.45e+02 3.32e+02 - 3.66e+02 + 3.28e+02 -
F29 2.47e+02 2.47e+02 - 2.31e+02 - 2.49e+02 -
F30 4.68e+02 5.15e+02 + 4.99e+02 + 5.20e+02 +
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Table 5.7: Function errors of mean value for the SAHEABC, ABC, BsfABC and IABC
and the signs for SAHEABC compared with ABC, BsfABC and IABC on 30D

F. SAHEABC ABC Sign BsfABC Sign IABC Sign
F1 6.66e+06 2.42e+06 - 7.14e+06 + 3.01e+06 -
F2 7.59e+00 1.15e+01 + 1.39e+01 + 3.20e+01 +
F3 2.42e+02 9.40e+01 - 2.18e+02 ≈ 3.02e+02 ≈
F4 2.08e-01 2.69e-01 + 2.48e-01 + 2.25e-01 +
F5 2.02e+01 2.02e+01 ≈ 2.00e+01 ≈ 2.02e+01 ≈
F6 1.30e+01 1.18e+01 - 1.50e+01 + 1.26e+01 ≈
F7 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈
F8 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈
F9 3.99e+01 6.320+01 + 4.85e+01 + 5.52e+01 +

F10 0.00e+00 1.53e-01 + 3.21e-02 + 7.21e-01 +
F11 1.70e+03 1.54e+04 + 2.09e+03 + 1.49e+03 -
F12 2.68e-01 1.89e-01 - 1.80e-01 - 1.95e-01 -
F13 2.051e-01 1.94e-01 ≈ 1.81e-01 - 2.79e-01 +
F14 1.53e-01 1.72e-01 + 1.65e-01 + 1.82e-01 +
F15 6.22e+00 5.83e+00 ≈ 9.53e+00 + 8.03e+00 +
F16 9.03e+00 9.32e+00 + 1.00e+01 + 9.61e+00 +
F17 1.17e+06 1.25e+06 + 2.99e+06 + 1.47e+06 +
F18 9.34e+03 5.21e+02 - 2.76e+02 - 4.44e+03 -
F19 5.88e+00 5.62e+00 ≈ 6.50e+00 + 6.27e+00 +
F20 2.17e+03 2.77e+03 + 2.45e+03 + 3.08e+03 +
F21 2.35e+05 8.50e+04 - 3.59e+05 + 1.082e+05 -
F22 1.59e+02 1.19e+02 ≈ 3.28e+02 + 1.20e+02 ≈
F23 3.15e+02 3.15e+02 ≈ 3.15e+02 ≈ 2.97e+02 -
F24 1.79e+02 2.53e+02 + 2.25e+02 + 2.22e+02 +
F25 2.06+02 2.05e+02 ≈ 1.95e+02 ≈ 1.86e+02 ≈
F26 1.00e+02 1.00e+02 ≈ 1.00e+02 ≈ 1.00e+02 ≈
F27 4.07e+02 4.04e+02 ≈ 4.07e+02 ≈ 3.89e+02 ≈
F28 8.09e+02 8.76e+02 + 8.32e+02 + 8.61e+02 +
F29 9.96e+02 8.70e+02 - 7.73e+02 - 9.14e+02 ≈
F30 1.42e+03 1.58e+03 + 2.43e+03 + 2.06e+03 +
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Table 5.8: Function errors of mean value for the SAHEABC, ABC, BsfABC and IABC
and the signs for SAHEABC compared with ABC, BsfABC and IABC on 50D

F. SAHEABC ABC Sign BsfABC Sign IABC Sign
F1 1.27e+07 7.51e+06 - 1.41e+07 ≈ 8.53e+06 -
F2 9.40e+03 2.30e+02 - 3.00e+02 - 1.18e+02 -
F3 5.85e+03 3.55e+03 - 6.40e+03 + 6.63e+03 +
F4 5.52e+00 1.60e+01 + 1.13e+01 + 8.32e+00 +
F5 2.03e+01 2.03e+01 ≈ 2.03e+01 ≈ 2.03e+01 ≈
F6 2.74e+01 2.81e+01 ≈ 3.32e+01 + 2.81e+01 ≈
F7 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈
F8 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈
F9 1.12e+02 1.54e+02 + 1.39e+02 + 1.25e+02 +

F10 5.92e-03 5.20e-01 + 1.82e+00 + 3.15e-01 +
F11 3.34e+03 3.80e+03 + 4.55e+03 + 3.71e+03 +
F12 3.33e-01 2.34e-01 - 2.25e-01 - 2.49e-01 -
F13 2.61e-01 2.82e-01 ≈ 2.70e-01 ≈ 3.39e-01 +
F14 1.84e-01 2.03e-01 + 2.11e-01 + 2.17e-01 +
F15 1.55e+01 1.58e+01 ≈ 2.47e+01 + 2.13e+01 +
F16 1.79e+01 1.94e+01 + 1.84e+01 ≈ 1.89e+01 +
F17 3.68e+06 2.58e+06 ≈ 5.82e+06 + 2.74e+06 ≈
F18 1.03e+04 1.71e+03 - 5.36e+02 - 1.08e+04 ≈
F19 1.38e+01 1.94e+01 + 1.64e+01 + 1.45e+01 ≈
F20 1.88e+04 1.29e+04 - 2.88e+04 + 1.26e+04 -
F21 1.92e+06 1.44e+06 - 3.93e+06 + 1.40e+06 -
F22 6.06e+02 5.01e+02 - 8.42e+02 + 5.30e+02 ≈
F23 3.44e+02 3.44e+02 ≈ 3.44e+02 ≈ 3.44e+02 ≈
F24 2.56e+02 2.59e+02 ≈ 2.57e+02 ≈ 2.58e+02 ≈
F25 2.12e+02 2.12e+02 ≈ 2.12e+02 ≈ 2.12e+02 ≈
F26 1.00e+02 1.00e+02 ≈ 1.00e+02 ≈ 1.00e+02 ≈
F27 4.15e+02 4.21e+02 + 4.42e+02 + 4.19e+02 ≈
F28 1.22e+02 1.47e+03 + 1.28e+03 + 1.38e+02 +
F29 1.82e+03 1.11e+03 - 1.38e+03 - 1.55e+03 -
F30 9.09e+03 9.28e+03 + 1.02e+04 + 9.23e+03 +
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and SAHEABC algorithms, the numbers of better, similar, and worse performance of func-

tion errors of mean value for these algorithms are listed in Table 5.10 for 30 test functions

statistically with symbols “+”, “≈”, “-”.

Table 5.9: Comparison performance of function errors of mean value for SAHEABC to
ABC, BsfABC, and IABC algorithms.

SAHEABC (10D) VS. ABC BsfABC IABC
+ 14 21 17
≈ 11 6 9
- 5 3 4

SAHEABC (30D) VS. ABC BsfABC IABC
+ 12 18 14
≈ 11 8 10
- 7 4 6

SAHEABC (50D) VS. ABC BsfABC IABC
+ 10 16 11
≈ 11 10 13
- 9 4 6

Figures 5.9-5.16 illustrate the convergence performance for logarithmic values of mean

value of function error on ABC, BsfABC, IABC, and SAHEABC algorithms with increas-

ing function evaluations on 10D, 30D and 50D respectively.

According to Figs. 5.9-5.11, the performance of SAHEABC algorithm is better than

ABC, BsfABC, and IABC algorithms on 10D. The convergence performance of SAHE-

ABC on functions F11 as shown in Fig. 5.9 and F18 as shown in Fig. 5.10 are much

better compared to ABC, BsfABC, and IABC algorithms on 10D. The functions F6 and

F9 achieve similar performance according to Tables 5.7-5.9.The comparative convergence

of function F30 as shown in Fig. 5.11 is better than ABC, BsfABC, and IABC algorithms

on 10D, functions F4, F9, F10, F14,F16, F17, F20-F22, and F25-F27 are found to achieve

similar performance according to Tables 5.7-5.9. The best result is achieved by standard

and state-of-the-art ABC algorithms for function F8, moreover, the function F8 has the best

performance because the function errors of mean value reached zero. For functions F7 and

F10, SAHEABC algorithm almost achieves the best performance with the function error of
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Figure 5.9: Comparative convergence for F11 on 10D
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Figure 5.10: Comparative convergence for F18 on 10D
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Figure 5.11: Comparative convergence for F30 on 10D

mean value of zero.

With regard to Figs. 5.12-5.13, the convergence performance of SAHEABC is better

than ABC, BsfABC, and IABC algorithms on 30D. The convergence speed of functions F2

as shown in Fig. 5.12 and F9 as shown in Fig. 5.13 for SAHEABC is much faster compared

to ABC, BsfABC, and IABC algorithms on 30D. The convergence ability of function F24

as shown in Fig. 5.14 for SAHEABC is significantly better than ABC, BsfABC, and IABC

algorithms on 30D. The functions F4, F10-F12, F16, F17, F20, F28 and F30 achieve similar

performance according to Tables 5.7-5.9. The best results are got by ABC, BsfABC, IABC,

and SAHEABC algorithms on functions F7 and F8 which reached the best performance

because the function errors of mean value reached zero. SAHEABC algorithm almost

achieves the best performance with function error of mean value of zero for function F10.

ABC, BsfABC, IABC, and SAHEABC algorithms have similar results for functions F23,

F25-F27 on D30 according to Tables 5.7-5.9.

According to Figs. 5.15-5.16, the competitive convergence of SAHEABC is achieved

compared to ABC, BsfABC, and IABC algorithms on 50D. The convergence speed for
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Figure 5.12: Comparative convergence for F2 on 30D
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Figure 5.13: Comparative convergence for F9 on 30D
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Figure 5.14: Comparative convergence for F24 on 30D
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Figure 5.15: Comparative convergence for F4 on 50D
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Figure 5.16: Comparative convergence for F27 on 50D

function F4 as shown in Fig. 5.15 is much better than ABC, BsfABC, and IABC algo-

rithms on 50D, functions F9 and F10 have the same results as well as function F4; The

convergence performance of function F27 as shown in Fig. 5.16 is better than ABC, Bs-

fABC, and IABC algorithms on 50D, but not so obviously. The functions F9, F11, F14,

F16, F19, F28, and F30 are observed to have the similar results according to the Tables 5.7-

5.9. The best results are achieved by ABC, BsfABC, IABC, and SAHEABC algorithms

on functions F7 and F8 which reached the best performance because the function errors

of mean values reached zero. For function F10, SAHEABC algorithm almost achieves the

best performance with the mean value of function error of zero. The all four compared

algorithms have the similar performance for functions F5, F6, F13, F15, F17 and F23-26

on D50.

Figures 5.17-5.24 show the boxplots with function errors of mean value for ABC, Bs-

fABC, IABC, and SAHEABC algorithms on 10D, 30D, and 50D respectively. The num-

bers of “1, 2, 3, 4” indicate that the function errors of mean value of ABC, BsfABC, IABC,

and SAHEABC algorithms on 10D, in the same way, the numbers of “5, 6, 7, 8” , and “9,
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Figure 5.17: Boxplot of comparative convergence for F1

10, 11, 12” indicate that the function errors of mean value of ABC, BsfABC, IABC, and

SAHEABC algorithms on 30D, and 50D, respectively. According to Fig. 5.17, the per-

formance of SAHEABC is better than BsfABC algorithm for F1 on 10D and 30D, but its

performance is not better than others except for BsfABC algorithm on 10D, 30D and 50D.

For the remaining functions of unimodal functions, it is observed that SAHEABC achieves

the best performance for function F2 on D30, function F3 on 10D and 50D compared to

BsfABC and IABC algorithms. From the analyses of the unimodal functions F1-F3, it is

concluded that the the performance of SAHEABC algorithm is effective on dimension size

of 10.

Figures 5.18-5.20 illustrate the boxplots of simple multi-modal functions F4, F5, and

F14 with mean values of function error of ABC, BsfABC, IABC, and SAHEABC algo-

rithms on 10D, 30D, and 50D, respectively. According to Fig. 5.18, the performance of

SAHEABC is the best, IABC is the second, BsfABC is better than ABC for function F4

on 10D, 30D, and 50D. It is observed that the performance of ABC is the best for function
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Figure 5.18: Boxplot of comparative convergence for F4
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Figure 5.19: Boxplot of comparative convergence for F5
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Figure 5.20: Boxplot of comparative convergence for F14

F5 on 10D, however, all four compared algorithms on function F5 achieve the same perfor-

mance on 30D and 50D according to Fig. 5.19. With regard to Fig. 5.20, it could be seen

that the performance of SAHEABC for function F14 is better than others on 10D, 30D and

50D; BsfABC is better than ABC algorithm on 10D and 30D; but ABC is not worse than

BsfABC algorithm on 50D; IABC algorithm performs the worst on 10D, 30D, and 50D.

For the remaining functions of simple multi-modal functions, the SAHEABC reaches the

best performance for functions F4, F9 and F14 on 10D, 30D and 50D; functions F11and

F16 on 10D; function F10 on 30D as well as functions F10 and F11 on 50D. Functions F7

and F8 achieve the best performance on 10D, 30D, and 50D, because the function errors of

mean value reached zero. Based on the analyses of simple multi-modal functions, it could

be concluded that SAHEABC is much competitive when it comes to compare with ABC,

BsfABC, and IABC algorithms.

Figures 5.21-5.22 show the boxplots of hybrid functions for F19 and F20 with the

function errors of mean value for ABC, BsfABC, IABC, and SAHEABC algorithms on

10D, 30D, and 50D, respectively. According to Fig. 5.21, the performance of SAHEABC
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Figure 5.21: Boxplot of comparative convergence for F19
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Figure 5.22: Boxplot of comparative convergence for F20



112

is the best compared to ABC on 10D, BsfABC on 30D and 50D, IABC on 30D, in addition,

ABC outperforms than others on 10D and 30D, but not so obvious. With regard to Fig.

5.22, SAHEABC is the best on 10D and 30D. For the remaining hybrid functions, it is

concluded that SAHEABC is the best for functions F17 as well as F18, F20 and F21 on

10D compared to ABC and BsfABC algorithms; functions F17, F21 as well as F22 on 30D

and 50D compared to BsfABC algorithm according to Tables 5.6-5.8.
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Figure 5.23: Boxplot of comparative convergence for F25

Figures 5.23-5.24 illustrate the boxplots of composition functions of F25 and F27 with

the function errors of mean value for ABC, BsfABC, IABC, and SAHEABC algorithms on

10D, 30D, and 50D, respectively. According to Fig. 5.23, SAHEABC is the best on 10D.

The convergence performances for all compared algorithms are very similar on 30D and

50D. SAHEABC algorithm reaches the best performance on 10D, 30D, and 50D from Fig.

5.24. For the remaining composition functions, it could be concluded that the performance

of SAHEABC is the best except for function F29 on 10D, 30D, and 50D; function F23 on

10D and 30D compared to IABC algorithm; function 28 on 10D compared to ABC and

IABC algorithms. SAHEABC algorithm achieves the similar performance for functions
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Figure 5.24: Boxplot of comparative convergence for F27

F23, F24 on 50D with function F26 on 30D and 50D.

According to the above Tables 5.7-5.10 and Figs. 5.9-5.24, SAHEABC was effective

for unimodal functions on 10D. It was much effective for simple multi-modal functions.

For hybrid functions and composition functions, the performance of SAHEABC algorithm

was the best among the four compared algorithms as a whole, but not so significantly.

However, the performance of ABC, BsfABC, and IABC algorithms were better than others

for several functions on certain dimension size as the analyses mentioned above. For all

10D, 30D and 50D, functions F7 and F8 reached the best performance because the function

errors of mean value reached zero.
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5.5 Experimental Results of SAHEABC Algorithm Com-

pared with ABC, BsfABC, IABC, SHADE and NRGA

Algorithms

As mentioned in Chapter 3, ABC, BsfABC, IABC, SHADE and NRGA algorithms are con-

ducted to compare with the SAHEABC algorithm in this section. Comparative experiments

are conducted on SAHEABC, ABC, BsfABC, IABC, SHADE and NRGA algorithms for

30 test functions defined by CEC’14 test suite with selected parameters of limit for 150 and

NP for 100. However, The maximum evaluation sizes are set to 100,000, 300,000, 500,000

and 1, 000, 000 on 10D, 30D, 50D and 100D in the experiments, respectively. Each func-

tion of 30 test functions is executed 51 times with respect to 10D, 30D, 50D and 100D.The

food source number is set to half of the NP for 50, in the meantime, the employed bee

number and onlooker bee number is set to same as food source number. The number of

scout bee is set to 1 for each cycle.

The function errors of mean value for the SAHEABC, ABC, BsfABC, IABC, SHADE

and NRGA algorithms and the signs of SAHEABC algorithm to ABC, BsfABC, IABC,

SHADE and NRGA algorithms are given in Table 5.11-5.14 on 10D, 30D, 50D and 100D

respectively. The comparison results are shown in Table 5.15.

From the Tables 5.11-5.15, the number of functions with better convergence perfor-

mance of the SAHEABC decreased when the dimension size increased compared to ABC,

BsfABC, IABC, SHADE and NRGA algorithms. It is concluded that convergence per-

formance of SAHEABC is much competitive to BsfABC, IABC and NRGA algorithms.

Especially, the convergence performance is very significant as compared to NRGA algo-

rithm.

The convergence performance of SAHEABC compared to ABC, BsfABC, IABC, SHADE

and NRGA algorithms for function errors of mean value are shown in Figs 5.25-5.28 on

10D, 30D, 50D and 100D respectively. The comparisons are conducted based on the func-

tion types, namely, unimodal, simple multi-modal, hybrid and composition functions.

According to Fig. 5.25, SAHEABC performs better than ABC, BsfABC, IABC, SHADE

and NRGA algorithms on 10D, especially, it is much obvious for multi-modal and hybrid
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Table 5.10: Function errors of mean value for the SAHEABC, ABC, BsfABC, IABC,
SHADE and NRGA with the signs of SAHEABC compared with these algorithms on 10D

F. SAHEABC ABC sign BsfABC sign IABC sign SHADE sign NRGA sign
F1 1.23e+04 1.98e+04 + 2.45e+05 + 1.39e+04 ≈ 0.00e+00 - 2.79e+04 +
F2 8.62e-01 7.55e-01 ≈ 1.32e-01 - 1.68e+00 + 0.00e+00 + 9.15e+02 +
F3 5.73e+00 4.01e+00 - 7.01e+01 + 1.42e+01 + 0.00e+00 - 1.52e+03 +
F4 1.11e-03 4.10e-03 + 1.59e-03 + 5.06e-03 + 2.94e+01 + 1.54e+01 +
F5 5.37e+00 1.15e+00 - 5.41e+00 ≈ 1.41e+00 - 1.47e+01 + 1.96e+01 +
F6 2.10e-01 5.23e-01 + 1.28e+00 + 8.28e-01 + 0.00e+00 - 2.45e+00 +
F7 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 1.85e-04 ≈ 3.69e-03 ≈ 2.03e-01 +
F8 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈ 5.58e+00 +
F9 2.02e+00 2.81e+00 + 4.33e+00 + 3.87e+00 + 3.14e+00 + 8.69e+00 +
F10 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈ 1.52e-06 ≈ 1.19e+02 +
F11 1.48e+01 1.83e+01 + 6.13e+01 + 1.94e+01 + 7.35e+01 + 5.76e+02 +
F12 1.10e-01 6.82e-02 - 7.14e-02 - 7.06e-02 - 1.55e-01 ≈ 1.24e-01 ≈
F13 5.84e-02 6.37e-02 + 4.97e-02 ≈ 9.54e-02 + 7.85e-02 + 1.58e-01 +
F14 3.71e-02 7.62e-02 + 6.41e-02 + 7.34e-02 + 1.01e-01 + 2.54e-01 +
F15 2.97e-01 2.57e-01 ≈ 4.83e-01 + 4.27e-01 + 4.89e-01 + 1.02e+00 +
F16 7.25e-01 1.15e+00 + 1.45e+00 + 1.27e+00 + 1.57e+00 + 2.75e+00 +
F17 7.32e+03 9.67e+03 + 1.05e+05 + 6.23e+03 ≈ 5.93e+00 - 1.61e+04 +
F18 1.37e+01 2.60e+01 + 1.63e+01 + 3.73e+01 + 1.76e-01 - 7.42e+03 +
F19 7.70e-02 9.98e-02 + 1.01e-01 + 1.21e-01 + 2.34e-01 + 2.09e+00 +
F20 3.50e+00 5.23e+00 + 1.33e+01 + 6.01e+00 + 2.50e-01 - 1.72e+03 +
F21 1.43e+02 3.31e+02 + 1.38e+04 + 2.75e+02 + 3.79e-01 - 4.82e+03 +
F22 2.13e-02 6.54e-02 + 5.22e-02 + 2.05e-01 + 3.29e-01 + 3.76e+01 +
F23 1.77e+00 2.75e+00 + 1.87e+01 + 2.02e+00 + 3.29e+02 + 3.29e+02 +
F24 1.00e+02 8.95e+01 - 9.17e+01 - 8.34e+01 - 1.09e+02 + 1.31e+02 +
F25 1.12e+02 1.19e+02 ≈ 1.25e+02 + 1.19e+02 ≈ 1.43e+02 + 1.84e+02 +
F26 6.73e+01 8.68e+01 + 1.00e+02 + 9.54e+01 + 1.00e+02 + 1.00e+02 +
F27 2.94e+00 3.91e+00 + 6.15e+00 + 3.84e+00 + 1.49e+02 + 2.81e+02 +
F28 3.56e+02 1.88e+02 - 3.15e+02 - 1.97e+02 - 3.91e+02 + 4.77e+02 +
F29 2.42e+02 2.28e+02 ≈ 2.17e+02 - 2.17e+02 - 2.22e+02 - 4.13e+02 -
F30 4.61e+02 4.79e+02 ≈ 5.01e+02 + 4.83e+02 + 4.78e+02 ≈ 1.73e+03 +
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Table 5.11: Function errors of mean value for the SAHEABC, ABC, BsfABC, IABC,
SHADE and NRGA with the signs of SAHEABC compared with these algorithms on 30D

F. SAHEABC ABC sign BsfABC sign IABC sign SHADE sign NRGA sign
F1 3.44e+06 1.68e+06 - 4.29e+06 + 1.79e+06 - 3.36e+02 - 1.31e+06 -
F2 5.06e-01 1.05e+00 + 3.11e-01 - 9.11e-01 + 0.00e+00 - 9.30e+03 +
F3 4.04e+01 1.24e+01 - 4.96e+01 + 3.26e+01 - 0.00e+00 - 4.92e+03 +
F4 2.27e-02 1.04e-01 + 9.65e-02 + 2.58e-01 + 0.00e+00 - 9.36e+01 +
F5 2.02e+01 2.01e+01 ≈ 2.00e+01 ≈ 2.01e+01 ≈ 2.01e+01 ≈ 2.00e+01 ≈
F6 1.00e+01 1.03e+01 ≈ 1.34e+01 + 1.13e+01 + 1.15e+00 + 1.79e+01 +
F7 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈ 2.96e-04 ≈ 1.65e-02 +
F8 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈ 3.02e+01 +
F9 1.48e+01 5.05e+01 + 6.36e+01 + 6.60e+01 + 1.48e+01 ≈ 4.57e+01 +
F10 0.00e+00 9.24e-02 + 1.53e-01 + 3.13e-02 + 1.17e-02 + 1.28e+03 +
F11 1.01e+03 1.31e+03 + 1.62e+03 + 1.30e+03 + 1.49e+03 + 3.42e+03 +
F12 2.46e-01 1.46e-01 - 1.42e-01 - 1.59e-01 - 1.67e-01 + 1.62e-01 +
F13 1.72e-01 1.66e-01 ≈ 1.45e-01 ≈ 2.28e-01 + 2.12e-01 + 2.82e-01 +
F14 1.03e-01 1.45e-01 + 1.44e-01 + 1.65e-01 + 2.36e-01 + 1.87e-01 +
F15 4.79e+00 4.16e+00 + 6.71e+00 + 6.84e+00 + 2.58e+00 - 1.41e+01 +
F16 7.53e+00 8.87e+00 + 9.22e+00 + 9.09e+00 + 9.01e+00 + 1.15e+01 +
F17 4.63e+05 5.25e+05 + 2.05e+06 + 5.24e+05 + 1.05e+03 - 3.36e+05 ≈
F18 6.00e+03 2.53e+02 - 8.05e+01 - 1.58e+03 - 5.42e+01 - 5.50e+02 -
F19 6.26e+00 4.99e+00 - 5.60e+00 - 5.35e+00 - 4.43e+00 - 1.40e+01 +
F20 8.90e+02 1.09e+01 + 6.61e+03 + 1.24e+03 + 1.20e+01 - 1.20e+04 +
F21 1.20e+05 3.92e+04 - 3.24e+05 + 5.93e+04 - 2.48e+02 - 2.12e+05 +
F22 3.99e+01 4.18e+01 + 1.62e+02 + 4.83e+01 + 1.03e+02 + 4.21e+02 +
F23 3.15e+02 3.15e+02 ≈ 3.15e+02 ≈ 2.92e+02 - 3.15e+02 ≈ 3.15e+02 ≈
F24 1.57e+02 1.99e+02 + 2.15e+02 + 2.08e+02 + 2.25e+02 + 2.29e+02 +
F25 2.04e+02 2.05e+02 ≈ 2.04e+02 ≈ 2.05e+02 ≈ 2.03e+02 ≈ 2.11e+02 ≈
F26 1.00e+02 1.00e+02 ≈ 1.00e+02 ≈ 1.00e+02 ≈ 1.00e+02 ≈ 1.00e+02 ≈
F27 4.04e+02 4.03e+02 ≈ 3.06e+02 - 3.53e+02 - 3.24e+02 - 5.89e+02 +
F28 7.58e+02 8.19e+02 + 8.93e+02 + 8.27e+02 + 8.36e+02 + 1.60e+03 +
F29 8.39e+02 8.23e+02 ≈ 4.77e+02 + 8.33e+02 ≈ 7.23e+02 - 1.33e+03 +
F30 1.23e+03 1.26e+03 ≈ 1.79e+03 + 1.63e+03 + 1.91e+03 + 3.23e+03 +
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Table 5.12: Function errors of mean value for the SAHEABC, ABC, BsfABC, IABC,
SHADE and NRGA with the signs of SAHEABC compared with these algorithms on 50D

F. SAHEABC ABC sign BsfABC sign IABC sign SHADE sign NRGA sign
F1 8.93e+06 4.50e+06 - 7.83e+06 - 6.61e+06 - 1.78e+04 - 2.13e+06 -
F2 2.80e+03 9.54e+01 - 3.04e+00 - 5.17e+01 - 0.00e+00 - 4.62e+03 +
F3 3.15e+03 2.17e+03 ≈ 3.41e+03 ≈ 2.10e+03 - 0.00e+00 - 1.13e+04 +
F4 4.95e-02 2.71e+00 + 1.68e+00 + 9.12e+00 + 2.58e+01 + 1.33e+02 +
F5 2.03e+01 2.03e+01 ≈ 2.00e+01 ≈ 2.03e+01 ≈ 2.01e+01 ≈ 2.00e+01 ≈
F6 2.37e+01 2.56e+01 + 3.10e+01 + 2.66e+01 + 4.12e+00 - 3.56e+01 +
F7 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈ 2.07e-03 + 1.31e-02 +
F8 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈ 6.70e+01 +
F9 9.12e+01 1.39e+02 + 1.54e+02 + 1.71e+02 + 3.26e+01 - 9.32e+01 ≈
F10 0.00e+00 2.13e-01 + 5.56e-01 + 1.12e-01 + 1.25e-02 + 2.57e+03 +
F11 3.05e+03 3.35e+03 + 3.88e+03 + 3.41e+03 + 3.44e+03 + 6.18e+03 +
F12 2.92e-01 1.86e-01 - 1.83e-01 - 1.97e-01 - 1.60e-01 - 2.07e-01 ≈
F13 2.19e-01 2.60e-01 + 2.26e-01 ≈ 2.80e-01 + 3.25e-01 + 4.72e-01 +
F14 1.51e-01 1.77e-01 ≈ 1.75e-01 ≈ 2.03e-01 + 2.92e-01 + 3.16e-01 +
F15 1.50e+01 1.22e+01 - 1.77e+01 + 1.74e+01 + 5.79e+00 - 9.51e+01 +
F16 1.74e+01 1.74e+01 ≈ 1.77e+01 ≈ 1.71e+01 ≈ 1.74e+01 ≈ 2.06e+01 +
F17 2.85e+06 1.53e+06 ≈ 1.48e+06 - 1.85e+06 - 2.49e+03 - 3.47e+05 -
F18 7.41e+03 1.36e+03 - 2.16e+02 - 4.03e+03 - 1.71e+02 - 1.03e+03 -
F19 9.05e+00 1.13e+01 + 1.31e+01 + 1.21e+01 + 9.16e+00 ≈ 2.99e+01 +
F20 5.20e+03 7.24e+03 + 3.61e+04 + 7.79e+03 + 1.85e+02 - 1.72e+04 +
F21 1.33e+06 5.55e+05 - 2.40e+06 + 9.47e+05 - 1.33e+03 - 4.68e+05 -
F22 4.81e+02 3.30e+02 - 6.89e+02 + 5.10e+02 + 4.85e+02 ≈ 1.05e+03 +
F23 3.44e+02 3.44e+02 ≈ 3.44e+02 ≈ 3.21e+02 ≈ 3.44e+02 ≈ 3.44e+02 ≈
F24 2.55e+02 2.57e+02 ≈ 2.57e+02 ≈ 2.57e+02 ≈ 2.74e+02 + 2.73e+02 +
F25 2.10e+02 2.10e+02 ≈ 2.10e+02 ≈ 2.10e+02 ≈ 2.07e+02 ≈ 2.19e+02 +
F26 1.00e+02 1.00e+02 ≈ 1.00e+02 ≈ 1.00e+02 ≈ 1.00e+02 ≈ 1.22e+02 +
F27 4.18e+02 4.14e+02 ≈ 4.32e+02 ≈ 4.12e+02 ≈ 4.36e+02 + 1.19e+03 +
F28 1.17e+03 1.41e+03 + 1.54e+03 + 1.30e+03 + 1.14e+03 ≈ 4.84e+03 +
F29 1.48e+03 9.55e+02 - 1.22e+03 + 1.45e+03 ≈ 8.59e+02 - 2.46e+03 +
F30 8.47e+03 8.71e+03 ≈ 1.00e+04 + 8.73e+03 ≈ 9.53e+03 + 1.84e+04 +
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Table 5.13: Function errors of mean value for the SAHEABC, ABC, BsfABC, IABC,
SHADE and NRGA with the signs of SAHEABC compared with these algorithms on 100D

F. SAHEABC ABC sign BsfABC sign IABC sign SHADE sign NRGA sign
F1 5.11e+07 3.10e+07 ≈ 3.91e+07 ≈ 3.43e+07 ≈ 1.40e+05 - 3.24e+07 ≈
F2 2.39e+04 5.92e+02 - 2.34e+03 - 3.45e+02 - 0.00e+00 - 1.46e+04 ≈
F3 1.00e+04 7.62e+03 - 7.81e+03 - 9.26e+03 ≈ 2.29e-03 - 2.70e+04 +
F4 3.05e+01 1.05e+02 + 1.04e+02 + 1.05e+02 + 1.17e+02 + 3.96e+02 +
F5 2.06e+01 2.05e+01 ≈ 2.04e+01 ≈ 2.05e+01 ≈ 2.02e+01 ≈ 2.00e+01 ≈
F6 7.15e+01 7.33e+01 ≈ 8.00e+01 + 7.44e+01 + 2.79e+01 - 9.76e+01 +
F7 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈ 1.28e-03 + 2.22e-02 +
F8 0.00e+00 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈ 0.00e+00 ≈ 2.00e+02 +
F9 3.40e+02 5.50e+02 + 6.02e+02 + 6.35e+02 + 9.69e+01 - 2.45e+02 +
F10 8.92e-03 1.56e+00 + 3.29e+00 + 1.58e+00 + 1.15e-02 + 6.33e+03 +
F11 7.19e+03 9.89e+03 + 1.09e+04 + 1.00e+04 + 9.68e+03 ≈ 1.37e+04 +
F12 5.38e-01 3.47e-01 ≈ 4.16e-01 ≈ 3.73e-01 ≈ 2.29e-01 - 3.80e-01 ≈
F13 3.11e-01 3.01e-01 ≈ 3.23e-01 ≈ 3.87e-01 ≈ 4.13e-01 + 5.01e-01 +
F14 2.15e-01 2.24e-01 ≈ 2.18e-01 ≈ 2.28e-01 ≈ 2.06e-01 ≈ 1.63e-01 ≈
F15 5.114e+01 4.84e+01 ≈ 6.05e+01 + 6.37e+01 + 1.83e+01 - 4.53e+02 +
F16 4.01e+01 4.00e+01 ≈ 4.00e+01 ≈ 3.99e+01 ≈ 3.96e+01 ≈ 4.36e+01 +
F17 1.53e+07 7.41e+06 - 9.62e+06 - 9.69e+06 - 1.16e+04 - 2.17+06 +
F18 4.60e+04 1.19e+03 - 7.05e+02 - 3.41e+04 ≈ 5.96e+02 - 6.32e+02 -
F19 3.05e+01 3.47e+01 + 3.85e+01 + 3.79e+01 + 9.64e+01 + 9.93e+01 +
F20 5.70e+04 3.66e+04 ≈ 9.84e+04 + 3.93e+04 ≈ 5.61e+02 - 7.17e+04 ≈
F21 5.81e+06 4.03e+06 ≈ 6.99e+06 ≈ 3.82e+06 ≈ 3.36e+03 - 1.92e+06 ≈
F22 2.05e+03 1.31e+03 - 1.82e+03 ≈ 1.30e+03 - 1.43e+03 - 2.29e+03 ≈
F23 3.48e+02 3.48e+02 ≈ 3.48e+02 ≈ 3.48e+02 ≈ 3.48e+02 ≈ 3.70e+02 ≈
F24 3.22e+02 3.29e+02 ≈ 3.30e+02 ≈ 3.29e+02 ≈ 3.95e+02 ≈ 3.76e+02 ≈
F25 2.32e+02 2.37e+02 ≈ 2.43e+02 ≈ 2.38e+02 ≈ 2.63e+02 ≈ 2.27e+02 ≈
F26 1.00e+02 1.01e+02 ≈ 1.00e+02 ≈ 1.01e+02 ≈ 2.00e+02 + 2.00e+02 +
F27 4.11e+02 4.45e+02 + 5.47e+02 + 4.46e+02 + 8.62e+02 + 2.35e+03 +
F28 2.21e+03 3.14e+03 + 3.37e+03 + 2.89e+03 + 2.35e+03 + 1.21e+04 +
F29 1.85e+03 2.03e+02 - 2.58e+03 + 2.22e+03 + 1.24e+03 ≈ 3.81e+03 +
F30 1.09e+04 1.58e+04 + 1.42e+04 + 2.69e+04 + 8.80e+03 - 3.45e+04 +
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Table 5.14: Comparison performance with function errors of mean value for SAHEABC to
ABC, BsfABC, IABC, SHADE and NRGA algorithms

SAHEABC (10D) VS. ABC BsfABC IABC SHADE NRGA
+ 17 20 19 17 28
≈ 8 5 6 5 1
- 5 5 5 8 1

SAHEABC (30D) VS. ABC BsfABC IABC SHADE NRGA
+ 12 18 16 11 23
≈ 12 7 5 12 5
- 6 5 9 7 2

SAHEABC (50D) VS. ABC BsfABC IABC SHADE NRGA
+ 9 13 12 9 22
≈ 13 12 11 9 4
- 8 5 7 12 4

SAHEABC (100D) VS. ABC BsfABC IABC SHADE NRGA
+ 8 12 11 8 18
≈ 16 14 15 9 11
- 6 4 4 13 1

functions, the number of functions with worse performance is very small. SAHEABC is

better than BsfABC, IABC and NRGA algorithms for unimodal functions and better than

ABC, IABC, SHADE and NRGA algorithms on composition functions.

From Fig. 5.26, it is concluded that SAHEABC performs significantly better than ABC,

BsfABC, IABC, SHADE and NRGA algorithms on 30D for multi-modal and composition

functions. SAHEABC is better than BsfABC and NRGA algorithms for unimodal func-

tions and significantly better than NRGA algorithm on all functions.

According to Fig. 5.27, SAHEABC outperforms significantly than ABC, BsfABC,

IABC, SHADE and NRGA algorithms on 50D for multi-modal and composition functions,

similar or worse for hybrid functions. SAHEABC is only better than NRGA algorithm for

unimodal functions. The convergence performance of SAHEABC is better than BsfABC

algorithm on hybrid functions.

With regard to Fig. 5.28, it is concluded that SAHEABC outperforms than ABC, Bs-

fABC, IABC, SHADE and NRGA algorithms for multi-modal and composition functions
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Figure 5.25: Convergence performance of SAHEABC compared to ABC, BsfABC, IABC,
SHADE and NRGA algorithms with function errors of mean value on 10D
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Figure 5.26: Convergence performance of SAHEABC compared to ABC, BsfABC, IABC,
SHADE and NRGA algorithms with function errors of mean value on 30D
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Figure 5.27: Convergence performance of SAHEABC compared to ABC, BsfABC, IABC,
SHADE and NRGA algorithms with function errors of mean value on 50D
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Figure 5.28: Convergence performance of SAHEABC compared to ABC, BsfABC, IABC,
SHADE and NRGA algorithms with function errors of mean value on 100D
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on 100D. For unimodal and hybrid functions, SAHEABC is better than NRGA algorithm.

According to the analyses of above Tables 5.11-5.15 and Figs 5.25-5.28, SAHEABC

was much effective for multi-modal functions, however, it was not so obvious for unimodal

functions. For hybrid functions and composition functions, the performance of SAHE-

ABC was the best among the compared algorithms as a whole, but not so significantly for

hybrid functions. SHADE performed the best for unimodal functions among all the algo-

rithms. NRGA was the worst as a whole for all the functions. For all 10D, 30D, 50D and

100D, functions F7 and F8 reached the best performance because the function errors of

mean value got zero. It was also observed that SAHEABC was more effective than ABC,

BsfABC, IABC, SHADE and NRGA algorithms on those functions with the properties of

non-separability, having many local optima and second local optimum is far from the global

optimum, having a narrow valley from local optimum to global optimum, having different

properties around different local optima and different variables subcomponents.

5.6 Summary

A few disadvantages still exist for ABC algorithm, e.g., random uniform initialization loses

the effectiveness for higher dimensional size although plays a more important role in higher

dimensional problems (up to 50 dimensions), and lower fitness individuals have low prob-

ability to be selected as onlooker bees. To overcome the disadvantages, a levy flight-based

hybrid ABC (LFHABC) algorithm was proposed. Based on LFHABC algorithm, a self

adaptive hybrid enhanced ABC algorithm (SAHEABC) was proposed by modifying the

probability on onlooker bees to increase the selected probability of lower fitness individu-

als.

Comparative experiments were implemented for LFHABC and SAHEABC algorithms

to demonstrate the effectiveness and efficiency of these algorithms. More specifically,

CEC’13 test suite were adopted by LFHABC algorithm and CEC’14 test suite were uti-

lized by SAHEABC algorithm and then the performance of the extended ABC algorithms

were statistically analyzed by the comparison experiments with ABC, IABC, BsfABC,

SHADE and NRGA algorithms.

As the comparison experimental results of SAHEABC with ABC, BsfABC, IABC,
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SHADE and NRGA, SAHEABC algorithm was much effective for multi-modal functions.

For hybrid functions and composition functions, the performance of SAHEABC algorithm

was the best, but not so significantly for hybrid functions. It was also observed that SAHE-

ABC outperformed than ABC, BsfABC, IABC, SHADE and NRGA algorithms on those

functions with the properties of non-separability, separability, having many local optima

and second local optimum is far from the global optimum, having a narrow valley from lo-

cal optimum to global optimum, having different properties around different local optima

and variables subcomponents.



Chapter 6

Conclusion

Swarm Intelligence (SI) is the collective behavior of decentralized, self-organized systems

with natural or artificial ways as a discipline of artificial intelligence. Artificial bee colony

(ABC) is one of the SI based algorithms inspired by the food foraging collective behavior

of honey bees. ABC has attracted the researchers to make great contributions by modify-

ing it in various ways. The modified ABC and hybridized ABC algorithms are superior

to other algorithms in terms of its simplicity, flexibility and robustness when solving the

numerical optimization problems, along with the advantages of the improved versions of

ABC algorithm. The extended ABC algorithms of improved hybrid ABC (IHABC), levy

flight-based hybrid ABC (LFHABC) and self adaptive enhanced hybrid ABC (SAHEABC)

were proposed in the thesis in order to overcome the disadvantages, e.g., low convergence

speed when they solving unimodal or composition functions, low exploitation abilities, and

are also easily trapped in local optima when solving multi-modal functions, low diversity

for initialization and lower fitness individuals hard to be selected as onlooker bees .

The conclusions of the chapters in the thesis are made as following.

The backgrounds of continuous optimization problems, swarm intelligence and evolu-

tionary computation, goal of the thesis and the structure of the thesis were introduced in

Chapter 1.

In Chapter 2, the review for the history of test functions were described, the brief his-

tory of test functions and the test function suites were then analyzed. Availability of the

benchmark of CEC provides the platform for comparing new optimization algorithms to the

124
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state-of-the-art ones. CEC benchmark is the widely used for evaluating the test functions

which cover a wide range of specialized optimization problems. The representative bench-

mark test functions of CEC’13 and CEC’14 which were introduced based on the CEC’05

test functions were given the definitions in more detailed ways.

In Chapter 3, swarm intelligence (SI) based algorithms and evolutionary algorithms

(EAs) were introduced as bio-inspired algorithms which proposed by mimicking the suc-

cessful characteristics of the complex systems inspired from nature. Like all social insects,

the honey bees have the opportunity to engage in social learning by interacting with simple

other entities in their social group, while the group of insects possesses collective intelli-

gence, the individuals within the group have complex cognitive abilities. Self-organization,

stigmergy and division of labor were interpreted firstly as component keys in bee colony.

The ABC algorithm was described in detailed explanations. PSO, GA, NRGA, DE and

SHADE were given the explanations in more detail.

In Chapter 4, the previous research about the modified versions of ABC algorithms and

the state-of-the-art modified ABC algorithms of BsfABC and IABC algorithms were intro-

duced firstly. IHABC was proposed inspired by self adaptive mechanism, incorporated with

DE and PSO algorithms in order to overcome the disadvantages such as low convergence

speeds when they solve unimodal functions, low exploitation abilities and easily trapped

in local optima when they solve complex multimodal functions. Comparative experiments

for ABC, IHABC, DE and PSO algorithms were implemented for test functions defined

by CEC’13. As the experimental results, IHABC and ABC algorithms were effective on

unimodal function F1, IHABC outperformed than ABC algorithm, the convergence per-

formance of IHABC was the best as a whole for multi-modal and composition functions,

especially on 10D and 30D. ABC algorithm outperformed than DE and PSO algorithms

DE is better than PSO algorithm. Functions F1, F5, and F11 reached the best convergence

performance with function errors of mean value of zero on 10D, 30D, and 50D.

In Chapter 5, LFHABC and SAHEABC were proposed in order to overcome the disad-

vantages, e.g., random uniform initialization loses the effectiveness for higher dimensional

size although plays a more important role in higher dimensional problems, and lower fit-

ness individuals have low probability to be selected as onlooker bees. Comparative ex-

periments were implemented for LFHABC and SAHEABC algorithms to demonstrate the
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effectiveness of these algorithms. More specifically, CEC’13 was adopted by LFHABC

and CEC’14 was utilized by SAHEABC. Through the comparison experiments of ABC,

IABC, BsfABC, SHADE and NRGA algorithms, the results showed that SAHEABC was

much effective for multi-modal functions, SAHEABC was the best for hybrid functions and

composition functions, but not so significantly for hybrid functions. It was also observed

that SAHEABC outperformed than ABC, BsfABC, IABC, SHADE and NRGA algorithms

on those functions with the properties of non-separability, separability, having many local

optima and second local optimum is far from the global optimum, having a narrow valley

from local optimum to global optimum, having different properties around different local

optima and variables subcomponents.

Chapter 6 made a conclusion for the thesis.

This thesis focuses on the improving the performance of bio-inspired optimization al-

gorithms for solving continuous optimization problems. For continuous optimization prob-

lems, the variables in the model are nominally allowed to take on a continuous range of

values, usually real numbers. As the widely used benchmark test functions, CEC’13 and

CEC’14 were adopted in the thesis for proving the effectiveness of the proposed extended

ABC algorithms. Through numerous comparative experiments implemented, IHABC algo-

rithm was competitive or superior to recent state-of-the-art algorithms for unimodal, mul-

timodal and composition continuous optimization problems defined by CEC’13, LFHABC

and SAHEABC algorithms were competitive or superior to recent state-of-the-art algo-

rithms for unimodal, multimodal, hybrid and composition continuous optimization prob-

lems defined by CEC’14.

In the thesis, the extended ABC algorithms are only adopted on continuous optimiza-

tion problems defined by CEC’13 and CEC’14. The proposed extended ABC algorithms

had the competitive performance compared to recent state-of-the-art algorithms so that they

will be applied to solve the continuous-discrete optimization problems or real-world prob-

lems with more complex properties such as large-scale dynamic problems. The extended

ABC algorithms still has the characteristics for hybridizing with other approaches easily,

therefore, they may be combined with other state-of-the-art algorithms to develop extended

ABC algorithms with much higher performance.
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Dorigo, M., Birattari, M., Stützle, T. Ant colony optimization: artificial ants as a computa-

tional intelligence technique. IEEE Computational Intelligence Magazine, 1(4), 2006.

Duan, H. B., Xu, C. F. and Xing, Z. H. A hybrid artificial bee colony optimization and quan-

tum evolutionary algorithm for continuous optimization problems. International Journal

of Neural Systems 20(1), pp. 39-50, 2010.



130

El-Abd, M. Black-box optimization benchmarking for noiseless function testbed using ar-

tificial bee colony algorithm. Proc. of the 12th annual conference companion on Genetic

and evolutionary computation. pp. 1719-1724, 2010.

Engelbrecht, A. P. Computational intelligence: an introduction. John Wiley & Sons, 2007.

Finck, S., et al. Real-parameter black-box optimization benchmarking 2009: Presentation

of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2010.

Fister J. I., Yang, X. S., Fister, I., Brest, J. and Fister, D. A brief review of nature-inspired
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Appendix A

CEC’13 Test Functions

M1, M2, ..., M10: orthogonal (rotation) matrix generated from standard normally distributed

entries by Gram-Schmidt orthonormalization. Λα: a diagonal matrix in D dimensions with

the ith diagonal element as λii = α
i−1

2(D−1) , i = 1, 2, ...,D.

T β
asy = x1+β i−1

D−1
√

xi

i i f xi > 0 (A.1)

Tosz = sign(xi)exp(x̂i + 0.049(sin(c1 x̂i) + sin(c2 x̂i))) (A.2)

Where, x̂i =

log(| xi |) i f xi , 0

0 otherwise
signxi =


−1 i f xi < 0

0 i f xi = 0

1 otherwise

c1 =

10 i f xi > 0

5.5 otherwise
c2 =

7.9 i f xi > 0

3.1 otherwise

In above equations, for i = 1, 2, ...,D.

� Unimodal and Multimodal Functions

1. Sphere Function
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F1(x) = f1(x − o) + F∗1 (A.3)

(a) F1 (b) F2

Figure A.1: 2-dimensional landscapes

2. Rotated High Conditioned Elliptic

F2(x) = f2(TOS Z(M1(x − o))) + F∗2 (A.4)

3. Rotated Bent Cigar Function

F3(x) = f3(M2T 0.5
asy(M1(x − o))) + F∗3 (A.5)

4. Rotated Discus Function

F4(x) = f4(Tosz(M1(x − o))) + F∗4 (A.6)

5. Different Powers Function

F5(x) = f5(x − o) + F∗5 (A.7)
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(a) F3 (b) F4

Figure A.2: 2-dimensional landscapes

6. Rotated Rosenbrock’s Function

F6(x) = f6(M1(
2.048(x − o)

100
) + 1) + F∗6 (A.8)

(a) F5 (b) F6

Figure A.3: 2-dimensional landscapes

7. Rotated Schaffers F7 Function

F7(x) = f7(∧10M2T 0.5
asy(M1(x − o))) + F∗7 (A.9)
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8. Rotated Ackley’s Function

F8(x) = f8(∧10M2T 0.5
asy(M1(x − o))) + F∗8 (A.10)

(a) F7 (b) F8

Figure A.4: 2-dimensional landscapes

9. Rotated Weierstrass Function

F9(x) = f9(∧10M2T 0.5
asy(M1

0.5(x − o)
100

)) + F∗9 (A.11)

(a) F9 (b) F10

Figure A.5: 2-dimensional landscapes
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10. Rotated Griewank’s Function

F10(x) = f10(wedge100M1
600(x − o)

100
) + F∗10 (A.12)

11. Rastrigin’s Function

F11(x) = f11(∧10T 0.2
asy(Tosz(

5.12(x − o)
100

))) + F∗11 (A.13)

12. Rotated Rastrigin’s Function

F12(x) = f11(M1 ∧10 M2T 0.2
asy(Tosz(M1

5.12(x − o)
100

))) + F∗12 (A.14)

(a) F11 (b) F12

Figure A.6: 2-dimensional landscapes

13. Non-continuous Rotated Rastrigin’s Function

F13(x) =
D∑

i=1

(z2
i − 10cos(2πzi) + 10) + F∗13 (A.15)

Where, x̂ = M1
5.12(x−o)

100 , yi =

x̂i, i f |x̂i| ≤ 0.5

round(2x̂i)/2, i f |x̂i| > 0.5
for i=1, 2,..., D

z = M1 ∧10 M2T 0.2
asy(Tosz(y))
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14. Schwefel’s Function

F14(x) = f12(∧10(
1000(x − o)

100
) + 4.209687462275036e + 002) + F∗14 (A.16)

(a) F13 (b) F14

Figure A.7: 2-dimensional landscapes

15. Rotated Schwefel’s Function

F15(x) = f12(∧10M1(
1000(x − o)

100
) + 4.209687462275036e + 002) + F∗15 (A.17)

16. Rotated Katsuura Function

F16(x) = f13(M2 ∧100 (M1
5(x − o)

100
)) + F∗16 (A.18)

17. Lunacek bi-Rastrigin Function

F17(x) = min(
D∑

i=1

(x̂i−µ0)2, dD+ s
D∑

i=1

(x̂i−µ1)2)+10(D−
D∑

i=1

cos(2πzi))+F∗17 (A.19)
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(a) F15 (b) F16

Figure A.8: 2-dimensional landscapes

Where, µ0 = 2.5, µ1 = −
√

µ2
0−d
s , s = 1 − 1

2
√

D+20−8.2
, d = 1,

x̂i = 2sign(x∗i )yi + µ0, y = 10(x−o)
100 , z = ∧100(x̂ − µ0), for i = 1, 2, ...,D

18. Rotated Lunacek bi-Rastrigin Function

F18(x) = min(
D∑

i=1

(x̂i−µ0)2, dD+ s
D∑

i=1

(x̂i−µ1)2)+10(D−
D∑

i=1

cos(2πzi))+F∗18 (A.20)

Where, µ0, µ1, s = 1 − 1
2
√

D+20−8.2
, d, x̂i, y are same as defined in F17(x).

z = M2 ∧100 (M1 x̂ − µ0)

19. Rotated Expanded Griewank’s plus Rosenbrock’s Function

F19(x) = f14(M1(
5(x − o)

100
) + 1) + F∗19 (A.21)

20. Rotated Expanded Scaffer’s F6 Function

F20(x) = f15(M2T 0.5
asy(M1(x − o))) + F∗20 (A.22)
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(a) F17 (b) F18

Figure A.9: 2-dimensional landscapes

(a) F19 (b) F20

Figure A.10: 2-dimensional landscapes

� Composition Functions

21. Composition Function 1

n=5, ω=[10, 20, 30, 40, 50], bias=[0, 100, 200, 300, 400], λ=[1, 1e-6, 1e-26, 1e-6,

0.1], g1: Rotated Rosenbrock, g2: Rotated Different Powers, g3: Rotated Bent Cigar,

g4: Rotated Discus, g5: Sphere

22. Composition Function 2

n=3, ω=[20, 20, 20], λ=[1, 1, 1], bias=[0, 100, 200], g1−3: Schwefel



146

(a) F21 (b) F22

Figure A.11: 2-dimensional landscapes

23. Composition Function 3

n=3, ω=[20, 20, 20], λ=[1, 1, 1], bias=[0, 100, 200], g1−3: Rotated Schwefel

24. Composition Function 4

n=3, ω=[20, 20, 20], λ=[0.25, 1, 2.5], bias=[0, 100, 200], g1: Rotated Schwefel, g2:

Rastrigin, g3: Weierstrass

(a) F23 (b) F24

Figure A.12: 2-dimensional landscapes

25. Composition Function 5

All settings are same as composition function 4, except for ω=[10, 30, 50]
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26. Composition Function 6

n=5, σ=[10, 10, 10, 10, 10], λ=[0.25, 1, 1e-7, 2.5, 10], bias=[0, 100, 200, 300, 400],

g1: Rotated Schwefel, g2: Rotated Rastrigin, g3: Rotated High Conditioned Elliptic

g4: Rotated Weierstrass, g5: Rotated Griewank

(a) F25 (b) F26

Figure A.13: 2-dimensional landscapes

27. Composition Function 7

n=5, ω=[10, 10, 10, 20, 20], λ=[100, 10, 2.5, 25, 0.1], bias=[0, 100, 200, 300, 400],

g1: Rotated Griewank, g2: Rotated Rastrigin, g3: Rotated Schwefel, g4: Rotated

Weierstrass, g5: Sphere

28. Composition Function 8

n=5, ω=[10, 20, 30, 40, 50], λ=[2.5, 2.5e-3, 2.5, 5e-4, 0.1], bias=[0, 100, 200, 300,

400], g1: Rotated Expanded Griewank plus Rosenbrock, g2: Rotated Schaffers F7,

g3: Rotated Schwefel, g4: Rotated Expanded Scaffer’s F6, g5: Sphere
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(a) F27 (b) F28

Figure A.14: 2-dimensional landscapes



Appendix B

CEC’14 Test Functions

� Unimodal Functions

1. Rotated High Conditioned Elliptic Function

F1(x) = f2(M(x − o1)) + F∗1 (B.1)

(a) F1 (b) F2

Figure B.1: 2-dimensional landscapes

2. Rotated Bent Cigar Function

F2(x) = f3(M(x − o2)) + F∗2 (B.2)

149
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3. Rotated Discus Function

F3(x) = f4(M(x − o3)) + F∗3 (B.3)

�Multimodal Functions

4. Shifted and Rotated Rosenbrock’s Function

F4(x) = f6(M
2.048(xi − o4)

100
) + F∗4 (B.4)

(a) F3 (b) F4

Figure B.2: 2-dimensional landscapes

5. Shifted and Rotated Ackley’s Function

F5(x) = f8(M(x − o5)) + F∗5 (B.5)

6. Shifted and Rotated Weierstrass Function

F6(x) = f9(M
0.5(x − o6)

100
) + F∗6 (B.6)

7. Shifted and Rotated Griewank’s Function
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(a) F5 (b) F6

Figure B.3: 2-dimensional landscapes

F7(x) = f10(M(
600(x − o7)

100
)) + F∗7 (B.7)

8. Shifted Rastrigin’s Function

F8(x) = f11(
5.12(x − o8)

100
) + F∗8 (B.8)

(a) F7 (b) F8

Figure B.4: 2-dimensional landscapes

9. Shifted and Rotated Rastrigin’s Function
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F9(x) = f11(M(
5.12(x − o8)

100
)) + F∗9 (B.9)

(a) F9 (b) F10

Figure B.5: 2-dimensional landscapes

10. Shifted Schwefel’s Function

F10(x) = f12( f rac1000(x − o10)100) + F∗10 (B.10)

11. Shifted and Rotated Schwefel’s Function

F11(x) = f12(M(
1000(x − o11)

100
)) + F∗11 (B.11)

12. Shifted and Rotated Katsuura Function

F12(x) = f13(M(
5(x − o12)

100
)) + F∗12 (B.12)

13. Shifted and Rotated HappyCat Function

F13(x) = f16(M(
5(x − o13)

100
)) + F∗13 (B.13)
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(a) F11 (b) F12

Figure B.6: 2-dimensional landscapes

14. Shifted and Rotated HGBat Function

F14(x) = f17(M(
5(x − o14)

100
)) + F∗14 (B.14)

(a) F13 (b) F14

Figure B.7: 2-dimensional landscapes

15. Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function

F15(x) = f14(M(
5(x − o15)

100
) + F∗15 (B.15)
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16. Shifted and Rotated Expanded Scaffer’s F6 Function

F16(x) = f15(M(x − o16)) + F∗16 (B.16)

(a) F15 (b) F16

Figure B.8: 2-dimensional landscapes

� Hybrid Functions

17. Hybrid Function 1

N=3, p=[0.3, 0.3, 0.4], g1: Modified Schwefel, g2: Rastrigin, g3: High Conditioned

Elliptic

18. Hybrid Function 2

N=3, p = [0.3, 0.3, 0.4], g1 : Bent Cigar, g2: HGBat, g3: Rastrigin

19. Hybrid Function 3

N = 4, p = [ 0.2, 0.2, 0.3, 0.3], g1: Griewank, g2: Weierstrass, g3: Rosenbrock, g4:

Scaffer’s F6

20. Hybrid Function 4

N = 4, p = [0.2, 0.2, 0.3, 0.3], g1: HGBat, g2: Discus, g3: Expanded Griewank plus

Rosenbrock, g4: Rastrigin
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21. Hybrid Function 5

N = 5, p = [0.1, 0.2, 0.2, 0.2, 0.3], g1: Scaffer, g2: HGBat, g3: Rosenbrock, g4:

Modified Schwefel, g5: High Conditioned Elliptic

22. Hybrid Function 6

N = 5, p = [0.1, 0.2, 0.2, 0.2, 0.3], g1: Katsuura, g2: HappyCat, g3: Expanded

Griewank plus Rosenbrock, g4: Modified Schwefel, g5: Ackley

� Composition Functions

23. Composition Function 1

n=5, ω=[10, 20, 30, 40, 50], bias=[0, 100, 200, 300, 400], λ=[1, 1e-6, 1e-26, 1e-

6, 1e-6], g1: Rotated Rosenbrock, g2: High Conditioned Elliptic, g3: Rotated Bent

Cigar, g4: Rotated Discus, g5: High Conditioned Elliptic

24. Composition Function 2

n=3, ω=[20, 20, 20], λ=[1, 1, 1], bias=[0, 100, 200], g1: Schwefel, g2: Rotated

Rastrigin, g3: Rotated HGBat

(a) F23 (b) F24

Figure B.9: 2-dimensional landscapes

25. Composition Function 3
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n=3, ω=[10, 30, 50], λ=[0.25, 1, 1e-7], bias=[0, 100, 200], g1: Rotated Schwefel, g2:

Rotated Rastrigin, g3: Rotated High Conditioned Elliptic

26. Composition Function 4

n=5, ω=[10, 10, 10, 10, 10], λ=[0.25, 1, 1e-7, 2.5, 10], bias=[0, 100, 200, 300, 400],

g1: Rotated Schwefel, g2: Rotated HappyCat, g3: Rotated High Conditioned Elliptic,

g4: Weierstrass, g5: Rotated Griewank

(a) F25 (b) F26

Figure B.10: 2-dimensional landscapes

27. Composition Function 5

n=5, σ=[10, 10, 10, 20, 20], λ=[10, 10, 2.5, 2.5, 1e-6], bias=[0, 100, 200, 300,

400], g1: Rotated HGBat, g2: Rotated Rastrigin, g3: Rotated Schwefel, g4: Rotated

Weierstrass, g5: Rotated High Conditioned Elliptic

28. Composition Function 6

n=5, σ=[10, 20, 30, 40, 50], λ=[2.5, 10, 2.5, 5e-4, 1e-6], bias=[0, 100, 200, 300,

400], g1: Rotated Expanded Griewank plus Rosenbrock, g2: Rotated HappyCat, g3:

Rotated Schwefel, g4: Rotated Expanded Scaffer, g5: Rotated High Conditioned

Elliptic

29. Composition Function 7
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(a) F27 (b) F28

Figure B.11: 2-dimensional landscapes

n=3, ω=[10, 30, 50], λ=[1, 1, 1], bias=[0, 100, 200], g1: Hybrid Function 1, g2:

Hybrid Function 2, g3: Hybrid Function 3

30. Composition Function 8

n=3, ω=[10, 30, 50], λ=[1, 1, 1], bias=[0, 100, 200], g1: Hybrid Function 4, g2:

Hybrid Function 5, g3: Hybrid Function 6
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