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Abstract

We developed a high finesse optical cavity without utilizing an active feed-

back system to stabilize the resonance aiming for light sources with laser

Compton scattering. Laser Compton scattering is the elastic scattering

process of laser photons and high energy electrons. It generates X-rays

or gamma-rays with relatively low energy electron beams compared with

synchrotron radiation and allow us to construct compact photon source fa-

cilities. X-ray sources are useful for commercial, medical applications and

material science, and gamma-ray sources are used for nuclear and parti-

cle physics. For example, a Compton based polarized positron source is

considered as a possible option for the polarized positron source for the

International Linear Collider (ILC).

A challenge for laser Compton scattering light sources is to improve

their brightness. Therefore, laser photon density at the interaction point of

the laser photons and the electrons must be increased. We have focused to

increase the intensity of the laser photons by utilizing an optical resonant

cavity to accumulate pulsed laser coherently. In the previous study, we

developed the cavity which had the finesse of 4,040, the power enhancement

factor of 1,280 and the focal spot size of 10× 27 µm. With the laser power

accumulation in the cavity which was 2.6 kW during the experiment, the

gamma-ray generation was performed with the 1.28 GeV electron beam

at High Energy Accelerator Research Organization (KEK) in 2013. The

gamma-ray production rate was achieved at 2.7× 108 photons/sec.

For practical applications, more power enhancement is required to in-

crease the number of generated photons, however, a technical difficulty lies

in the improvement of the feedback control system as the linewidth of cavity

resonance is inversely proportional to the finesse. In this work, a feedback-
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free optical cavity with self-resonating mechanism has been developed to

overcome this problem. The highly stable operation with the effective fi-

nesse of 394, 000±10, 000, the power enhancement factor of 187, 000±1, 000

and the stored laser power of 2.52 ± 0.13 kW with the stability of 1.7 %

were successfully demonstrated. The obtained effective finesse and power

stability correspond to the stabilizing accuracy of 0.16 pm in the cavity

length.

This study showed the possibility of realizing a high finesse cavity with-

out any sophisticated active feedback system which, in principle, overcomes

issues of the stabilization of optical resonant cavities with an active feed-

back control, if the application will not require narrow bandwidth in the

light frequency. The feedback-free optical cavity is highly useful for ap-

plications, such as photon facilities by laser-Compton scattering or highly

sensing applications like cavity enhanced absorption spectroscopy (CEAS).
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Chapter 1

Introduction

1.1 Motivation

Laser Compton scattering is a noble method to generate polarized photons

in the energy from X-ray to gamma-ray region by elastic scattering of laser

photons and high energy electrons. It is expected that the process will be

utilized as X-ray sources for industrial, medical or material science, and

gamma-ray sources for high energy or nuclear physics [1–4]. In generally,

X-ray sources used in microstructure analyses is formed by synchrotron ra-

diation facilities or recently by free electron laser facilities; these sources

require a large scale facility because they need several GeV electron beams.

On the other hand, the laser Compton scattering source can save a footprint

and costs since the required electron energy to generate the same energy

X-rays by laser Compton scattering is lower than one required by the syn-

chrotron radiation. For instance, hard X-rays with the energy of O(10) keV

can be produced by O(10) MeV electrons with 1 µm wavelength laser light.

Furthermore, the laser Compton scattering source has an advantage of

being able to control the polarization of the photons by changing the polar-

ization of the laser light. The laser Compton scattering source is a candidate

to construct a polarized positron sources for linear colliders and a proof-of-

principle of the generation of polarized positrons by polarized gamma-rays

has been performed [5–7]. If one generates the gamma-rays by synchrotron

radiation, the electron energy of about 150 GeV is required in order to pro-
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CHAPTER 1. INTRODUCTION

duce the about 10 MeV gamma-ray which is required to generate positrons

via the electron-positron pair production process. The International Linear

Collider (ILC) [8–12], which is a next-generation electron-positron collider

with the total length of about 31 km and the center-of-mass energy of up to

500 GeV, requires the gamma-ray driven polarized positron source. In the

design report of the ILC positron source, the gamma-rays are generated by

an undulator which has the length of 200 m and requires 150 GeV electron

beam from the main linac of the ILC. That scheme is expected to generate

the positrons with the polarization ratio of about 30 % at its initial opera-

tion and expected to be upgradable to 60 %. As the future plan, the design

report also shows another polarized positron source scheme which is driven

by the laser Compton scattering gamma-ray source since this scheme can

generate the10 MeV gamma-ray with only 1 GeV electron beams and has

higher polarization and more flexibility for polarization switching than the

undulator scheme.

The most important subject for many practical uses of the laser Comp-

ton scattering source is increases of the brightness of the X-rays or gamma-

rays. It is possible to increase the yields of scattered photons by inserting

an optical resonant cavity into the electron storage ring [13], so we have

developed the optical cavity and carried out gamma-ray generation exper-

iments with 1.28 GeV electron beams at the Advanced Test Facility of the

High Energy Accelerator Research Organization (KEK) in Japan [14–18].

The optical cavity can accumulate laser pulses coherently and increases the

laser power with the enhancement factor of F/π, where F is the finesse

that is a parameter indicating the sharpness of the resonance. In addition,

the cavity also can focus the laser light down to a few 10 micrometers at

the focal point in the cavity. Firstly, we developed a Fabry-Pérot cavity

with the finesse of about 1,000, the enhancement factor of 250 and the fo-

cal spot size of 60 µm. The average storage power of 498 W was achieved

with 10 W picosecond pulsed laser source [15]. In the second experiment,

the 3 dimensional 4 mirror optical cavity with the finesse of 4,040, the en-

hancement factor of 1,280 and the elliptical focal spot of 10 × 27 µm was

developed. By accumulating laser with 2.6 kW average power in that cavity,

the gamma-ray generation with 2.7× 108 photons/sec was achieved [17].
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CHAPTER 1. INTRODUCTION

For practical applications, more number of scattered photons are needed

than the one obtained in our recent experimental results. A reliable way to

improve the brightness is to increase the cavity finesse. However, such high

finesse cavity follows a technical difficulty on maintaining the resonance

condition of the cavity because the linewidth of the resonance is inversely

proportional to the finesse. To accumulate laser light coherently in the

cavity, the resonance condition of

Lcav = qλ (1.1.1)

must be satisfied, where Lcav, q, and λ are one round-trip pass length in

the cavity, an integer, and the wavelength of the incident laser light, re-

spectively. For example, the optical pass length of our cavity was stabilized

by a feedback controller with piezo-electric devices [16–18]. The finesse of

it was 4,040 and the achieved accuracy of the optical pass length in order

to maintain the resonance was 16 pm. If one assumes the cavity finesse of

40,000, the resonance linewidth in the full width half mean will be about

25 pm. And the accuracy required to stabilize the resonance at the same

level as the F = 4,040 condition is less than a picometer. This requirement

may be achievable [19] but potentially has technical challenges.

1.2 A feedback-free optical cavity with self-

resonating mechanism

Recently, we developed a new laser storage system which can avoid the is-

sue of stabilization which maintains the resonance condition. That cavity

system has mechanism to maintain the resonance in itself, hence there is

no problem caused by feedback control. The idea of “self-resonating mech-

anism” was proposed by Y. Honda and K. Sakaue in 2010 [20]. Figure 1.1

shows a conceptual drawing of the feedback-free cavity with self-resonating

mechanism. Since it is composed of an optical amplifier and an optical

resonant cavity through optical loop pass, it also can be regarded as a kind

of laser oscillator. Laser oscillators including optical resonator (or etalon)

in the loop path has been widely used as a technique to stabilize laser op-
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CHAPTER 1. INTRODUCTION

eration e.g. [21, 22], however, none of them have focused on stabilizing the

resonance of the cavity and utilizing the enhance laser power in it.

The principle of operation of this system is explained below. Amplified

spontaneous emission (ASE) light with a wide frequency spectrum would be

emitted from the optical amplifier and is incident on the optical resonant

cavity. A part of the light which satisfy the resonance condition of the

cavity accumulates in the cavity and passes through without optical loss.

The leaked light from the cavity comes back to the amplifier and is amplified

coherently as the seed light, hence the system will reach laser oscillation if

the gain exceeds power losses in the entire optical loop. At that time, the

laser power in the cavity will be enhanced by the factor determined by the

cavity finesse. If the cavity length fluctuates due to external disturbances

in the environment, the resonance frequency of the cavity is also fluctuate.

However, the optical frequency of the laser oscillation is always caused by

the frequency of the cavity mode, hence the system will maintain the laser

oscillation, the resonance condition and the laser storage in principle.

Practically, the operating behavior of the feedback-free cavity would

depend on various conditions such as the pump rate, the lifetime of the

excited state in the lasing media, losses in the optical loop, the strength of

the external disturbances, the mechanical vibration property of the cavity,

etc. In order to evaluate the possibility to utilize that cavity system for

laser Compton scattering sources, the stable laser storage in the case of

high finesse and the realization of the mode-locking to produce short laser

pulse should be examined experimentally.

Figure 1.1: A conceptual drawing of a feedback-free optical cavity with

self-resonating mechanism. The detail is in the main text.
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CHAPTER 1. INTRODUCTION

1.3 Focus of Dissertation

In this thesis, the development of a feedback-free optical resonant cavity

with high finesse (394,000) in continuous oscillation operation is introduced.

That finesse is two orders of magnitude higher than one of our previous

performance. Thanks to the self-resonant mechanism, the demonstration

of maintaining the resonance was proven successfully even without high

precision electronic circuits or special quiet environment.

In order to provide basic knowledge about a laser Compton scattering

source, an optical power enhancement cavity and a laser oscillator, the

theoretical background is introduced in Chapter 2. High quality optical

mirrors enabling the large power enhancement and evaluation methods of

performance of the cavity are introduced in Chapter 3. Chapter 4 shows the

results of the principle verification experiment using a low finesse cavity and

the demonstration of the stable laser storage with the power enhancement

factor of mort than 100,000. Chapter 5 is a conclusion of this thesis.
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Chapter 2

Theoretical backgrounds

2.1 Laser Compton scattering and scattered

photon beam

The laser Compton scattering means Compton scattering process with laser

photons and high energy electrons. The laser photon energy is around

visible range of O(1) eV while the electron have relativistic energy. Many

theoretical studies and numerical simulations for light sources using the

laser Compton scattering have been conducted so far (e.g. [23–26]). In this

section, the characteristics of scattered photons due to Compton scattering

are introduced; where by taking account the photon energy range of many

practical X-ray or gamma-ray sources, the recoil effect has been neglected.

2.1.1 Photon generation by Compton scattering

Consider an electron and a photon in a laboratory frame coordinate system

(x, y, z) as shown in the geometry of the scattering, figure 2.1. The 4-

momenta of the initial and final electrons are defined as p = (Ee/c, p⃗)

and p′ = (E ′
e/c, p⃗′), where c is the speed of light. The initial electron is

moving along the z direction. The 4-momenta of the incident and scattered

photons are defined as k = (Ep/c, !k⃗) and k′ = (E ′
p/c, !k⃗′), where ! is

the Planck constant. The incident photon is propagated along the direction

with the elevation angle θi and azimuth angle φi, and the scattered photon
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CHAPTER 2. THEORETICAL BACKGROUNDS

Figure 2.1: Geometry of Compton scattering in a laboratory frame coor-

dinate system (x, y, z). The final electron p′ which is the electron after

scattering is not shown in this figure. The detail is in the main text.

is propagated along the direction with θs and φs. The angle θp (= θi − θs)

in figure 2.1 is the angle between the momenta of the incident and scattered

photons.

The energy of the scattered photon can be obtained from the kinematic

relation between the electrons and photons:

p+ k = p′ + k′. (2.1.1)

Squaring both side of this equation, we can obtain

E ′
p =

1− β cos θi
1− β cos θs + ε(1− cos θp)

Ep, (2.1.2)

where β = v/c, v is the velocity of the initial electron, and ε is the ratio

between the energies of the initial electron and the incident photon:

ε =
Ep

Ee
. (2.1.3)

Figure 2.2 shows the relation between the scattered photon energy and the

scattering angle with the incident angle of 180◦ (line), 120◦ (dash) and 90◦

(dots). The scattered angle θs is normalized with a factor of γ; position 1 on

the horizontal axis shows the scattered angle of θs = 1/γ [rad]. Those plots

are calculated with the electron energy of 1.28 GeV and the wavelength of

the incident laser of 1064 nm. It is found that the higher energy photons are
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CHAPTER 2. THEORETICAL BACKGROUNDS

Figure 2.2: Scattered photon energy as a function of the scattered angle.

The electron energy and the wavelength of the incident laser are 1.28 GeV

and 1064 nm, respectively. Each curve correspond to the incident angle of

180◦ (line), 120◦ (dash) and 90◦ (dots).

concentrated around the axis of the electron propagation, θs = 0, regardless

of the incident angle.

In the head-on collision case, θi = π, equation (2.1.2) can be rewritten

as

E ′
p =

1 + β

1− β cos θs + ε(1 + cos θs)
Ep. (2.1.4)

Furthermore, assuming that the electron’s velocity is almost close to the

speed of light, the scattered photon energy in a small scattered angle, θs ≪
1, is given by

E ′
p =

4γ2

1 + 4γ2ε
Ep, (2.1.5)

where γ = 1/
√

1− β2 is the Lorentz factor of the initial electron. Neglect-

ing the recoil effect is a good assumption for practical applications of X-ray

or relatively low energy gamma-ray sources: 4γ2ε ≪ 1. Taking account

these assumption, the approximate maximum energy of scattered photons

is given by

E ′
p ∼ 4γ2Ep. (2.1.6)
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This result shows that the incident photon is boosted by a factor of about

γ2. Since the Lorentz factor of the electron γ is much bigger than unity in

the ultra-relativistic case, the laser Compton scattering using an electron

accelerator can be utilized to produce high-energy photons even though

laser photons are only O(1) eV energy.

2.1.2 Energy spectrum of scattered photons

The energy spectrum of the scattered photons is important to estimate the

number of high-energy scattered photons obtained by the Compton scat-

tering. The differential cross section of Compton scattering for unpolarized

electrons and photons is given by [23]

dσ

dY dφs
=

4r2e
X2

[(
1

X
− 1

Y

)2

+
1

X
− 1

Y
+

1

4

(
X

Y
+

Y

X

)]
, (2.1.7)

where φs is the azimuthal angle of the scattered photon; re is the classical

electron radius; and X and Y are the relativistic invariant variables defined

as [27]

X =
(p+ k)2 −m2c2

m2c2
, Y =

m2c2 − (p− k′)2

m2c2
. (2.1.8)

In the head-on collision case, θi = π, these variables are rewritten as

X =
2γEp(1 + β)

mc2
, Y =

2γE ′
p(1− β cos θs)

mc2
, (2.1.9)

where it should be denoted that cos θs is a function of the scattered photon

energy E ′
p through equation (2.1.4).

We can obtain dY as follows [25]:

Y = X
βEe − E ′

p

βEe − Ep
,

∴ dY = −X
dE ′

p

βEe − Ep
. (2.1.10)

Substituting dY in equation (2.1.7) and integrating on the azimuthal angle

φs, the energy distribution of the scattered photons is obtained as

dσ

dE ′
p

=
8πr2e

X2(βEe − Ep)

[(
1

X
− 1

Y

)2

+
1

X
− 1

Y
+

1

4

(
X

Y
+

Y

X

)]
.

(2.1.11)
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Figure 2.3: The energy spectrum of the scattered photons by Compton

scattering with the electron energy of 1.28 GeV and the laser wavelength

of 1064 nm.

The energy spectrum of the scattered photons with the electron energy of

1.28 GeV and the laser wavelength of 1064 nm is shown in figure 2.3. The

spectral intensity has a maximum value at the scattered photon energy of

about 29 MeV, which is the maximum energy obtained at the scattered

angle of θs = 0. And a minimum value at the scattered photon energy of

about 15 MeV, that energy is obtained at the scattered angle of θs = 1/γ

according to the angular distribution of the scattered photon energy, figure

2.2. Thus, a half of power of the scattered photons will be concentrated in

a cone of the angle θs = 1/γ = 0.399 [mrad]. The results indicates that

we can obtain a high-energy scattered photon beam with a small energy

spread by using collimators at downstream of the interaction area.

2.1.3 Flux of a scattered photon beam

To obtain the expression for the total flux of the scattered photons, consider

the beam-beam scattering of the electrons and laser photons. Figure 2.4

shows the collision of a bunched electron beam and a pulsed laser beam in a

laboratory frame coordinate system (x, y, z). The electron bunch is moving
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Figure 2.4: Geometry of the beam-beam scattering in a laboratory frame

coordinate system (x,y,z). The detail is in the main text.

along the z direction, the time origin t = 0 is chosen for the instant when

the center of the electron bunch and laser pulse collide, and the spatial

origin is chosen that interaction center position.

The number of scattered photons during the fraction of time in the

fraction of a phase space volume of the electron bunch and laser pulse is

given by

dN(r⃗, p⃗, k⃗, t) = σt(p⃗, k⃗)Nefe(r⃗, p⃗, t)Npfp(r⃗, k⃗, t) c (1−β cos θi) dV d3p d3k dt,

(2.1.12)

where σt(p⃗, k⃗) is the total cross section of Compton scattering, Ne and Np

are numbers of the electrons and photons, and fe(r⃗, p⃗, t) and fp(r⃗, k⃗, t) are

the phase space intensity functions of the electrons and photons. Assuming

that the electron bunch and laser pulse have Gaussian distributions in their

phase spaces, the intensity functions can be separated into the spatial and

momentum spaces: fe(r⃗, p⃗, t) = fe(r⃗, t)fe(p⃗) and fp(r⃗, k⃗, t) = fp(r⃗, t)fp(k⃗).

The total number of scattered photons can be obtained by integrating

dN(r⃗, p⃗, k⃗, t) on entire phase space and time as follows:

N =

∫
dN(r⃗, p⃗, k⃗, t) dV d3p d3k dt

= NeNp Ls

∫
σt(p⃗, k⃗) fe(p⃗) fp(k⃗) d

3p d3k, (2.1.13)
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where

Ls = c (1− β cos θi)

∫
fe(r⃗, t) fp(r⃗, t) dV dt (2.1.14)

is the single-collision luminosity defined as the number of events produced

per unit cross section of the scattering [25]. In the head-on collision case,

θi = π, with relativistic electrons of β ∼ 1, that luminosity is rewritten as

Ls =
1

2π

(
λzR
4π

+ βxϵx

)− 1
2
(
λzR
4π

+ βyϵy

)− 1
2

, (2.1.15)

where λ is the laser wavelength, zR is the Rayleigh range, βx,y are Twiss

parameters of the electron beam, and ϵx,y are transverse emittance. As a

conclusion, the total number of scattered photons in unit time is given by

dN

dt
= fNeNpLsσt, (2.1.16)

where f is the repetition rate of the collision, σt is the averaged total cross

section of Compton scattering; it can be approximated by σt when the

energy spread of the electrons and laser photons are neglected. This ex-

pression shows that as the laser power increasing the flux of the scattered

photon beam increases proportionally.

2.2 Principle of an optical resonant cavity

An optical resonant cavity is a device that realizes power storage of laser

light; when the cavity resonates with incident laser light, the light accu-

mulates coherently in the cavity. The power enhancement factor of the

laser storage is expressed by the power reflectivity R of the cavity mirror:

1/(1 − R). By constructing the cavity with high reflectivity mirrors, the

large enhancement factor can be obtained, however, there is a problem that

coherence collapses with slight phase change. In order to think about this

problem, this section explains the principle of the optical resonant cavity.

(For the spatial characteristics of the cavity, see Appendix A.)
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2.2.1 Transmitted and reflected light of a Fabry-Pérot

cavity

Figure 2.5 shows the most basic optical resonant cavity which consists of

two concave mirrors (Fabry-Pérot cavity) [28]. When the input mirror (M1)

of the cavity is irradiated with the incident laser light, a part of the light

field goes through the mirror by the transmission coefficient t1. The light in

the cavity undergoes a change in amplitude by each round-trip with a factor

of the reflection coefficient of cavity mirrors: r1 and r2. On the other hand,

a part of the laser light inside the cavity exit from both the input (M1) and

output (M2) cavity mirrors by each round-trip. Thus, the reflected light by

the cavity is expressed by the superposition of the prompt reflection of the

incident light and penetrations from the cavity, while the transmitted light

is the superposition of the penetrations from the cavity.

The transmitted and reflected light fields (electric fields) Etr(t) and

Ere(t) are given by [29]

Ein(t) = E0e
iωt, (2.2.1)

Etr(t) = E0e
iωt
[
t1t2e

−iω l
c + t1t2r1r2e

−iω 3l
c + · · ·

]
, (2.2.2)

Ere(t) = E0e
iωt
[
r1 − r2t

2
1e

−iω 2l
c − r1r

2
2t

2
1e

−iω 4l
c − · · ·

]
, (2.2.3)

where l is the cavity length (the distance between two mirrors), c is the

speed of light, and t1,2 are transmission coefficients of the cavity mirrors,

respectively. The factor e−iω 2l
c indicates the phase shift for each round-trip

Figure 2.5: A conceptual drawing of a Fabry-Pérot cavity with the cavity

length l. r1,2 and t1,2 are reflection and transmission coefficients, and R1,2

and T1,2 are intensity reflectivity and transmittance of the cavity mirrors.
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of the light in the cavity. From infinite series of those equations, the transfer

functions of the cavity are given by

Etr

Ein
=

t1t2e−iω l
c

1− r1r2e−2iω l
c

, (2.2.4)

Ere

Ein
=

r1 − r2(r21 + t21)e
−2iω l

c

1− r1r2e−2iω l
c

. (2.2.5)

For later use, another derivation method is shown in figure 2.6 [30, 31].

The transmitted field is derived by using the forward-going field EF (t) and

the backward-going field EB(t); these fields are given by

EF (t) = t1Ein(t)− r1EB(t− T )e−iωT , (2.2.6)

EB(t) = −r2EF (t− T )e−iωT , (2.2.7)

where T = 2l/c is the one round-trip time of the intra-cavity light. Substi-

tuting equation (2.2.7) to equation (2.2.6), the forward-going field is rewrit-

ten as

EF (t) = t1Ein(t) + r1r2EF (t− T )e−iωT . (2.2.8)

Assuming that the intra-cavity field settles down to the stead-state con-

dition, we obtain the relation of EF (t) = EF (t − T ). Therefore, equation

(2.2.8) can be solved as

EF (t) =
t1

1− r1r2e−iωT
Ein(t). (2.2.9)

Figure 2.6: The conceptual drawing of the self-consistent scheme to intro-

duce the transmitted light field from the cavity. EF (t) is the forward-going

field and EB(t) the backward-going field.
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By multiplying the transmission coefficient t2, the transmitted field from

the cavity is obtained as follows:

Etr(t) =
t1t2e−iωT/2

1− r1r2e−iωT
Ein(t). (2.2.10)

2.2.2 Transfer functions of a Fabry-Pérot cavity and

the cavity finesse

Assuming that two cavity mirrors have same intensity transmittance and

reflectivity, T1 = T2 = T and R1 = R2 = R, the transfer functions for the

transmitted and reflected light intensities are given by

Itr
Iin

=

∣∣∣∣
Etr

Ein

∣∣∣∣
2

=
T 2

(1−R)2 + 4R sin2 (ω/2νFSR)
, (2.2.11)

Ire
Iin

=

∣∣∣∣
Ere

Ein

∣∣∣∣
2

=
R
[
A2 + 4(R + T ) sin2 (ω/2νFSR)

]

(1−R)2 + 4R sin2 (ω/2νFSR)
, (2.2.12)

where R and T have the relations as follows:

Ri = r2i , (2.2.13)

Ti = t2i ; (2.2.14)

A is the optical loss coefficient defined as

A = 1−R− T ; (2.2.15)

νFSR is the free spectrum range of the cavity defined by

νFSR =
c

2l
. (2.2.16)

From equation (2.2.11) and (2.2.12), it is found that the cavity resonates

with the incident light under the resonant condition:

ω

2νFSR
=

2πν

2νFSR
= qπ, (2.2.17)

where ν is the optical frequency of the incident light, q is an integer called

the mode number. The resonance condition can be also written as the

relation of the wavelength λ and the cavity length l:

l =
λ

2
q. (2.2.18)
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Figure 2.7: The transmitted light intensity with several reflectivities of the

cavity mirrors. The transmitted intensity on the resonance condition equals

the incident intensity in the case of without the optical loss on the mirrors.

Figure 2.7 and 2.8 show equation (2.2.11) and (2.2.12) as a function of

ν with several R under the condition of A = 0. It is found that curves have

resonance peaks (or dips) with a period of νFSR and the linewidth of the

peak narrows as the reflectivity of the mirror approaches unity.

When the light frequency changes slightly by δν around the resonance

frequency, the denominator on the right side of equation (2.2.11) can be

rewritten as

(1−R)2 + 4R sin2

(
2πδν

2νFSR

)
∼ (1−R)2 + 4R

(
πδν

νFSR

)2

. (2.2.19)

From this relation, the full width at the half maximum (FWHM) of the

resonant peak, ∆ν, can be calculated as follows:

(1−R)2 + 4R

(
π

νFSR

∆ν

2

)2

= 2(1−R)2

(
∆ν

2

)2

=
(1−R)2

4π2R
ν2
FSR

∆ν =
1−R

π
√
R
νFSR. (2.2.20)

From this expression, the sharpness of the resonance peak can be defined as

an important parameter of the cavity called finesse, which is also known as a

guide of the resolution of an optical spectrum analyzer using a Fabry-Pérot
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Figure 2.8: The reflected light intensity with several reflectivities of the

cavity mirrors. The reflected intensity is zero on the resonance condition

in the case of without the optical loss on the mirrors.

etalon. The finesse is given by

F =
νFSR
∆ν

=
π
√
R

1−R
∼ π

1−R
, (2.2.21)

where the approximation is for the high reflectivity case (R ∼ 1). For the

case when the cavity length changes instead of the optical frequency, the

FWHM of the length ∆l can be defined as follows:

(1−R)2 + 4R

(
2δl

λ

)2

= 2(1−R)2

δl =
1−R

π
√
R

πλ

4
,

∴ ∆l = 2δl =
πλ

2F
. (2.2.22)

This expression shows the difficulty of maintaining the resonance condition;

in order to maintain the resonance of the cavity, it is necessary to control

the cavity length with an accuracy much smaller than the the length of 1/F

of the light wavelength.

2.2.3 Power enhancement by an optical resonant cav-

ity

The steady-state light intensities from the cavity under the resonance con-

dition are shown in figure 2.9. When the optical loss A cannot be neglected,
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the transmitted intensity is smaller than the incident light and the reflected

intensity does not become zero. The intra-cavity intensity Icav is given by

Icav =
2T

(1−R)2
Iin, (2.2.23)

where the indicated factor of 2 means that the light forms a standing wave

in the cavity, and the coefficient 2T/(1 − R)2 indicates the enhancement

factor of the light power. In the case of T = 1−R, the enhancement factor

G will be proportional to the finesse or simply 1−R:

G =
2T

(1−R)2
=

2

1−R
∼ 2F

π
. (2.2.24)

It should be noted that the enhancement factor G is not only the power

enhancement factor but also the factor for the interaction length of intra-

cavity light.

2.2.4 Lifetime of the light inside the cavity

When the incident light is removed at t = t0, the light power stored in

the cavity decreases due to the transmission and the optical loss. In times

t > t0, the forward-going field in the cavity shown in equation (2.2.8) is

given by

EF (t+
2l

c
) = REF (t), (2.2.25)

where we can neglect the exponential factor since the cavity had been res-

onated until the time t < t0. With the Taylor series approximation, the

Figure 2.9: The steady-state intensities around the cavity at the resonance

condition. The light power inside the cavity is enhanced by a magnitude of

about the finesse.
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left-hand side of equation (2.2.25) is rewritten as

EF (t+
2l

c
) ∼ EF (t) +

2l

c

d

dt
EF (t). (2.2.26)

Thus, the differential equation for the forward-going field is obtained:

d

dt
EF (t) = − c

2l
(1−R)EF (t). (2.2.27)

The solutions of this differential equation and the forward-going intensity

are calculated as follows:

EF (t) = EF (t0) exp
[
− c

2l
(1−R)(t− t0)

]
, (2.2.28)

IF (t) = |EF (t)|2 = IF (t0) exp

[
−(t− t0)

τc

]
, (2.2.29)

where the decay time constant τc is given by

τc =
l

c(1−R)
∼ l

πc
F =

1

2π∆ν
. (2.2.30)

This decay time constant indicates the lifetime of the light inside the cavity

and is the inverse of the resonance linewidth ∆ν. As will later be shown,

measuring the lifetime of the intra-cavity light is an effective means for

obtaining the cavity finesse.

2.3 Laser amplifier and oscillator

The principle of the feedback-free optical cavity is based on a ring laser

oscillator; an optical resonant cavity is added as the storage cavity to the

circulating optical path of the oscillator. In this experiment, we used an

ytterbium-doped fiber amplifier (YDFA) which is known to operate as the

almost four-level laser system [34]. In order to understand the transfer of

energy between the amplifier, the laser cavity which is the circulating optical

path and the storage cavity, the principle of a four-level laser system and the

dynamic characteristics of laser oscillators are introduced in this section.
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2.3.1 Four-level laser system

A four-level laser system consists of the ground level (0), the lower level

of the laser transition (1), the upper level of the laser transition (2) and

the excitation band (3) as shown in figure 2.10. Here, the atoms (doped

ions of rare-earth metal in silica glass material) are excited from (0) to

(3) by the light pumping process, and transition from (2) to (1) while

coherently amplifying signal light. Ni (i = 0, 1, 2, 3) are occupation numbers

or population of the atoms [number/m3] at each level. The population

inversion associated with laser transition can be denoted as N2 − N1. In

the ideal four-level system, since the transition from (1) to (0) and the

transition from (3) to (2) are very fast transitions, we can neglect those

population: N1 = N3 = 0. Furthermore, the population inversion can be

rewritten as N2 −N1 = N2.

In order to describe transitions of the atoms each level, we use the stim-

ulated transition rate W (ν) [1/s] and the spontaneous emission transition

rate γ2 [1/s], where ν is optical frequency and γ2 is the inverse of the fluo-

rescence lifetime τ2 of the level (2):

γ2 =
1

τ2
. (2.3.1)

The time variation of the population inversion which is known as the rate

equation is given by [32]

dN2

dt
= (Nt −N2)Wp(νp)− γ2N2 −N2Ws(νs), (2.3.2)

Figure 2.10: An energy level diagram of a four-level system. Details are in

the main text.
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Figure 2.11: Absorption and emission cross sections of a ytterbium-doped

optical fiber. The data is from [34].

where the subscripts p, s indicate the pump light and signal light that we

want to amplify; each term are corresponding to the pumping, spontaneous

emission and stimulated emission process in order from the left, respectively.

The transition rate of the pumping process is proportional to the ground

level populatio, N0 (= Nt −N2), where Nt is the total number of atoms in

the unit volume.

The stimulated transition rate W (ν) are expressed as follows:

W (ν) =
σem(ab)

hν
ΓI, (2.3.3)

where σem(ab) is the stimulated emission (or absorption) cross section [m2]; I

is the light intensity [W/m2]; Γ is the spatial overlapping coefficient between

the light and the laser medium; hν is the photon energy [J], where h is

Plank’s constant. Using this expression, the rate equation is rewritten as

dN2

dt
= (Nt −N2)

σab

hνp
ΓpIp − γ2N2 −N2

σem

hνs
ΓsIs. (2.3.4)

For accurate analysis, the rate terms should be integrated over a range

of optical frequencies from zero to infinity since the pump and signal lights

have the finite linewidth. Furthermore, the absorption and emission cross
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sections of a ytterbium-doped optical fiber, figure 2.11, shows that both

spectra overlap in wide wavelength range; in many cases, the wavelength of

the pump light is chosen at 915 nm or 976 nm; the amplifiable wavelength

band of the YDFA is in the range of 1020 nm to 1070 nm because the

emission cross section is larger than the absorption cross section in that

range. The rate equation can be modified as follows [33]:

dN2

dt
=

∫ ∞

0

I(ν)

hν
Γ [(Nt −N2)σab −N2σem] dν − γ2N2. (2.3.5)

It is not necessary to use this equation when the pump and signal lights are

approximated to monochromatic. Analysis of the amplified spontaneous

emission (ASE) in fiber amplifiers, for example, require such a detailed

expression.

2.3.2 Equations of the light propagation

The light power generated per unit volume [W/m3] by the stimulated emis-

sion process is given by

N2Ws(νs)× hνs = N2σemΓsIs. (2.3.6)

This additional optical power is coherent to the incident signal light, so

the intensity of the signal is amplified along the propagation direction z

according to the following differential equation:

dIs
dz

= ΓsN2σemIs. (2.3.7)

Similarly, we obtain the following differential equation for the absorption

process of the pump light:

dIp
dz

= Γp(Nt −N2)σabIp. (2.3.8)

In the case of a fiber amplifier, there are two directions of light prop-

agation. Consider the traveling direction of the signal light is taken as

the forward direction, the differential equations for the two propagation

directions of the pump light are given by

±
dI±p
dz

= Γp(Nt −N2)σabI
±
p , (2.3.9)
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where superscripts + and − indicate the forward and backward directions,

respectively. In generally, there are three schemes of the optical pumping for

fiber amplifiers: the forward pumping, backward pumping and the double-

side pumping. This two-directions analysis is also essential for analysis of

the ASE [33].

2.3.3 Steady-state behavior of a laser oscillator

Consider a laser oscillator consisting of an amplifier and a laser cavity which

is an arbitrary optical feedback path. For simplicity, the rate equation

(2.3.4) is rewritten as

dN2

dt
= Rp − γ2N2 −KN2q, (2.3.10)

where

Rp = Nt
σab

hνp
ΓpIp, (2.3.11)

K = σemΓs, (2.3.12)

and

q =
Is
hνs

(2.3.13)

is the photon number density [number/m2]. The pumping term is replaced

by the constant Rp assuming that the steady state population inversion is

much smaller than the ground level population: Nt − N2 ∼ Nt. The rate

equation for the photon number is given by

dq

dt
= KN2q − γLq, (2.3.14)

where γL is the photon decay rate of the laser cavity; it defined by optical

loss and the traveling time in the cavity:

γL =
− lnαloop

τL
, (2.3.15)

where αloop is the optical loss in one round-trip pass in the laser cavity, and

τL is the decay time constant of the laser cavity.
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Figure 2.12: The steady state behavior of a laser oscillator. r = 1 is the

threshold of the laser oscillation. Details are in the main text

The threshold condition of the laser oscillation is obtained by calculating

the steady-state population inversion N ss
2 and the photon number qss. From

equation (2.3.10), the steady-state condition is

0 = Rp − γ2N2 −KN2q,

∴ N ss
2 =

Rp

γ2 +Kqss
. (2.3.16)

From equation (2.3.14), the steady-state condition is also

0 = KN ss
2 qss − γLq

ss

= (KN ss
2 − γL)q

ss,

∴

⎧
⎨

⎩
qss = 0

N ss
2 = γL/K

. (2.3.17)

Substituting the solution of N ss
2 for equation (2.3.16), another solution of

the steady state photon number is obtained as

qss =
Rp

γL
− γ2

K
. (2.3.18)

Taking into account the solution qss = 0, the threshold pumping rate for

laser oscillation, Rth
p , is obtained as

Rth
p =

γ2γL
K

. (2.3.19)
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With this threshold pumping rate, we defined the pump ratio r as follows:

r ≡ Rp

Rth
p

=
K

γ2γL
Rp. (2.3.20)

The steady state behavior is distinguished into two situations at the thresh-

old r = 1 as shown in figure 2.12. When r < 0, the population inversion

increases in proportion to the pump rate and the laser oscillation does not

build up (qss = 0). When r > 0, the population inversion is saturated at

N ss
2 = γL/K and the number of laser photons simply increases in proportion

to the pump rate.

2.3.4 Relaxation oscillations

When the laser oscillation is perturbed from its steady state, spiking and

damped oscillations occur. Such behavior is well known as relaxation os-

cillations [35] and described by two differential equations of the population

inversion equation (2.3.10) and the photon number equation (2.3.14). Those

equations, however, can not be analytically solved due to the coupled term

of KN2q. Thus, we carry out a linearized analysis and introduce simple

analytic solutions for relaxation oscillations.

Let’s consider small perturbations of N2 and q from their steady state

values as follows:

N2 = N ss
2 +∆N, (2.3.21)

q = qss +∆q, (2.3.22)

where ∆N ≪ N ss
2 and ∆q ≪ qss. Substituting these in equations (2.3.10)

and (2.3.14), and neglecting the coupling term ∆N∆q, the following equa-
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tions for ∆N and ∆q are obtained:

d∆N

dt
= Rp − γ2(N

ss
2 +∆N)−K(N ss

2 +∆N)(qss +∆q)

= Rp − γ2N
ss
2 −KN ss

2 qss − γ2∆N −KN ss
2 ∆q −Kqss∆N

−K∆N∆q

= −γ2∆N −KN ss
2 ∆q −Kqss∆N

= −γ2∆N − γL∆q − (r − 1)γ2∆N

= −γL∆q − rγ2∆N, (2.3.23)
d∆q

dt
= K(N ss

2 +∆N)(qss +∆q)− γL(q
ss +∆q)

= KN ss
2 qss − γLq

ss +KN ss
2 ∆q +Kqss∆N − γL∆q +K∆N∆q

= −γ2∆N +KN ss
2 ∆q −Kqss∆N

= γL∆q + (r − 1)γ2∆N − γL∆q

= (r − 1)γ2∆N, (2.3.24)

where relations N ss
2 = γL/K and qss = (r−1)γ2/K are used. By differenti-

ating equation (2.3.24) with respect to time, and using equation (2.3.23) to

eliminate ∆N from the resulting equation, the linearized equation for ∆q

is obtained as

d2∆q

dt2
+ rγ2

d∆q

dt
+ (r − 1)γ2γL∆q = 0. (2.3.25)

The equation (2.3.25) is the second-order system with the natural angular

frequency ωn and the damping ratio ζ given by

ωn =
√

(r − 1)γ2γL, (2.3.26)

ζ =
rγ2
2ωn

=
r

2
√
r − 1

(
γ2
γL

) 1
2

. (2.3.27)

When the steady state light intensity is perturbed, the exponentially

damped oscillations occur with the angular frequency of

ωro = ωn

√
1− ζ2 (2.3.28)

and the decay time constant of

τro =
2

rγ2
. (2.3.29)
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The behavior of relaxation oscillations depends on the relative size of the

decay rates γ2 and γL. In most gas lasers, its atomic fluorescence lifetime is

short and the cavity decay time constant is relatively long due to its long

cavity length; γ2 and γL are of same order of magnitude: γ2 ∼ γL. Since

the damping ratio ζ is almost unity, the laser intensity behaves non-spiking

relaxation oscillations. On the other hand, most semiconductor lasers and

many solid-state lasers indicate the very much slower atomic decay rate

compared to the cavity decay rate: γ2 ≪ γL. Such lasers show the strong

spiking on relaxation oscillations owing to their small damping ratio. The

time period of the spiking Tro is given by Tro = 2π/ωro or Tro = 2π/ωn

because ζ2 term in equation (2.3.28) can be neglect.
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Chapter 3

Ultra-low loss mirrors and

finesse measurement

techniques

3.1 Ultra-low loss mirrors

One of the most fundamental ploblems to develop a high finesse optical

resonant cavity is the gaining quality of the cavity mirrors. An optical mir-

ror is characterized by three parameters which satisfy the relation (2.2.15):

the intensity reflectance R, transmittance T and loss coefficient A. The

reflectance and transmittance are determined by a design of the reflection

coating on a substrate of the mirror. The intensity loss is caused by the

scattering and absorption on the surface of the coat and substrate. The

achieving loss is limited by the manufacturing accuracy of the mirror; only

a few companies can produce an ultra-low loss mirror with less than ppm

(= 10−6) loss coefficient [36].

Since the surface condition of such high quality mirror can easily get de-

teriorated by contamination, one must handle it carefully. Additional loss

decreases the cavity finesse, and the absorption loss will be become a prob-

lems in the application of high power lasers because of thermal deformation

of the mirror. Thus, studies on handling method of ultra-low loss mirrors

are also important in the development of high finesse cavity systems.
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Ultra-low loss mirrors are manufactured by the dielectric multilayer

coating, which is formed by depositing high refractive index material and

low refractive index material on a glass substrate alternately. The ion-beam

sputtering process is widely applied to form the multilayer coating since it

can make dense coats with low roughness; the scattering loss of an optical

mirror mainly depends on the roughness of the glass substrate. The surface

roughness is characterized by the total integrated scattering (TIS) which is

related to the root-mean-square of the roughness δ [37]:

TIS =

(
4πδ

λ

)2

. (3.1.1)

This equation indicates that the angstrom roughness is required to realize

the ppm-order scattering loss with visible to near-infrared wavelength range.

3.2 Scattering loss measurement and han-

dling of the mirror

Figure 3.1: The optical setup of the scatter meter at TAMA experimental

hall in National Astronomical Observatory of Japan (NAOJ) [37]. It can

measure the 2-dimensional map of the TIS on a mirror surface.
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Figure 3.2: Measurement results of the scattering losses of our ultra-low

loss mirrors. Those values had systematic errors of a few ppm.

In order to evaluate the performance of our low loss mirrors, we mea-

sured the scattering loss of those by using the scatter meter in National

Astronomical Observatory of Japan (NAOJ) [37]. The optical setup of the

measurement is shown in figure 3.1. The incident laser light was shaped

in the fundamental Gaussian mode by a pinhole filter and flushed on the

measured mirror surface. While the laser irradiated on the flat surface area

of the mirror was reflected back to the incident trajectory, scattered light

at the rough mirror surface was lead to a photo-diode detector by the inte-

grated sphere. The scattered light intensity was measured by scanning the

position of the mirror by a x-y stage. Here, the incident laser was switched

on/off by an acousto-optic modulator with the intensity modulation of 1

MHz in order to improve the signal-to-noise ratio.

The ultra-low loss mirrors were flat mirrors with the diameter of 25.4

mm. Those mirrors were provided from two suppliers; one of them was

Laboratoire Materiaux Avances (LMA, France) and their mirrors had the

reflectivity of about 99.999 % according to the specification; another sup-

plier was Advanced Thin Films (ATF, USA) and their mirrors had the loss

coefficient of as low as 1 ppm according to the specification. Figure 3.2

shows measurement results of the scattering losses at the central area of 1

cm2 on each mirror surface, where mirrors were referred as ATF#1, ATF#2

and LMA. The obtained averaged scattering losses were 25.0 ppm, 8.1 ppm

and 12.9 ppm for ATF#1, ATF#2 and LMA, respectively, where value un-

certainty was a few ppm. We found that the mirror labeled ATF#1 had

practically large scattering losses and that value was far from its specifica-
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Figure 3.3: A schematic drawing of the drag-wiping technique. The detail

is described in the main text or [38].

Figure 3.4: Measured scattering losses after the cleaning by the drag-wiping

technique. The scattering losses of other mirrors were also improved by

cleaning the mirror surfaces.

tion value.

In order to clean the contaminated mirror, ATF#1, we applied the

drag-wiping technique [38]. Figure 3.3 shows a schematic drawing of that

method. A cleaning paper is put on the mirror surface and a drop of pure

2-plopanol is applied on it. And then, the surface is wiped by dragging out

lens-cleaning papers. Figure 3.4 shows the scattering losses of ATF#1 after

the cleaning. The averaged scattering loss was improved from 25.0 ppm to

9.2 ppm with the minimum value of 4 ppm. Finally, all averaged scattering

losses were successfully improved from the values before the cleaning to less

than 10 ppm.
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3.3 Finesse measurement techniques

There are several techniques to measure the cavity finesse depending on

the magnitude of the finesse. According to equation (2.2.21), the finesse

measurement means the measurement of the effective reflectivity of the

cavity mirrors. In this section, some typical methods are introduced.

3.3.1 Cavity ring-down technique

Figure 3.5: A schematic diagram of the cavity ring-down technique. AOM:

acousto-optic modulator, SMF: single mode fiber, FG: function genera-

tor, HV amp.: high-voltage amplifier, PZT: piezo electric transducer, PD:

photo-diode.

The time decay of the light in a Fabry-Pérot cavity is given by equation

(2.2.29). Since the decay time constant is related to the cavity finesse and

the cavity length as shown in equation (2.2.30), the finesse can be obtained

by observing the time decay of the transmitted light from the cavity; this

method is called cavity ring-down technique.

A schematic diagram of the cavity ring-down technique is shown in figure

3.5. At the first, the optical cavity had been aligned with the fundamental

Gaussian mode of the incident laser light. The transmitted light from the

cavity was monitored while scanning the cavity length with a piezo-electric

transducer (PZT) actuator. When the cavity and the incident light closed
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(a)
(b)

Figure 3.6: (a) Observed time decay signal (cavity ring-down signal) by

using an oscilloscope. (b) The result of fitting with an exponential fit

function.

to the resonant condition, increase of the transmitted light power was ob-

served. Then, the incident light was shut-off by an acousto-optic modulator

(AOM) when the light power reached the certain threshold level.

The obtained data of the time decay signal, which is called as ring-down

signal, was fitted by an exponential function. An example of the measure-

ment results for the cavity consisting of ultra-low loss mirrors provided by

LMA is shown in figure 3.6a. The cavity length l was 0.216 ± 0.002 m

and the fall time of AOM was less than 4 µs. By fitting the data with an

exponential function as shown in figure 3.6b, the decay time constant τc,

finesse F and the corresponding effective reflectivity R were obtained as

τc = 60.21± 0.03 µs, F = 263, 000± 2, 000 and R = 99.99880± 0.00001 %,

respectively.

3.3.2 Sideband technique

When the magnitude of the cavity finesse is relatively low, the cavity ring-

down technique cannot be applied since the decay time constant is too

short to measure precisely. On the other hand, the cavity linewidth which

is inverse of the decay time becomes larger, thus the frequency-domain-

measurement technique known as sideband technique can be used. In this

method, frequency modulation is applied to the incident light to make side-
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Figure 3.7: The setup diagram of the finesse measurement by the sideband

method. FI: Faraday isolator, FC: fiber coupler/collimator, HWP: half wave

plate, EOM: electro-optical modulator, PZT: piezo-electro transducer, PD:

photo detector, OSC: oscilloscope.

Figure 3.8: Measured resonance signal of the transmitted light. Small res-

onance signals at around the highest peak indicate the sideband lights.

band compornents as a frequency marker. Since the modulation frequency

can be well controlled, the linewidth is measured with good measurement

accuracy.

The setup diagram of the sideband method is shown in figure 3.7. FI is

a Faraday isolator, two FCs are single mode fiber collimator/coupler, HWP

is a half-wave plate, EOM is an electro-acoustic modulator, and PD is a

photo-diode detector, respectively. The cavity length l and the free spectral

range νFSR were 0.216 ± 0.002 m and 694.4 ± 6.4 MHz, respectively. The

expected finesse and linewidth were O(100) and O(1) MHz due to the mirror

reflectivity of 99.5 %, which is from the specification. The fundamental

Gaussian mode of the incident light was well aligned to the cavity by using

matching lens. And EOM gave 10 MHz sideband frequency to the incident
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light.

Figure 3.8 shows the observed temporal signal of the transmitted light.

Since the cavity length was changed linear by using the PZT actuator, an

Airy function shape appeared as the resonance peak (refer figure 2.7). This

resonant peak was composed of the light with the carrier frequency which

was the original optical frequency of the incident laser. Since the laser

was modulated by EOM, the sidebands were observed at both sides of the

resonance of the carrier light. Here, the observed time distance between

the sideband and carrier peaks correspond to the modulation frequency

of 10 MHz. As a result, the cavity linewidth ∆ν, finesse F and effective

reflectivity R were obtained as ∆ν = 1.85 MHz, R = 375 ± 17 and R =

99.16± 0.04 %, respectively. The errors were mainly from the uncertainty

of the cavity length.

3.3.3 Frequency response function technique

The linewidth of the resonance peak can be evaluated by measuring the

cavity’s response function which means the frequency response around its

resonance frequency [39]. Figure 3.9 shows a conceptual scheme of this

method. By applying amplitude modulation to the incident laser with the

frequency Ω while the cavity is resonated at ω0, the frequency components

of ω0, ω0 −Ω and ω0 −Ω show up. The carrier light with the frequency ω0

passes through the cavity without any optical loss while the sidebands are

attenuated since those are off resonance with the phase difference of Ω.

Figure 3.9: A conceptual scheme of the frequency response function tech-

nique with intensity modulation. The detail is described in [39]
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According to the reference [39], in the case of Ω/νFSR ≪ 1, the transfer

function for the sideband is given by

H IM(Ω) =

(
T

1−R

)2 1

1 + i(2Ω/∆ω)
, (3.3.1)

where ∆ω is a linewidth of the cavity in FWHM. From equation (3.3.1),

the gain and the phase delay are written as

|H IM(Ω)| =
(

T

1−R

)2 1√
1 + (2Ω/∆ω)2

, (3.3.2)

arg[H IM(Ω)] = tan−1(2Ω/∆ω). (3.3.3)

The cavity behaves as a first-order low pass filter for the small frequency Ω.

We can obtain the linewidth by measuring the intensity of the sidebands as

a function of Ω; the finesse can be obtained from equation (2.2.21) with the

free spectral range of the cavity. The advantage of this technique is that

finesse can be measured while keeping the cavity on resonance.
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Development of a high finesse

feedback-free optical cavity

The development of a feedback-free optical cavity was carried out with

two steps of strategy. Firstly, the feedback-free cavity with low finesse

cavity was constructed to verify the self-resonating mechanism. Secondly,

an optical cavity with high finesse and narrow linewidth was constructed

and its operation was demonstrated.

4.1 Laser storage with a low finesse optical

cavity

4.1.1 Construction of a feedback-free optical cavity

At the first, we constructed a feedback-free optical cavity with relatively

low finesse. The optical setup of the feedback-free cavity is shown in figure

4.1. An optical amplifier consisted of a ytterbium-doped single mode fiber

(YDF) with the mode field of 4.4 µm in diameter and 38 cm long. The

amplifier was excited by a forward pumping light delivered from a stabilized

laser diode (LD) via a wavelength division multiplexer coupler (WDM). The

central wavelength of the pump laser was 976 nm and its maximum power

was 330 mW. Here the amplifier had a wide gain bandwidth of about 50 nm

with the gain maximum at 1034 nm. A polarization-independent Faraday
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Figure 4.1: A schematic diagram of the feedback-free cavity with the low

finesse cavity. The detail is in the main text.

Figure 4.2: A photograph of the low finesse cavity. Two cavity mirrors

mounted on kinematic mirror holders. The left-side holder has a PZT

actuator.

isolator (FI) was inserted to determine the direction of propagation of the

laser light. Two fused couplers with the brunching ratio of 99:1 (Coupler1,

2) were inserted to measure the laser power using photo-diode detectors

(PD1, 2). Optical fibers used in this system were single mode fiber and

both ends were connected to the free-space via collimator/couplers (FC1,

2). A polarizing beamsplitter (PBS) made linear polarization in the free-

space. A half-wave plate (HWP) was placed to correct the direction of the

polarization. The power of the laser light in the cavity was monitored with

detectors (PD3, 4, 5) by sampling a part of light using pellicle mirrors.

The optical cavity consisted of concave mirrors which had the effective

reflectivity of R = 99.16 ± 0.04 % and kinematic mirror holders as shown

in figure 4.2. The free spectral range and the finesse were νFSR = 694.4 ±
6.4 MHz and F = 375 ± 17, respectively. The cavity was mode-matched
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to a fundamental mode of from/to the optical fibers by matching lens (L1,

2) with the coupling efficiency of more than 90 %. An etalon type band

pass filter (BPF) of typical center wavelength of 1064 nm was inserted

for selecting the oscillation wavelength. Its center wavelength was able

to be adjustable by tilting the BPF. All of experimental components was

constructed on a vibration removal board in the air. The room temperature

was maintained at 23.8 ± 0.5 ◦C during the experiment.

4.1.2 Laser oscillation and its behavior

Figure 4.3: The measured laser light power as a function of the pump power.

The feedback-free cavity was laser oscillated with the threshold pump power

of about 45 mW.

Figure 4.3 shows the light power Ploop measured at Coupler1 and Cou-

pler2 as a function of the pump power Pp applied by the laser diode, where

the measured power was corrected by the brunching ratio of samplers. We

observed continuous laser oscillation with a certain threshold of the pump

power Pth. The data fitted with a linear function of

Ploop = ηs(Pp − Pth), (4.1.1)

where ηs is the slope efficiency. The obtained parameters were

ηC1
s = 0.599± 0.001, PC1

th = 45± 2 mW,

ηC2
s = 0.183± 0.001, PC2

th = 46± 3 mW,
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Figure 4.4: Measured laser spectra with several pump power conditions.

The lasing wavelength was mainly defined by the band pass filter having

the center wavelength of about 1064 nm.

where indices of C1, C2 mean measured points of Coupler1 or Coupler2.

Since ηC2
s /ηC1

s = −5.1 dB and the optical loss of the isolator (FI) was

typically 1.3 dB, the total optical losses except for the loss in YDF was

estimated as 6.4 dB.

Figure 4.4 shows laser spectra measured at Coupler1 by a spectrometer

(HR 2000+, Ocean Optics, Inc.) with the spectrum resolution of about 0.1

nm in FWHM. What shown at the upper-left of each pictures is the driving

current to LD and the corresponding pump power. The central wavelength

of the laser light was stable at 1066 nm up to the pump power of 182 mW,

and it shifted to lower wavelength of around 1064 nm by increasing the

pump power. At the pump power more than 200 mW, the lasing wavelength

was mode-hopping frequently with a variation range of about 1 nm.

4.1.3 Relaxation oscillations

Figure 4.5a shows a typical time variation of the laser intensity measured at

the PD2. The spiking and the damping oscillation were observed. Figure

4.5b shows power spectra of the light intensity measured by a FFT (Fast
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(a)
(b)

Figure 4.5: (a) A typical time response of the laser intensity measured

at PD2. There were spiking intensity changes with damping oscillations.

(b) Measured power spectra of the intensity by FFT analyzer. Each peak

indicated the frequency of relaxation oscillations.

Fourier Transform) analyzer. Each colored line corresponds to different

conditions of the pump power. Peaks at tens of kHz are corresponded

to the relaxation oscillation frequencies ωro which had also been observed

in the temporal measurement. It is found that the peak frequency shifted

toward higher frequency as increasing the pump power. In generally, a YDF

laser oscillator acts as quasi three-level laser system, however, we were able

to treat the observed relaxation oscillations in the four-level laser system

since the YDF laser behaves as almost the four-level laser system in the

case of the lasing wavelength being about 1064 nm as described in [40].

Thus, the observed relaxation oscillations was able to be analyzed by the

expression (2.3.25) introduced in the previous chapter.

We defined the observed peak frequencies in figure 4.5b as fm(r). The

square of those, f 2
m(r), were plotted as a function of (r − 1) as shown in

figure 4.6, where the red line indicates the fitting function given by

y = ax, (4.1.2)
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Figure 4.6: The square of measured damping oscillation frequencies and

the fitting function of (ωn/2π)2.

where

y ≡ ω2
ro

(2π)2
∼ ω2

n

(2π)2
,

x ≡ r − 1,

a ≡ γ2γL
(2π)2

,

ωro is the angular frequency of the damping oscillation and defined from

equation (2.3.28), ωn is the natural angular frequency defined from equation

(2.3.26), and approximation is came from the relation ζ2 ≪ 1. The γ2 was

about 1 kHz by assuming a typical fluorescence lifetime of the YDF, τ2 = 1

ms. From equation (2.3.27), therefore, ζ2 was

ζ2 =

(
rγ2
2ωn

)2

=

(
2πrγ2
2fm(r)

)2

∼
(

1 kHz

O(10) kHz

)2

≪ 1. (4.1.3)

The intra-loop loss on the oscillator was αloop = −6.4 dB (= 0.229) as

described above section. And the decay time constant of the cavity was

calculated as τc = Fl/πc = 85.9 ns. This time constant was larger than

the round-trip pass time in the oscillator, τL, which was defined by the

sum of the optical length of the fiber and the free-space except the cavity.

Therefore, we were be able to consider γc to be the same as γL in equation

(2.3.15) and the decay rate was estimated as γL =17.2 MHz. As a result

of performing the fit with τ2 as a free parameter, τ2 = 0.54 ± 0.02 kHz

was obtained, where the error is a fitting error. This result shows that the
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estimated fluorescence lifetime was 1.9 ms and that is consistent with the

typical fluorescence lifetime of the YDF, 1 ms.

4.1.4 Evaluation of performances of the cavity

Figure 4.7: Distributions of the measured light power around the cavity.

The laser power balance around the cavity was measured in order to

evaluate the performance of the feedback-free cavity with low finesse. Fig-

ure 4.7 shows distributions of the power measured at PD3, PD4 and PD5,

which correspond to incident, reflected and transmitted laser power, re-

spectively. The power distributions had several peaks indicating that the

resonant condition was changing while the system kept the resonance. This

power fluctuation was consistent with the mode-hopping behave observed

in the laser spectrum. Figure 4.8 shows average powers after correcting the

sampling efficiencies of optical samplers at PD3, 4 and 5. The incident,

reflected and transmitted power were Pin = 65.4 mW, Pre = 11.0 mW and

Ptr = 50.4 mW, respectively.
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Figure 4.8: The obtained power balance of the intra-loop light around the

cavity.

With the effective reflectivity of the cavity mirrors and the obtained

average powers around the cavity, the effective transmittance T and the

loss A = 1 − R − T of the mirror were calculated by using the relation in

figure 2.9:

T = 0.80± 0.04 %,

A = 0.04± 0.06 %,

here, the coupling efficiency caused by the difference of the spacial mode

between the cavity and the incident light was neglected. As a result, the

power enhancement factor of the cavity was obtained as

G =
2Ptr/T

Pin
=

2T

(1−R)2
= 229± 24.

The error came from the uncertain of the cavity finesse and the power

meter, which had 0.5 % in linearity according to the specification.

The effective power coupling efficiency between the cavity and the inci-

dent light, ηcup, was estimated by calculating the expected incident power

P ex
in from the transmitted power:

P ex
in =

(1−R)2

T 2
Ptr = 55.6 mW.

Therefore,

ηcup = P ex
in /Pin = 85 %.

Since the cavity was well aligned from/to the single mode fibers with the

spacial mode matching efficiency of more than 90 % in the experiment, this

result may indicate that there were some additional optical loss mechanism

originated from the phase difference from the precise resonant condition.
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4.2 Development of the high finesse feedback-

free optical cavity

4.2.1 High finesse optical resonant cavity

We made a high finesse cavity which consists of two ultra-low loss concave

mirrors manufactured by Advanced Thin Films. At first, we measured the

transmittances of two mirrors by using the optical setup shown in figure 4.9.

The expected transmittance was O(10−6), hence the mirrors were mounted

on a light proof tube in order to shield stray light from the environment.

The wavelength of the incident laser light was 1047 nm and the power was

O(10) mW. As a result of the measurement, obtained transmittances, T1

for mirror M1 and T2 for mirror M2, were obtained as

T1 = 4.17± 0.02 ppm,

T2 = 3.77± 0.02 ppm,

where the errors mainly came from the uncertainty of the linearity of the

power meter. The measured transmitted power were O(10) nW and the

background optical power was about a few 100 pW in the measurement.

The effective transmittance was calculated as

T =
√
T1T2 = 3.965± 0.014 ppm.

Next, the finesse of the cavity was measured by using the cavity ring-

down technique. Two mirrors were mounted on a super-inver alloy tube

with holders made of aluminum. The distance between two mirrors was l =

208±1 mm that corresponded to the free spectral range of νFSR = 721.1±3.5

Figure 4.9: A schematic diagram of the transmittance measurement of cav-

ity mirrors. Each power written in figure are the typical measured power.
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(a) (b)

Figure 4.10: (a) The schematic diagram of the finesse measurement by using

the cavity ring-down technique. (b) The measured ring-down signal and a

exponential fitting function.

MHz. Figure 4.10a shows the schematic diagram of the measurement. A

fiber laser oscillator with the center wavelength of 1047 nm was used for the

incident light source. The falling time of the pump laser diode at turning

off was about 10 µs; this decay time did not affect the measurement of the

ring-down signal since it was smaller than the expected decay time constant

of the cavity. By waiting for the timing that the resonance condition was

satisfied accidentally by drift of the cavity length or the laser frequency, the

transmitted power built up and the latch circuit activated, and then the

ring-down signal was obtained.

The measured decay signal with a exponential fitting function is shown

in figure 4.10b. The incident light was turned off at the time indicated

“Switched off” in the figure. From equation (2.2.30), the cavity decay time

constant and the corresponding linewidth were

τc = 142.542± 0.056 µs,

∆ν = 1116.55± 0.44 Hz.

With νFSR and T , the finesse of the cavity, effective reflectivity and effective

loss of the mirrors were obtained as

F = 645, 800± 4, 000,

R = 99.9995135± 0.0000030 %,

A = 0.900± 0.033 ppm.
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These results were consistent with the ones expected by the mirror specifi-

cation.

4.2.2 Construction of a high finesse feedback-free op-

tical cavity

Figure 4.11: A schematic drawing of the optical setup of the feedback-free

cavity using the high finesse cavity. The detail is in main text.

Figure 4.12: A photograph of the cavity and optical components in the free-

space. The cavity consisted of a super-inver alloy tube and two ultra-low

loss mirrors.

Figure 4.11 shows a schematic drawing of the optical setup of the feedback-

free cavity with the high finesse cavity. The setup was almost same as the
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one for the low finesse case. An amplifier consisted of a single mod YDF

of the length of 38 cm and a pump LD. FI1 and 2 are Faraday isolators,

Coupler1 and 2 are fiber couplers to sent a part of circulating light to the

spectrum analyzer, and FC1 and 2 are the fiber collimator and coupler.

HWP and QWP1 are a half wave plate and a quarter wave plate to adjust

the polarization of light coming out from the fiber-space. PBS1 and 2 are

plate type polarized beamsplitters, whose transition and reflection ratio de-

pended on the wavelength as well as the angle of the devise with respect

to the optical axis and acted as low cut-off filters in the system. BPF is

an etalon-type band pass filter whose central wavelength was also able to

adjust. W1 and 2 are wedge plates to sample a part of intra-loop light to

monitor its power. QWP2 and 3 acted as additional optical isolators with

two PBSs. The high finesse cavity was aligned with the fundamental spatial

mode of the laser light coming from the fiber couplers by using matching

lens, L1 and 2.

Figure 4.12 is a photograph of the cavity and optical components on the

optical table. It should be noted that all components were set in the air

with room temperature, in acoustic shielding box.

Laser oscillation with the band pass filter

(a) (b)

Figure 4.13: (a) Observed laser powers as a function of the pump power. (b)

Observed power spectra averaged over 10 seconds. Each center wavelength

was chosen by the band pass filter.
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1046 nm 1047 nm 1048 nm 1049 nm

Threshold power Pth 240 mW 237 mW 220 mW 267 mW

Slop efficiency ηs 0.0117 0.0139 0.0178 0.0117

Table 4.1: Measured threshold powers and slope efficiencies in each chosen

wavelength condition.

Figure 4.14: Observed time variations of the laser powers around the cavity

for 100 seconds. The pump power was set 330 mW.

After adjusting optical components to reduce optical loss and select-

ing the laser wavelength around 1047 nm which is suitable for the gain of

the amplifier, the laser oscillation was observed. Figure 4.13a shows the ob-

served laser power sampled at PD3 as a function of the pump power. Linear

lines are fitting functions for each wavelength chosen by the band pass fil-

ter. The slopes of the functions and the thresholds of the laser oscillation

are summarized in table 4.1. Considering that the gain of the amplifier was

almost same in the wavelength range of a few nm, the difference between

obtained threshold powers can be attributed to the difference of the opti-

cal losses at each chosen wavelength. Furthermore, it is found that those

threshold powers were larger than ones of the low finesse case.

Figure 4.13b shows measured power spectra averaged over 10 seconds
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Figure 4.15: Observed power distributions at the wavelength of 1048 nm.

Black lines are fitting curves and dot lines indicate fitting ranges.

when the pump power was 330 mW. Each spectrum corresponds to the

wavelength chosen by the band pass filter. In a short time-period, each

spectrum had a narrower linewidth of less than 0.008 nm; it was determined

by the resolution of the spectrometer. And the center wavelength was

frequently fluctuating perhaps due to mode hopping, so the linewidth was

narrow, however, the lasing wavelength was not stable. Here, the lower limit

of the lasing wavelength was determined by the cut frequency of PBSs and

the upper limit was determined by the gain-bandwidth of the YDFA.

Figure 4.14 shows time variations of the laser powers around the cavity.

The data was for 100 seconds and the pump power was set 330 mW. The

incident, reflected and transmitted power measured by PD1, 2 and 3 were

corrected for the power sampling ratio of W1 and W2, respectively.

Observed power distributions at the wavelength of 1048 nm were shown

in figure 4.15, where the net input power Pnet was defined by subtracting

the reflected power Pre from the incident power Pin (Pnet = Pin − Pre).

Black lines are fit curves by Gaussian function. The fitting ranges were

chosen to avoid the tails of the distributions as indicated in figures. The

results of the laser power measurements are summarized in table 4.2.
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Light power [mW] 1046 nm 1047 nm 1048 nm 1049 nm

Incident Pin 5.694(2) 6.527(2) 8.794(2) 3.295(3)

Reflected Pre 3.195(1) 3.437(10) 4.159(1) 1.481(1)

Transmitted Ptr 1.069(1) 1.307(1) 1.961(1) 0.7938(8)

Net input P net
in 2.497(2) 3.085(1) 4.633(2) 1.816(2)

Table 4.2: The results of the laser power measurements. Each value is

means values of the fit.

Laser oscillation without the band pass filter

(a) (b)

Figure 4.16: (a) Observed laser power at PD3 as a function of the pump

power in the case of no band pass filter. (b) Observed laser spectrum. The

spectrum shape was stable in long time unlike in the case of with the band

pass filter.

We also constructed the feedback-free cavity without the band pass

filter, and then laser oscillation successfully built up. Figure 4.16a shows

the observed laser power at PD3 as a function of the pump power. The red

line is the fitting line to the data. The threshold power was obtained as

181 mW and the slop efficiency was 0.0318 (in table 4.3b). It is found that

the threshold of the laser oscillation decreased comparing with the case of

laser oscillation with the band pass filter.

Figure 4.16b shows the observed laser spectrum. The center wavelength

was 1047 nm and the linewidth was 1.3 nm in FWHM. The shape of the

spectrum was stable in long time and its linewidth was wider than the one
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Figure 4.17: Observed time variation of the laser power around the cavity

for 100 seconds. The pump power was set 330 mW.

without BPF

Threshold power Pth 181 mW

Slop efficiency ηs 0.0318

(a)

Light power [mW] without BPF

Incident Pin 13.482(1)

Reflected Pre 2.556(1)

Transmitted Ptr 4.758(1)

Net input P net
in 10.916(2)

(b)

Table 4.3: (a) Measured threshold power and slop efficiency in the case of

no band pass filter. (b) Measured intra-loop laser powers around the cavity.

for the spectra when the oscillation with the band pass filter. Figure 4.17

shows the time variation of the laser power around the cavity. The data

was for 100 seconds and the pump power was set 330 mW. It is found that

the laser power was stable and the coupling ratio (reflected power divided

by incident power) was better than the one of the results in the case of with

the band pass filter. Observed power distributions are shown in figure 4.18.

The data were fitted by Gaussian functions (black curves). All distributions

had widths of about 5 % in RMS, that was smaller than the widths of about

10 % in the case of with the band pass filter.

From the measurement results which are summarized in table 4.3b, we

think that the system laser oscillated as continuous multi mode operation;

the stable laser power, relativity large intensity noise and the especially wide

linewidth indicate it. When the band pass filter is inserted in the optical

loop, the build up of some longitudinal modes would be strongly suppressed.
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Figure 4.18: The measured power distributions without the band pass filter.

Black lines are Gaussian fitting functions.

In the case of with the band pass filter described above section, the laser

oscillation would have been forced to operate as single-mode-like (or in a

few number of longitude modes) by the filter, and actually such phenomena

was observed.

Robustness of the laser storage in multi mode operation

In generally, a single mode operated laser is weak against disturbance and

often mode-hops. On the other hand, a laser oscillator in multi mode

operation is great stable in its intensity. Therefore, it is expected that the

feedback-free cavity in multi mode operation (in the case of no band pass

filter) would also have good robustness.

Figure 4.19 shows the display of an oscilloscope which monitored the

laser power from PD3. Since the cavity was laser oscillating in multimode

operation, a certain constant optical power with some intensity noise was

observed. In order to understand its robustness, we hit the cavity body to

stop the laser oscillation. The dip signal in figure 4.19 indicates a moment

that the oscillation stopped, in other words, the resonant condition was

broken. However, the oscillation recovered automatically quickly as shown
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Figure 4.19: (a) The laser power was fell out at the impact, however, recov-

ered soon. (b) The recovery time of 40 ms was consistent with a damping

time of the mechanical vibration.

in figure 4.19 (b); the fall time was about 140 µs which was consistent with

the decay time constant of the cavity, and the recovery time of 40 ms was

consistent with a damping time of the mechanical vibration of the cavity

body. It is clearly evident the feedback-free cavity had the good stability

against external disturbances.

4.2.3 Evaluation of the system performance

The intra-cavity power Pcav and the power enhancement factor G were

evaluated. From the transmittance of the end mirror T2 and the measured

transmitted power Ptr, those were calculated as

Pcav = 2Ptr/T2, (4.2.1)

G = Pcav/Pin, (4.2.2)

where the transmittance was T2 = 3.77±0.02 ppm as introduced in previous

section. The results of the calculation are summarized in table 4.4. Errors

mainly resulted from the linearity uncertainty of the power meter of 0.5 %.

The stored laser power in the multi-mode oscillation was reached 2.52

kW by only 330 mW pump power. And the enhancement factor was also

reached more than 100,000 in all cases of operation. The observed enhance-

ment factor was, however, smaller than the expected ideal value Gid which
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Unit 1046 nm 1047 nm 1048 nm 1049 nm multi mode

Pcav [W] 567(3) 693(4) 1,040(6) 421(2) 2,524(13)

G [×103] 99.6(5) 106.2(6) 118.3(6) 127.8(7) 187.2(10)

Table 4.4: The results of the intra-cavity power and the power enhancement

factor. Each wavelength means the center wavelength chosen by the band

pass filter. The right side results indicates the case of no filter.

can be obtained by considering the ideal resonant condition as introduced

in chapter 2:

Gid =
2T

(1−R)2
∼ 2F

π
= 411, 100± 2, 500. (4.2.3)

It should be noted that the optical loss at the cavity mirror was including

into this estimated ideal factor. The experimental result indicates that the

resonance state of the feedback-free cavity had certain phase difference from

the exact resonant condition.

4.3 Measurement of the frequency response

function

4.3.1 Measurement scheme and setup

We tried to measure the cavity finesse by using the frequency response

measuring technique (see section 3.3.3) while the cavity was laser oscillat-

ing with self-resonating mechanism in the multi mode operation. In order

to modulate the light intensity, we controlled the pump power driving the

YDFA. In general, the pump power modulation affects the population in-

version in the laser medium and causes chaotic behavior in the laser inten-

sity [41] because of the coupling term in two differential equations (2.3.10)

and (2.3.14). To avoid such instability, we had applied sufficiently small

modulation in the pump power (or population inversion). After tuning the

modulation depth by controlling the driving current to the LD, the mod-

ulation depth in the laser intensity was set at about 1 % with respect to
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Figure 4.20: A conceptual diagram of the pump power modulation scheme.

When the depth of the modulation is small enough, this scheme is same as

the intensity modulation technique described in section 3.3.3.

the steady-state laser intensity. Then we were able to treat transmutation

of the modulation signal as a liner equation of the photon density q as like

equation (2.3.25).

Figure 4.20 shows a conceptual diagram of the frequency response func-

tion measurement by using the pump power modulation method. The input

modulation signal u(Ω) of the pump rate r is applied to the closed loop sys-

tem of the photon density q via the transfer function of P (Ω), where the

modulation angular frequency Ω is sufficiently smaller than the free spec-

trum range of the cavity. x(Ω) and y(Ω) corresponds with the incident and

transmitted intensity of laser light. It should be noted that the light payed

attention here is not the total intensity but the sideband component; its op-

tical frequency would be ωc±Ω, where ωc is the center angular frequency of

the laser, and Ω is the modulation angular frequency. H(Ω) is the transfer

function of the cavity and A(Ω) is unknown transfer function. The transfer

function for x/u and y/u can be written as

x

u
= P

A

1− AH
, (4.3.1)

y

u
= P

AH

1− AH
. (4.3.2)

From these equations, we obtain

y

x
=

PAH

PA
= H. (4.3.3)

This relation shows that one can obtain the transfer function H(Ω) by

measuring the response functions of x(Ω) and y(Ω).
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Figure 4.21: A setup drawing of the response function measurement by

using the pump power modulation method.

Figure 4.21 shows the setup drawing of the response function measure-

ment. The feedback-free cavity was laser oscillating in multi mode operation

with pump power of 330 mW. The electrical current driving the pump LD

was modulated by using the sine wave signal generated from a function

generator (FG) with the modulation angular frequency of Ω. The modula-

tion bandwidth was up to 10 kHz (the bandwidth of LD was a few MHz).

The modulation depth was set to become 1 % at low frequency limit in the

laser power. The time variation of the incident power, Pin and the trans-

mitted power Ptr were measured by PDs with an oscilloscope. Observed

time variation of the PD signal was composed of the DC component and

the AC component; the DC corresponded with the steady-state light power

or carrier light power and the AC corresponded with sideband light power.

The AC signals of the incident and transmitted light gave the data sets of

the response of x(Ω) and y(Ω).

4.3.2 Result of the finesse measurement

Figure 4.22 shows the response function of y(f)/x(f). The red line is the

fitting function of a first-order low pass filter expressed as

|H(f)| = η0√
1 + (f/fc)2

, (4.3.4)
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Figure 4.22: Obtained response function of y(f)/x(f). The red line is a

fitting function. The detail is in the main text.

where η0 and fc are fitting parameters. The cut-off frequency fc has the

relation with the resonance linewidth of the cavity:

∆ν = 2fc. (4.3.5)

From this linewidth, we can introduce the effective finesse, Feff , which in-

cludes performance of the self-resonating mechanism. The results of the

measurement and calculation are summarized as below:

η0 = 0.351± 0.002,

fc = 914± 23 Hz,

Feff = 394, 500± 10, 100.

The obtained effective finesse was smaller than the finesse obtained by using

the cavity ring-down technique in section 4.2.1.

4.4 Relaxation oscillations

In the case of the high finesse cavity, it is difficult to observe relaxation

oscillations in the time variation of the light intensity since the long cavity

decay time constant gives the damping ratio ζ close to 1. However, the

natural angular frequency ωn and more parameters in relaxation oscillations

can be measured by modulating photon density or laser intensity in the laser
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oscillator [42]. This frequency-domain measurement was just same as the

measurement described in before section; the desired response of the photon

density ∆q in equation (2.3.25) agrees with the obtained y(f) in figure 4.20.

Figure 4.23 shows the measured data set of y(f) as a function of the

modulation frequency. The red line is a fitting function of the second-order

low pass filter that is written as

F (f) =
K

√√√√√

⎡

⎣1−
(
2πf

ωn

)2
⎤

⎦
2

+

[
2ζ

(
2πf

ωn

)]2
, (4.4.1)

where K is a normalization factor. This fitting function corresponds with

the solution of the damping oscillation, equation (2.3.25). As a result of

the fit, the normalization factor K, the natural angular frequency ωn, and

the damping ratio ζ were obtained as

K = 399± 2,

ωn = 4.96± 0.08 kHz,

ζ = 0.586± 0.009.

With the experimental pump rate

r =
330 mW

181 mW
, (4.4.2)

and equation (2.3.26) and (2.3.27), the decay rates γ2 and γL were calculated

as

γ2 = 3.2 kHz,

γL = 9.4 kHz,

and the inverse of γ2 was

τ2 =
1

γ2
= 0.31 ms.

This obtained decay time constant τ2 is consistent with the magnitude of

the order of the typical fluorescence lifetime of the YDF (∼ 1 ms), however,
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Figure 4.23: Observed response of the transmitted sideband light power,

y(f) as a function of the modulation frequency. The red curve is a fitting

function of the second-order low pass filter.

it is shorter than the result in the case of low finesse (1.9 ms). The decay

rate of the laser cavity γL is expressed by equation (2.3.15),

γL =
− lnαloop

τL
. (4.4.3)

Assuming that the τL is same as the cavity decay time constant, τc ∼ 140

µs, which was the time constant measured by using the cavity ring-down

technique as described before section, the optical loss in the optical loop

αloop was estimated as −5.8 dB.

4.5 Discussion

The experimental results shows that the self-resonating mechanism is ca-

pable of very stable laser storage for high finesse cavities. The obtained

power enhancement factor achieved more than 100,000 and the storage op-

tical power was 2.5 kW with 330 mW pump power. The laser power had

relatively large intensity noise, however the mean of the lasing power was

quite stable. That stability was also shown in measurement results of re-

laxation oscillations (figure 4.23). The photon density in the feedback-free

cavity had vibration isolation against disturbance.

One of the questions to this system is why the cavity finesse was ob-

served to be small in the laser storage or laser oscillation. The finesse is
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originally defined only from the reflectance of the cavity mirror and gives

the enhancement factor of optical power or the interaction length in the

exact resonance condition. On the other hand, the effective finesse was in-

troduced from the enhancement factor of the interaction length, which has

a relation with the decay time constant of the transmitted light. In that

sense, the obtained finesse by using the cavity ring-down technique may

also be better to be called the effective finesse, however, there is difference

between the cavity ring-down technique and the frequency response func-

tion technique. In the later case, the laser light is continually irradiating the

cavity. The time variation of the phase difference in the resonance causes

the Doppler shift on the optical frequency of the intra-cavity light [43, 44].

Without the incident light, there is no effect on the intensity of the trans-

mitted light (ring-down signal), however, the presence of the incident light

field causes some intensity modulation caused by the interference between

the incident and transmitted light (see Appendix B).

In figure 4.21, the instantaneous frequency of the incident light would

have been different from the intra-cavity light since the incident light was

coherent light for the past light in the cavity. It can be presumed that the

inconsistency between the result of the cavity ring-down technique and the

result of the frequency response technique is caused by intensity modulation

due to the interference between incident light and transmitted light. We

could not analyze this matter in more detail in this experiment since the

laser oscillation in multi mode operation gives only the average intensity of

the light of a myriad of longitudinal modes. The same situation occurred

in the case of with the band pass filter since the central lasing wavelength

was frequently mode-hopping.

The result of relaxation oscillations is also measurement which gives in-

formation on the cavity finesse as the decay time constant of a laser cavity

τL. However, as we have seen, the measurement result showed that the

decay rate of the fluorescence γ2 was different from the fluorescence life-

time of a YDF and the result in the low finesse case. Since the fluorescence

lifetime is specific character of the atoms in a YDF, the value does not

change depending on the configuration of the optical setup. According to

reference [40], the YDF laser oscillator operating at the lasing wavelength
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of 1047 nm does not follow the strict four level system. For detailed veri-

fication, we will have to consider other models of relaxation oscillations in

quasi-three level systems. Furthermore, it will be necessary to improve the

experimental accuracy: change of the lasing wavelength, use of other cavity

finesses, use of different laser medium, etc.
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Conclusion

We successfully demonstrated the highly stable operation of a feedback-free

optical cavity with the self-resonating mechanism. In this work, the highly

stable operation with the effective finesse of 394, 000 ± 10, 000, which is

two orders of magnitude higher than our previous study [17], was achieved.

The stored power in the cavity was 2.52 ± 0.13 kW with stability of 1.7

% and the power enhancement factor of the cavity was 187, 000 ± 1, 000.

The results showed a scheme to overcome an issue to construct a high

finesse optical resonant cavity since required precision for the cavity length

to stabilize the cavity with this effective finesse and the power stability

is about 0.16 pm, which could only been achieved with a sophisticated

feedback control system. The system showed a continuous operation of

more than two hours with the power fluctuation of 1.7 %, showing high

robustness against environmental disturbances.

This study showed the possibility of realizing a high finesse cavity with-

out a sophisticated active feedback system. It is highly useful for applica-

tions, such as photon sources by laser Compton scattering, cavity enhanced

absorption spectroscopy (CEAS) [46–48] or the measurement of vacuum

magnetic birefringence [49, 50]. In later two applications, highly large en-

hancement of the optical interaction length is strongly required, however,

the narrow laser linewidth is not required. In particular, we can directly

apply the cavity ring-down technique or the response function technique to

the CEAS since it obtains information from the change of finesse by trace
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elements, independent of the power stability.

For the practical use for the photon sources by laser Compton scat-

tering, the mode-locked laser oscillation is necessary to obtain the desired

peak power density. We are currently pursuing the realization of the mode-

locking in a feedback-free cavity. Issues such as the development of optical

components that will be durable for high-power transport and storage, par-

ticularly high-damage threshold mirrors, have yet to be overcome but are

expected to be developed in optics communities, once the usefulness of this

technique is successfully demonstrated.
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A.1 Optical ray matrices

According to the Farmer’s law, light passes through arbitrary two positions

with minimum travel time as an optical ray. The ray is written by an optical

ray vector R with the transverse position r and the divergence angle r′ with

regard to an optical axis:

R =

(
r

r′

)
. (A.1.1)

Consider an incident ray vector Rin enters an optical system and the cor-

responding output ray vector Rout exits the system, the optical system can

be expressed by a 2× 2 matrix:

Rout =

(
A B

C D

)
Rin, (A.1.2)

where A,B,C,D are matrix elements. This matrix is called as the ray

matrix and its matrix elements depends on each optical component; for

free propagation of distance d, the ray matrix is given by

D =

(
1 d

0 1

)
; (A.1.3)

for focus or defocus the rays by using a lens with a focal length of f , the

ray matrix is given by

F =

(
1 0

−1/f 1

)
. (A.1.4)
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Figure A.1: The equivalent lens guide optical system with regard to a

Fabry-Pérot cavity. The box shows a component of the one round-trip

propagation.

We can express a two-mirror optical resonant cavity (Fabry-Pérot cav-

ity) as the periodic sequence of lens guide optical system using above ray

matrixes of D and F . Figure A.1 shows the conceptual diagram of it, where

ρ1,2 are the curvature radii of each mirror, l is the distance between two

mirrors, the cavity length. The ray matrix of a spherical mirror is the same

as the matrix of a lens except that the focal length f is replaced a half of

the curvature radius, f = ρ/2 [51]. The light propagation in the cavity will

be given by the infinite product of following one round-trip ray matrix in

the loss less case:

M =

(
1 0

−2/ρ2 1

)(
1 l

0 1

)(
1 0

−2/ρ1 1

)(
1 l

0 1

)
. (A.1.5)

Assuming the symmetric cavity, ρ = ρ1 = ρ2, the minimum spot of the light

beam would be at the center of the cavity. Setting the start position of the

light propagation at that center, one round-trip ray matrix of the cavity in

equation (A.1.5) can be modified as

M ′ =

(
1 l/2

0 1

)(
1 0

−2/ρ 1

)(
1 l

0 1

)(
1 0

−2/ρ 1

)(
1 l/2

0 1

)
. (A.1.6)
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A.2 Gaussian beams

By paraxial approximating the wave equation of electromagnetic waves

around the z axis, which is the optical axis, we obtain the two-dimensional

Schrödinger equation as follows:

∂2u

∂x2
+

∂2u

∂y2
+ 2ik

∂u

∂z
= 0, (A.2.1)

where u is the amplitude of the light field; k = 2π/λ is the wave number of

light, where λ is the wavelength of light. This equation has set of solutions

which is generally called as high-order Gaussian modes; Hermite-Gaussian

modes, Laguerre-Gaussian Modes, and so on [51,52].

Characteristic of the lowest or fundamental mode of solutions of equa-

tion (A.2.1) is the most important to describe the propagation of the parax-

ial optical wave since high-order modes can be derived from the fundamen-

tal mode by utilizing the ladder operator in operator methods [53]. The

normalized form of the fundamental mode is given by [51]

u(r, z) =
w0

w(z)
exp

{
−i[kz − η(z)]− r2

w2(z)
+ i

kr2

2R(z)

}
, (A.2.2)

where

η(z) = tan−1

(
λz

πw0

)
(A.2.3)

is the Guoy phase, w(z) is the radius size where the light field amplitude

becomes 1/e from the optical axis, w0 is its minimum value chosen at z = 0,

and R(z) is the curvature radius of the wavefront of the light beam. w(z)

and R(z) are functions of λ and w0 defined as follows:

w(z) = w0

√

1 +

(
λz

πw2
0

)2

, (A.2.4)

R(z) = z

[
1 +

(
πw2

0

λz

)2
]
. (A.2.5)

The light propagation formed by the fundamental mode, the Gaussian

beam, obeys these functions as shown in figure A.2. The position where the

radius size becomes the minimum w0 is called the beam waist. At the waist,
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Figure A.2: Propagation of the Gaussian beam. An origin of the propaga-

tion direction z is set to the waist position.

the Gaussian beam has infinite wavefront curvature that is a flat wavefront.

Furthermore, at positions far enough apart from Rayleigh range, which is

defined as

zR =
πw2

0

λ
, (A.2.6)

the light beam becomes equal to the spherical wave emitted from the point

light source. The divergence angle θ of the beam is given by

tan θ ∼ θ =
λ

πw0
, (A.2.7)

where approximation of tan holds when θ is sufficiently small.

A.3 Gaussian beam in a Fabry-Pérot cavity

The propagation of the Gaussian beam can track using a ray matrix as well

as geometric rays. The complex beam parameter, q(z), consisting of w(z)

and R(z) is introduced as follows:

1

q(z)
=

1

R(z)
+

2i

kw2(z)
. (A.3.1)

The beam parameter at the waist (z = 0) is given by

q(0) = − iπw2
0

λ
. (A.3.2)

Before and after the Gaussian beam passes through optical system, the

beam parameters change as follows [51]:

qout =
qinA+B

qinC +D
, (A.3.3)
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Figure A.3: Plots of the minimum focal spot size w0 as a function of the

curvature radius ρ with the fixed cavity length (left side) and a function of

the the cavity length l with the fixed curvature radius (right side).

where qin,out are beam parameters of the incident and output beam, and

A,B,C,D are matrix elements of this system.

Let’s consider the propagation of the Gaussian beam in a symmetric

Fabry-Pérot cavity. The stable Gaussian mode of the cavity is obtained

from following self-consistent relation:

q =
Aq +B

Cq +D
. (A.3.4)

Taking into account the the condition on the determinant, AD − BC = 1,

solution of this equation for 1/q is

1

q
=

D − A

2B
± i

√
4− (D + A)2

2B
. (A.3.5)

Thus, mode shape on reference plane is obtained as

R =
2B

D − A
, (A.3.6)

w2 =
2λ|B|

π
√
4− (D + A)2

. (A.3.7)

Substituting the one round-trip matrix (A.1.6) into equation (A.3.7), we

obtain the minimum focal spot size of the Gaussian beam in the symmetric

Fabry-Pérot cavity. (Note that the wavefront is flat since it is the waist of
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the Gaussian beam.) Figure A.3 shows the the minimum focal spot size w0

as a function of the curvature radius ρ with the fixed cavity length (left side)

and a function of the the cavity length l with the fixed curvature radius

(right side). Here, the wavelength of light, curvature radius and cavity

length are chosen 1047 nm, 0.5 m and 0.208 m, respectively. It is found

that the spot size can be reduced by bringing the cavity length closer to

twice of the curvature radius, however, the cavity cannot confine the light

when the curvature radius is smaller than a half of the cavity length. Hence,

the achievable focusing size will be limited by the geometric accuracy of the

cavity.
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B.1 Dynamic characteristics of a Fabry-Pérot

cavity

Consider a Fabry-Perot cavity composed of two mirrors, and its light fields

as shown in figure B.1. Suppose a is the position of the input mirror surface

and b is the position of the end mirror surface, and b changes over time with

respect to a; the position of b from an origin x = 0 is x = x′(t). L is the

initial cavity length which is larger than the variation x′(t)− L of the end

mirror. The time interval required for the light to make one round-trip in

the cavity is given by

T =
2L

c
. (B.1.1)

Let the light entering the cavity be a continuous monochromatic plane

wave with the frequency of ω and the amplitude of Ein. Here, the initial

Figure B.1: A Fabry-Perot cavity and its light field. The position of the

end mirror b changes over time with respect to a.
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cavity length L is an integral multiple of the wavelength of the incident

light and it satisfies the following resonance condition:

exp (−iωT ) = exp (−2ikL) = 1, (B.1.2)

where k = ω/c is the wave number, and c is the speed of light. The

forward electric field Ef and the backward electric field Eb within the cavity

immediately after the input mirror surface a are given by [43]

Eb(t) = −rbEf (t− T ) exp [−2ikx(t− T/2)], (B.1.3)

Ef (t) = taEin − raEb(t), (B.1.4)

where ra, rb are reflection coefficients of the input (a) and end (b) mirrors,

and ta, tb are transmission coefficients of those; x(t) is the variation of b

from the initial cavity length L:

x(t) = x′(t)− L. (B.1.5)

The exponential part on the right side of equation (B.1.3) represents the

phase change given by the end mirror after the intra-cavity light travels one

round-trip in the cavity. Summarizing two equations (B.1.4) and (B.1.4),

we obtained the expression for Ef as

Ef (t) = taEin + rarbEf (t− T ) exp [−2ikx(t− T/2)], (B.1.6)

and the expression for Eb as

Eb(t) = [−tarbEin + rarbEb(t− T )] exp [−2ikx(t− T/2)]. (B.1.7)

Differential equations of intra-cavity fields

Assuming that the velocity of the end mirror surface b is constant v:

x(t) = vt. (B.1.8)

When the finesse is sufficiently high, the magnitude of the electric field

inside the cavity does not change significantly in the interval T . Thus, we
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can treat the interval T as a fraction of time, dt, and we can obtain the

differential equation of Ef as follows [43]:

dEf (t)

dt
∼ Ef (t+ T )− Ef (t)

T

=
taEin

T
+ (rarb exp [−2ikv(t+ T/2)]− 1)

Ef (t)

T
. (B.1.9)

Since the change in position of the mirror surface b while going through the

cavity’s resonance point is sufficiently smaller than the cavity length L, the

phase change of the electric field given by b can be approximated as follows:

exp [−2ikvt] ∼ 1− 2ikvt. (B.1.10)

Substituting this in equation (B.1.9) and eliminating the phase offset, we

obtain the following linear differential equation:

dEf (t)

dt
∼ taEin

T
+

[
rarb − 1

T
− 2irarbkv

T
t

]
Ef (t). (B.1.11)

Similarly for Eb, we obtain

dEb(t)

dt
∼ −tarbEin

T
exp [−2ikv(t+ T/2)]

+ (rarb exp [−2ikv(t+ T/2)]− 1)
Eb(t)

T

∼ −tarbEin

T
+

2itarbkv

T
Eint

+

[
rarb − 1

T
− 2irarbkv

T
t

]
Eb(t). (B.1.12)

Calculation examples

The transmitted field Etr and reflected field Ere from the cavity are given

by

Etr(t) = tbEf (t− T/2), (B.1.13)

Ere(t) = raEin + taEb(t). (B.1.14)

Figure B.2 and figure B.3 show plots of the transmitted and reflected light

intensities ,I(t) = E(t)E∗(t), calculated with several values of v, where the
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Figure B.2: Red line: transmitted light intensity, blue line: return light

intensity. Only one response peak is observed when the mirror speed is

slow.

Figure B.3: Red line: transmitted light intensity, blue line: return light

intensity. The scales on the horizontal axis are same. Peaks are tilted and

the ringing appears at foots of the peaks.

initial cavity length is L = 1.68 m, the wavelength is λ = 1064 nm, the

reflectivity of the cavity mirrors is R = 0.9999, and the transmittance is

T = 1−R; the incident amplitude is set to Ein = 1.

With the small mirror velocity v, the intensities behave like figure 2.7

and figure 2.8 (see figure B.2). As the velocity gets bigger, the peak is tilted

and the ringing starts to appear at the foot of the peak (see figure B.3).

Furthermore, it is found that the peak intensity in the transmitted light

decreases, and the peak intensity in the reflected light is larger than the

incident light intensity.

B.2 Finesse measurement by ringing effects

When the cavity length of a Fabry-Pérot cavity is swept with slow change

rate, the symmetrical resonant peaks of the intensity of transmitted light as
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Figure B.4: A result of the finesse measurement with the ringing effect

technique. The detail is in the main text.

shown in figure 2.7 are observed. However, when the velocity of the change

is quick, the transmitted light exhibits different behavior, depending on the

velocity of the mirror, the cavity finesse and the free spectral range of the

cavity as shown in the previous section. This phenomenon is understood

based on the Doppler effect of the optical frequency in the cavity. The

ringing effect can be employed as an application to measure the cavity

finesse [54]. In this method, the ratio between the first peak power and

the second peak power of the ringing and the time interval ∆t between

two peaks are measured. Then the finesse is obtained as the value of the

variable πc∆t/l at the ratio being e = 2.71 · · · , where c is the speed of light,

l is the cavity length.

With this ringing effect technique, we measured the finesse of a Fabry-

Pérot cavity which consisted of two ultra-low loss mirrors provided by LMA;

those mirrors had the reflectivity of about 99.999 % according to the spec-

ification; the expected finesse and the linewidth were about 300,000 and a

few kHz. In the original technique in [54], the ringings were produced by

sweeping the cavity length by a piezo-electric actuator with various veloc-

ity. In our case, the mirror position was always disturbed by some small

mechanical noise due to the narrow linewidth of the cavity and the peaks

always had the ringings. We were not able to control the velocity of the
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Figure B.5: Observed ring-down signal and the fitting curve.

cavity mirror, however, It was not a problem in this measurement technique.

Figure B.4 shows a result of our measurement. The horizontal axis

indicates ratios between the first peak and the second peak powers of each

ringing. The vertical axis indicates the variable πc∆t/l. The red line is the

fitting line. The obtained finesse was

Frng = 285, 000± 11, 000, (B.2.1)

where error was caused by the fitting error. We also measured the cavity

finesse by the cavity ring-down technique (see section 3.3.1). The observed

ring-down signal and the fitting curve are shown in figure B.5. From this

result, the obtained finesse was

Fcrd = 263, 000± 4, 000. (B.2.2)

It is found that the finesse Frng obtained by using the ringing effects was

consistent with the finesse Fcrd obtained by the cavity ring-down technique.

Since the ringing effect technique can be used with simple experimental

setup, sometimes it would be very effective measuring method especially

for high finesse cavities.
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