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Abstract

This thesis addresses the control problem of designing discrete-time

adaptive output feedback control systems based on passivity, and it inves-

tigates the passivity property in linear systems as well as in non-linear sys-

tems. There are several outcomes to be clarified in terms of successful design

of adaptive output feedback control systems and verification of the proposed

schemes.

The notion of passivity is a fundamental concept in control theory, yet

the use of the term has varied. For linear time-invariant (LTI) systems, strict

passivity is equivalent to strict positive realness (SPR). It is well recognized

that SPR property can be certain to stabilize adaptive control systems based

on the Lyapunov function. Therefore, adaptive algorithms are able to be

built and thus, the performance can be maintained in the presence of either

stationary or non-stationary uncertainties. However, for real-world plants,

they are hard to satisfy the SPR conditions. An alternative concept almost

strict positive realness (ASPR) is emerged, yet the required conditions to be

ASPR are very restrictive. As a result, the parallel feedforward compensator

(PFC) is utilized to alleviate such restrictions. This thesis establishes the

relationship between the PFC and the direct term d which emerges in the

system representation, and the causality problem in discrete-time domain is

addressed as well. Additionally, a problem is concerned in terms of tracking
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property since the steady state error emerges when the PFC is introduced.

The feedforward input is considered to deal with the steady state error,

and this thesis discusses the way of generating feedforward input by only

considering an integral action. Furthermore, the fictitious reference iterative

tuning (FRIT) approach is introduced to optimize the PFC from the practical

perspective. As a consequence, for LTI systems discussed in this thesis, there

are four outcomes. The first one is that the adaptive output feedback control

system is successfully designed; the second one is that the steady state error

is removed by introducing the feedforward input; the third one is that the

low-order and simpler adaptive controller can be designed with the use of

output feedback, and this adaptive controller can handle the system without

priori information; the last one is that the FRIT is succeeded in applying

to the adaptive control system to optimize the PFC. These outcomes are

verified through numerical simulations and experiments, which are discussed

in this thesis.

For non-linear case, the passivity is discussed in designing the adaptive

control system. Since the output feedback is considered, the output feedback

strictly passive (OFSP) is investigated. It is well recognized that adaptive

control systems based on OFSP can achieve asymptotic stability via static

output feedback. However, these conditions are very restrictive. Similarly to

the linear case, the idea of introducing PFC to alleviate those restrictions;

and the steady state error is removed through the use of feedforward input.

At present, researchers are yet to examine a data-driven application adaptive

control system based on OFSP. As a consequence, there are two outcomes.

The first one is that the steady state error is removed by adding the feedfor-

ward input; the second one is that the data-driven approach is successful used
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to improve the performance in designing an adaptive control system based

on OFSP. These outcomes are verified through numerical simulations which

demonstrate the effectiveness of the proposed scheme, which is discussed in

this thesis.
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Chapter 1

Introduction

1.1 Research background

Feedback is the key for automatic control that does not rely on hu-

man interference [1]. Generally speaking, the feedback control occurs in

the closed-loop control system, in which the output signals are utilized for

feedback to generate a control input such that the system uncertainties and

effects of disturbance can be reduced. Moreover, from the practical point

of view, considering the control design with a relative simple structure by

only utilizing the available output signal seems much attractive. Therefore,

feedback control has been extensively used and significantly developed in

lots of various systems for the past few decades. However, feedback control

is merely an impressive control structure, based on which a certain control

technique should be applied to deal with sophisticated circumstances.

Adaptive control is based on feedback of signals in a system so as to

effectively handle system uncertainties, and it can also provide systematic,

flexible approaches to compensate the unanticipated changes. Therefore,

adaptive control has been attracting considerable attentions since it appears
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in the 1950’s [2]. A typical adaptive control system consists of a plant to

be controlled, a controller with parameters, and an adaptive law to update

the controller parameters. The controller parameters, in the conventional

methods, can be calculated based on the approximated plant parameters and

assumptions, with which some desired system performances are successfully

achieved. The practical benefits of adaptive control have been documented in

a wide variety of successful industrial applications [5]. In particular, adaptive

control offers significant potential benefits for the process control problems

where the process is hard to be understood and is changed in unpredicted

ways.

Although the impressive achievements of adaptive control design have

been obtained, the stability issue has not been taken into much consideration

[13]. A typical example is the so-called MIT-rule implemented in adaptive

control schemes [19, 20], which has been considered as a clever engineering

idea. However, it ended in failure, since there was not very much knowl-

edge of the theoretical guarantee of stability. This unsuccessful example also

proved that without guaranteeing stability, the performance cannot even be

discussed. The lack of stability of MIT-rule based adaptive control schemes

prompted several researchers to develop tools and techniques for rigorous sta-

bility analysis. The stability analysis has then become the central point in

new developments related to adaptive control. The successful achievements

[6, 7, 8, 9, 10, 11, 12] are mainly based on the Lyapunov’s stability theory.

The Lyapunov’s stability theory was established at the beginning of the 19th

century, yet it was investigated extensively in 1960’s. It can be considered

as tool, especially in modern control, for proving convergence in adaptive

control schemes [3, 4].
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Furthermore, as mentioned earlier, some priori information of unknown

plant are needed in terms of order of the plant or knowledge of the pole-

excess in the plant [13]. Unfortunately, these assumptions or approximation

may be inaccurate or be seldom valid in real-world large systems. A simplied

adaptive control scheme was developed by Sobel et al. [14, 15], Barkana and

Kaufman [16, 17] and Iwai and Mizumot [18], and the stability issue was

analyzed based on the Lyapunov’s stable theory. This approach was influ-

enced by the model reference adaptive control and considered the state as a

element to design an adaptive controller. However, practitioners are also in-

terested in designing an adaptive controller only considering the feedforward

input signal as well as feedback signal. Thus, the adaptive controller can be

implemented potentially in various practical processes.

Additionally, maintaining performance in various operational environ-

ments is an attractive idea for control designers, leading to robustness of

the adaptive control. An adaptive controller is defined to be robust if it

guarantees signals boundedness in the presence of unmodeled dynamics and

bounded disturbances as well as the performance error bounded [4, 21]. It

is natural to arise a question that what kind of controlled plant can be uti-

lized, in which a adaptive controller is employed to compute the right gains

to the right situation such that the performance is obtained while the robust

stability is guaranteed. The answer is that the controlled plant is of passiv-

ity property, and this property has been attracted attentions of engineers in

control fields.
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1.2 Concept of passivity

The notion of passivity originates in electrical circuit theory in which

the circuits are made up of only passive components, for instance resistor,

inductor and capacitor. These circuits are known to be stable and can be

regarded as dynamical systems. The property of passivity itself character-

izes input-output behavior of a dynamical system from energy-based point of

view. In other words, this dynamical system with this property that stores

and dissipates energy supplied by the environment without generating its own

is passive. The passive system has been studied in literatures [22, 23, 24],

the essential result of which is that passive system is stable under certain

conditions. The passivity then has been discussed and applied in numerous

areas such as chemical processes [25], temperature control in buildings [26],

multi-agent systems [27], distributed control systems [28] and large-scale sys-

tems [29]. Furthermore, another area has been well studied in the connection

with the adaptive control [30, 31, 32]. This useful property allows the proof

of stability with adaptive controllers.

The concept of passivity has been widely adopted in the stability anal-

ysis of continuous-time systems. Many stability results have been specially

developed in the series of papers [33, 34, 35]. In fact, the central result in [33]

and [35] could be interpreted as a form of the Kalman-Yacubovitch-Popov

(KYP) Lemma, under appropriate hypotheses. In particular, it is easy to

examine whether a continuous-time system is passive through the use of the

KYP Lemma. The KYP Lemma is a critical link in relating the passivity

and the existence of a Lyapunov function, and hence the stability of a dy-

namical system is assured. This link can be precisely interpreted that by
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using the KYP Lemma, a positive-definite matrix can be determined satis-

fying the Lyapunov function which results in a dynamical system is passive.

The existence of a positive-definite matrix is assured by the KYP Lemma.

Not only in continuous-time but also in discrete-time are there differ-

ent versions of the KYP Lemma. Moreover, a lot of practical processing is

implemented by sampled-data systems. As a result, researchers are focused

on the study of the passivity based on the KYP Lemma in discrete-time in

[36, 37, 39]. A significant idea was proposed in [39], in which there were

two outcomes. One is that the discrete-time version of the KYP Lemma was

proposed. The other one is based on the KYP Lemma, the relative degree of

a system should be zero. In other words, it does not make any sense to study

passivity of discrete-time systems having relative degree non-zero. This is in

sharp contrast with the continuous-time case. The discrete-time systems are

dealt with throughout this thesis.

While passivity is typically applied to general nonlinear systems, this

thesis also focuses on the linear time-invariant (LTI) case. The foundational

relationship is that, for LTI systems, the property of passivity is equivalent to

the property of positive realness. Under technical assumptions, these systems

are Lyapunov stable [40]. In particular, strict passivity (SP) is equivalent to

strict positive realness (SPR). It is should be clear that the plant should be

rigorously called SP, while in LTI systems the input-output transfer function

should be called SPR.

At present, in modern control theory, the state-space representation is

an analytical way to reveal the relationship behind the input and output of

a dynamical system. Therefore, the strict passivity is characterized by some

relations in the form of state-space representation. These relations are called

8



strict passivity condition which seems to be the most useful for successful

proofs of stability using Lyapunov’s stability theory [38]. In other words,

the strict passivity condition required to guarantee the stability of a adap-

tive control system is equivalent to the formulation of basic stabilizability

properties of a plant.

The strict passivity condition allows the guarantee of stability of an

adaptive control; nonetheless, for a certain period of time, the so-called strict

passivity condition has been considered very restrictive and for quite some

time the adaptive control engineers have been trying to drop the condition.

This thesis investigates the way of alleviating the condition by considering

“Parallel Feedforward Compensator (PFC)”, and a discussion regarding PFC

is undertook. Furthermore, a causality problem only appeared in discrete-

time domain is also addressed, and answers are provided both in linear sys-

tems and in nonlinear systems.

1.3 Objectives and overview

As already mentioned in the previous section, the feedback control is

a such attractive structure, and the property of passivity has been studied

both in linear and nonlinear cases. Moreover, the output signal is always

available from the practical point of view. Thus, the objective of this the-

sis is to design an adaptive output feedback control system based on the

passivity for discrete-time linear systems as well as nonlinear systems. The

typical structure of the adaptive output feedback control system is depicted

in Fig. 1.1. The r(k) and y(k) are denoted as the reference signal and the

output of the plant, respectively. Additionally, the output tracking problem

is addressed and discussed in this thesis.
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Figure 1.1: A typical structure of adaptive feedback output control system.

The control problem is to design an adaptive controller based on the

passivity, consideration should be given to strict passivity condition. As it is

aforementioned, the strict passivity condition proposed in [13, 41] seems much

too demanding. However, it has been somewhat alleviated even for non-strict

passive system if there exists a constant output feedback gain (unknown) such

that the resulting closed-loop system is strict passive. Since in this case the

original system is only separated from strict passivity by a simple constant

output feedback, it is called almost strictly passive (ASP), which results in

a new challenge for the researchers. The challenge is that it is unknown for

which systems can satisfy the new conditions. Towards to reducing the new

conditions, the so-called PFC is proposed such that the augmented system

can satisfy the new conditions. As a result, the adaptive output feedback

control system based on the passivity is successfully designed.

The brief overview of what each chapter involves is given as follows.

The Chapter 1 discusses the background regarding feedback control and

adaptive control. In addition, the introduction of passivity and its use to-

wards to the proof of stability to adaptive control are the good basis, on
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which the adaptive controller can be designed safely.

The Chapter 2 addresses a dessign problem of an adaptive output feed-

back control system with a feedforward input. Since the PFC is added to

allow the augmented system to satisfy the ASPR condition in LTI system,

the steady state error appears. Due to this reason, the feedforward input

is introduced to remove the error. The reference signal is utilized as the

feedfoward input instead of signals obtained by a complicated algorithm.

According to the proposed scheme, the structure of the adaptive controller

is not complicated, and it can deal with non-minimum phase systems. Be-

sides, the PFC in the proposed scheme is considered as a constant parameter.

Furthermore, the controller in the this proposed schme is low-order, yet it

can control the real-world applications with high-order degree. The stability

of the proposed scheme is investigated in this chapter. The effectiveness of

the proposed scheme was confirmed by employing in pilot-scale temperature

control system.

The Chapter 3 introduces the fictitious reference iterative tuning (FRIT)

approach which is employed to determine the value of the PFC using one-shot

input/output experimental data directly, without a prior information about

the control system. Since the stability issue has been investigated in the

Chapter 2, the FRIT can be utilized with certainty in the theoretical sense.

This chapter explains how the FRIT approach is applied in designing an

adaptive output feedback control system. The proposed scheme was verified

through a motor application, which demonstrated the effectiveness.

The Chapter 4 is devoted to the passivity in nonlinear system. The

Output Feedback Strictly Passive (OFSP) is proposed for nonlinear system.

The controller in the proposed scheme stabilizes the plant through the use of
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the PFC, and the feedforward input is utilized in the controller to remove the

steady state error. Furthermore, at present, researchers are yet to examine a

data-drive approach in an adaptive control system based on OFSP. Once the

robust stability of the adaptive control system based on OFSP, the adaptive

gains can be updated by the data-driven approach such that the output per-

formance is able to be improved. As a result, there are two outcomes in this

Chapter. The first outcome was that the PFC and feedforward input were

utilized to design the adaptive controller; the second one was that the data-

drive approach succeeded in applying in the adaptive control system based

on OFSP. These outcomes were verified through numerical examples which

demonstrated the effectiveness of the proposed scheme, which is discussed in

this Chapter.

The Chapter 5 concludes the thesis, and outstanding issues are pre-

sented. The future works are discussed in several aspects as well.
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Chapter 2

Design of ASPR-based adaptive
output feedback control system
with feedforward input

2.1 Introduction

This chapter discusses the strict passivity property for linear systems.

The property of strict passivity is equivalent to the property of the strict

positive realness (SPR) for linear time-invariant (LTI) systems. An adap-

tive output feedback control system based on alomst strict positive realness

(ASPR) with feedforward input is presented.

It is well known that SPR property of a closed-loop system can guar-

antee stability in systems with uncertainty [42] and in adaptive control [43]

of linear time-invariant systems. Unfortunately, most real systems are not

inherently SPR. However, to be able to utilize the SPR property, Kaufman et

al. [41] proved that a system called ASPR can be rendered SPR via constant

output feedback gain. Some conditions are imposed for a continuous-time

system to be ASPR in technical literatures [44],[45]. Hence, one can design

a proper adaptive output feedback control system easily if the conditions

are satisfied. However, most real realistic systems do not satisfy those im-
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posed restrictive conditions, which leads the limitation of adaptive output

feedback control applications. The crucial issue, therefore, is to realize inge-

nious methods to alleviate the restrictive conditions. Barkana [45] proposed

a significant idea that a non-ASPR system could be rendered ASPR by intro-

ducing a parallel feedforward compensator (PFC). Thereafter, the feasibility

of adaptive output control to various system was extended, and the success-

ful implementations of this concept for continuous-time systems have been

summarized in [47].

In this chapter, the design of an adaptive output feedback control sys-

tem for the discrete-time domain will be dealt with. Since the majority of

practical processes are implemented by sampled data systems, thus, con-

sidering a control strategy for discrete-time systems becomes an important

issue. The sufficient conditions for a discrete-time ASPR system have been

imposed in [48, 46, 49], and they are summarized as follows: (1) the system

is minimum-phase, (2) the system has a relative degree of 0, and (3) the high

frequency gain of the system is positive. Since most practical systems do not

satisfy these conditions, similarly to a solution in continuous-time systems,

and introduction of PFC can alleviate the restricions. Therefore, an ASPR-

based adaptive output feedback control system in discrete-time domain using

a PFC can be designed and the stability of system is also guaranteed.

It should be emphasized that the ASPR conditions can not be satis-

fied in discrete-time systems unless the system must have nonsingular direct

term. In precise, the relative degree of discrete ASPR system is zero. In other

words, it does not make sense to study the ASPR property of a discrete-time

system without the direct term. As a consequence, the causality problem,

which is not considered in continuous-time system, will appear in such dis-
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crete ASPR systems. The proposed scheme provides a solution by considering

an equivalent controller.

It is important to consider tracking and maintaining a system output

against the reference signal because of requirement of high-quality products

and low cost in most industrial processes [50]. However, by introducing a

PFC, the conventional schemes achieve that the augmented output tracks

the given reference signal but not the output of original systems, which im-

plies there is a steady state error between them. Mizumoto and Fujimoto

[51] presented an adaptive predictive control strategy that the steady state

error can be compensated by employing a feedforward input. The several

other related works [52, 53, 54, 55] were published. The feedforward input is

obtained based on neural networks or generalized predictive control (GPC),

which implies that the control structure is complex, and learning cost is con-

siderable large. Therefore, it might be hard to employ those schemes in the

industrial processes. For the sake of simplicity and implementation in most

industrial processes, the proposed scheme provides a solution that the refer-

ence input is used as feedforward input directly. In precise, the feedforward

input is obtained by only considering an integral action. Additionally, the

system of industrial processes is generally of high-order degree, whereas, they

can be controlled by the low-order controller.

A design scheme of an adaptive output feedback control system with a

feedforward input is proposed in this chapter. According to the proposed

scheme, there are two main outcomes. The first one was the structure of the

adaptive controller was not complicated, and it can deal with non-minimum

phase systems. The entire adaptive control system was assured to be stable.

The second one was that the reference signal was utilized as the feedfoward
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input instead of signals obtained by a complicated algorithm. These two

outcomes were verified through an numerical simulation. In addition to the

simulation, the effectiveness was confirmed by employing in a pilot-scale tem-

perature control system.

This chapter is organized as follows : the problem statement is described

in section 2.2; the design of proposed scheme and stability analysis are pro-

vided in section 2.3; the section 2.4 illustrates an numerical simulation; the

experimental conduction is the main topic of section 2.5, and the section 2.6

concludes this chapter.

Notations. Γ denotes the coefficient contained in the algorithm, and σ

literally means σ-term which is to avoid divergence of the integral gains in

the presence of disturbances. Δv(k) denotes the difference of v(k) and v∗.

‖·‖ expresses the 2-norm. λmin[·] denotes the minimum eigenvalue of a real

matrix.

2.2 Problem statement

Consider the following single-input single-output (SISO) discrete-time

system with state-space, represented as

x(k + 1) = Ax(k) + bu(k) (2.1)

y(k) = cTx(k) (2.2)

ya(k) = cTx(k) + du(k). (2.3)

The original system is considered as strictly proper and expressed by

(2.1) - (2.2), and the augmented system, which is denoted by (2.1) - (2.3),

is proper. x(k) ∈ Rn represents a state vector, and u(k) and y(k) ∈ R
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are input and output of the original system, respectively. ya(k) denotes the

augmented output of the system. It should be noted that as it is stated, the

augmented system is proper, the relative degree of which is 0. In particular,

the following Lemma is given in terms of the relative degree 0.

Lemma 1. Consider the above minimum-phase augmented systemA, b, cT , d

with positive definite d is ASPR, namely it can be stabilize and rendered SPR

via constant output feedback.

The proof of this Lemma can be seen in [46, 39]. A specific proof is given

in Appendix A. As a matter of fact, the augmented system A, b, cT , d can

never be SPR with d = 0, and thus this chapter establish the useful relations

between d and the PFC. Therefore, let us surmise that the system satisfies

the following assumptions.

Assumption 1. There exists a constant PFC d such that the resulting

augmented system (2.1) - (2.3) is ASPR.

Under assumption 1, there exists a static output feedback gain k∗
e > 0,

such that the virtual closed-loop system shown in Fig. 2.1 is SPR. This im-

Figure 2.1: Virtual closed-loop system.

plies that for the above system {A, b, cT , d}, there exists a positive constant

17



k∗
e in the control signal

u(k) = −k∗
e(ya(k)− r(k))

= −k∗
e(c

Tx(k) + du(k)− r(k)) (2.4)

=
−k∗

ec
Tx(k) + k∗

er(k)

1 + dk∗
e

.

Substituting the augmented system (2.1) - (2.3) gives

x(k + 1) = Acx(k) + bcr(k)

ya(k) = CT
c x(k) + dcr(k),

(2.5)

where

Ac = A− k∗
ebc

T

1 + dk∗
e

(2.6)

bc =
bk∗

e

1 + dk∗
e

(2.7)

CT
c =

cT

1 + dk∗
e

(2.8)

dc =
dk∗

e

1 + dk∗
e

. (2.9)

The closed-loop system is strict passive and the augmented system is ASPR.

That is, the augmented system is proper, minimum-phase system with a pos-

itive definite d.

Remark. It has been clarified in [56, 57] that if the system can be stabi-

lized by a static output feedback, the inverse of a stabilizing gain can be

considered to be a PFC. The detail of this clarification is given in Appendix

B. The parameter d, which parallels with the original system, is considered

as the inverse of a stabilizing constant gain from the (2.5). Therefore, in

this chapter, the parameter d can be considered as a constant PFC without

dynamic parts.

The block diagram of an adaptive output feedback control system with

feedforward input is shown in Fig. 2.2. The following assumption is given as
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follows.

Assumption 2. There exists an ideal input v∗(k) and ideal state x∗(k)

Figure 2.2: Adaptive output feedback control with feedforward input.

such that the output of original plant tracks the given reference signal r(k),

under which situation the error included in ue(k) ends being zero; therefore,

ue(k) ends up with 0. Thus, the following equations hold.

x∗(k + 1) = Ax∗(k) + bv∗(k)

y∗(k) = cTx∗(k) + due(k)

= cTx∗(k) = r(k).

(2.10)

It should be noted that there must be a proper constant d that can achieve the

perfect tracking. The ideal state of the augmented system can be represented

by

x∗(k + 1) = Ax∗(k) + bv∗(k)

y∗a(k) = cTx∗(k) = r(k).
(2.11)

The objective in this chapter is to design the adaptive output feedback control

system by using a proper constant d, and the feedforward input is considered

as well.
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2.3 Design of the proposed scheme

This section will contain two main parts: the state error analysis of

the system is first considered, and stability analysis is stated in the second

subsection.

2.3.1 Controller structure and error system

The implemented adaptive controller is described as

u(k) = ue(k) + v(k). (2.12)

That is

u(k) = −ke(k)ea(k)− kr(k)r(k), (2.13)

where

ea(k) = ya(k)− r(k), (2.14)

and the adaptive gains are given by the following algorithm

ke(k) = ke(k − 1)− Γee
2
a(k)− σeke(k) (2.15)

kr(k) = kr(k − 1)− Γrea(k)r(k)− σrkr(k), (2.16)

in which Γe,Γr, σe, and σr are positive constant.

Since the direct term exists in a discrete ASPR augmented system, the

control signal (4.16) can not be applied directly because of the causality

problem [58]. Thus, the equivalent output feedback control signal is obtained
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by

ue(k) = −ke(k)ea(k)

= −ke(k)(c
Tx(k) + due(k)− cTx∗(k))

= −ke(k)
cTex(k)

1 + dke(k)

= −ke(k)
e(k)

1 + dke(k)

(2.17)

with e(k) = cTex(k) and ex(k) is defined as x(k)− x∗(k).

The state error system between the proposed system and the ideal sys-

tem can be obtained as follows:

ex(k + 1) = Aex(k) + b{ue(k) + Δv(k)}

= Aex(k) + b

{
ue(k) + Δv(k) +

k∗
ee(k)

1 + dk∗
e

− k∗
ee(k)

1 + dk∗
e

+
k∗
ee(k)

1 + dke
− k∗

ee(k)

1 + dke

}
= Acex(k) + b {ũ(k) + Δv(k) + ud(k)}

where ud(k) =
k∗
ee(k)

1 + dk∗
e

− k∗
ee(k)

1 + dke(k)
, Δv(k) = v(k) − v∗(k), and ũ(k) =

Δke(k)e(k)

1 + dke(k)
with the definition k̃e(k) = k∗

e − ke(k).

Thus, the state error system can be represented by

ex(k + 1) = Acex(k) + b(ũ(k) + Δv(k) + ud(k))

ea(k) = CT
c ex(k) + d(ũ(k) + ud(k)).

(2.18)

2.3.2 Stability analysis

From the assumptions stated in the preceding section, there exists a

positive definite matrices P = P T > 0, Q = QT > 0, a vector l and a positive

constant w such that the following Kalman-Yakubovich-Popov Lemma (KYP
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Lemma) is satisfied.

AT
c PAc − P = −Q− llT

AT
c Pb = Cc − lw

bTPb = 2d− w2

(2.19)

The following positive definite function V (k) is considered.

V (k) = V1(k) + (1 + σe)
−1V2(k) + (1 + σr)

−1V3(k),

and every term is defined as

V1(k) = ex(k)
TPex(k)

V2(k) = Γ−1
e k̃e

2
(k)

V3(k) = Γ−1
r k̃r

2
(k).

Thus, ΔV1(k) can be evaluated by the following equation.

ΔV1(k) = eT
x(k + 1)Pex(k + 1)− eT

x(k)Pex(k)

= [Acex(k) + b(ũ(k) + Δv(k) + ud(k))]
TP

×[Acex(k) + b(ũ(k) + Δv(k) + ud(k))]

−eT
x(k)Pex(k)

= eT
x(k)A

T
c PAcex(k) + eT

x(k)A
T
c Pb

×(ũ(k) + Δv(k) + ud(k))

+(ũ(k) + Δv(k) + ud(k))b
TPAcex(k)

+(ũ(k) + Δv(k) + ud(k))b
TPb (2.20)

×(ũ(k) + Δv(k) + ud(k))− eT
x(k)Pex(k).
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From KYP Lemma, it follows that

ΔV1(k) = −eT
x(k)Qex(k)− eT

x(k)ll
Tex(k) + eT

x(k)Cc

×(ũ(k) + Δv(k) + ud(k))

−eT
x(k)lw(ũ(k) + Δv(k) + ud(k))

+(ũ(k) + Δv(k) + ud(k))C
T
c ex(k)

−(ũ(k) + Δv(k) + ud(k))lwex(k)

+2d(ũ(k) + Δv(k) + ud(k))
2

−(ũ(k) + Δv(k) + ud(k))
2w2. (2.21)

After some algebraic calculations, it yields

ΔV1(k) = −eT
x(k)Qex(k)

−(eT
x(k)l− (ũ(k) + Δv(k) + ud(k)))

2

+2(ũ(k) + Δv(k) + ud(k))

×[ea(k)− d(ũ(k) + Δv(k))]

+2d(ũ(k) + Δv(k) + ud(k))
2. (2.22)

Finally, ΔV1(k) can be evaluated by

ΔV1(k) ≤ −eT
x(k)Qex(k) + (ũ(k) + Δv(k) + ud(k))

×(2ea(k) + dΔv(k)). (2.23)

Here, taking into account that e(k) = cTex(k), and for an appropriate con-

stant ρi > 0

ũ(k)Δv(k) =
k̃e(k)k̃r(k)r(k)e(k)

1 + dke(k)

≤ ρ1|k̃r(k)|‖ex(k)‖ (2.24)
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from the fact that
k̃e(k)r(k)

1 + dke(k)
is bounded, and then,

Δv2(k) = k̃r
2
(k)r2(k) ≤ −ρ2|k̃r(k)|2 (2.25)

ud(k)Δv(k) ≤ ρ3|k̃r(k)|‖ex(k)‖ (2.26)

2ũea(k) =
2k̃e(k)ea(k)

1 + dke(k)
=

2k̃e(k)e
2(k)

(1 + dke(k))2
(2.27)

2Δvea(k) =
2k̃r(k)r(k)e(k)

1 + dke(k)
(2.28)

2ea(k)ud(k) =
2e(k)

1 + dke(k)

(
k∗
ee(k)

1 + dk∗
e

− k∗
ee(k)

1 + dke

)
(2.29)

For equation (2.29), if k∗
e > ke(k), 2ea(k)ud(k) < 0 and if k∗

e ≤ ke(k), (2.29)

becomes

2ea(k)ud(k) ≤ 2e(k)

1 + dk∗
e(k)

(
k∗
ee(k)

1 + dk∗
e

− k∗
ee(k)

1 + dke

)
. (2.30)

If the
2

d
‖C‖ < λmin[Q], the following inequality can be obtained.

−eT
x(k)Qex(k) + 2ea(k)ud(k) ≤ −eT

x(k)Qex(k)

+
2k∗

ee
2(k)

(1 + dk∗
e)

2

≤ −ρ4‖ex(k)‖2. (2.31)

Consider the adaptive gain algorithm (4.18),

ke(k) = ke(k − 1)− Γe
e2(k)

(1 + dke(k))2
− σeke(k). (2.32)

Then

(1 + σe)ke(k) = ke(k − 1)− Γe
e2(k)

(1 + dke(k))2
. (2.33)

Define k̃e(k − 1) = ke(k − 1)− k∗
e and thus,

k̃e(k − 1) = (1 + σe)k̃e(k) + σek
∗
e + Γe

e2(k)

(1 + dke(k))2
.

(2.34)
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Therefore,

ΔV2(k) = −2σeΓ
−1
e k̃e

2
(k)− Γ−1

e σ2
e k̃e

2
(k)−

2(1 + σe)
k̃e(k)e

2(k)

(1 + dke(k))2
− Γ−1

e (σek
∗
e)

2

−Γ−1
e

(
Γe

e2(k)

(1 + dke(k))2

)2

− 2σe(1 + σe)

Γ−1
e k̃e(k)k

∗
e − 2

σek
∗
ee

2(k)

(1 + dke(k))2

≤ −2σeΓ
−1
e k̃e

2
(k)− 2(1 + σe)

k̃e(k)e
2(k)

(1 + dke(k))2

+2σe(1 + σe)Γ
−1
e |k̃e(k)|k∗

e . (2.35)

It is similar for kr(k) and ΔV3(k). Setting

kr(k) = kr(k − 1)− Γr
r(k)e(k)

1 + dke(k)
− σrkr(k), (2.36)

then ΔV3(k) gives

ΔV3(k) ≤ −2σrΓ
−1
r k̃r

2
(k)− 2(1 + σr)

k̃r(k)r(k)e(k)

1 + dke(k)

+2σr(1 + σr)Γ
−1
r |k̃r(k)|k∗

e . (2.37)

Therefore,
1

1 + σe

ΔV2(k) and
1

1 + σr

ΔV3(k) become

1

1 + σe

ΔV2(k) ≤ −2

1 + σe

σeΓ
−1
e k̃e

2
(k)

− 2k̃e(k)e
2(k)

(1 + dke(k))2

+2σeΓ
−1
e k∗

e |k̃r(k)| (2.38)

and

1

1 + σr

ΔV3(k) ≤ −2

1 + σr

σrΓ
−1
r k̃r

2
(k)

−2k̃e(k)e(k)r(k)

1 + dke(k)

+2σrΓ
−1
r k∗

e |k̃r(k)|. (2.39)
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Eventually, ΔV (k) can be evaluated by

ΔV (k) ≤ dρ1|k̃r(k)|‖ex(k)‖+ dρ3|k̃r(k)|‖ex(k)‖

−dρ2|k̃r(k)|2 − ρ4‖ex(k)‖2

−2σeΓ
−1
e

1 + σe

k̃e
2
(k) + 2σeΓ

−1
e k∗

e |k̃e(k)|

−2σrΓ
−1
r

1 + σr

k̃r
2
(k) + 2σrΓ

−1
r k∗

e |k̃r(k)|. (2.40)

The appropriate constants δ1, δ2, and δ3 are introduced such that

ΔV (k) ≤ −(ρ4 − δ21)‖ex(k)‖2 −
(
dρ2 − (dρ1 + dρ3)

2

4δ21

)

×|k̃r(k)|2 −
(
2σeΓ

−1
e

1 + σe

− δ22

)
|k̃e(k)|2

−
(
2σrΓ

−1
r

1 + σr

− δ23

)
|k̃r(k)|2

+
(σeΓ

−1
e )2

δ22
+

(σrΓ
−1
r )2

δ23
. (2.41)

It is easy to conclude that V (k) satisfies the following inequality.

ΔV (k) ≤ −αV (k) +R, α,R > 0. (2.42)

The proper Γ, δ can be found to make α, R be positive. In conclusion,

all the signals in the proposed adaptive control system were found to be

bounded. Thus, for the above adaptive control system with aforementioned

assumptions and controller, the following theorem holds.

Theorem: Under the assumptions 1 and 2, the use of control input (4.16)

with the adaptive algorithm (4.18) - (4.19) will guaranteed the ultimate

boundedness of all signals.

The above theorem clarifies the assumptions 1 and 2 can be satisfied,

and, hence, the constant d exists to render the augmented system ASPR.
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2.4 Numerical simulation

The effectiveness of the proposed method is examined by performing a

numerical simulation.

The following second-order non-minimum phase controlled system is

considered.

G(z) =
z + 1.1

z2 − 0.95z
(2.43)

It is easy to see that there is a zero outside of unit circle shown in the Fig.

2.3, in which “◦” denotes zero, and “×” denotes poles. This figure shows

the controlled system is non-minimum phase system. In addition to it, the

system is strictly proper, which implies it is not an ASPR system.

Figure 2.3: Roots of the original system.

Due to this reason, the constant parallel feedforward d = 10 is added.

The augmented system becomes minimum-phase system from the root-locus

diagram shown in Fig. 2.4.
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Figure 2.4: Roots of the augmented system.

The design parameters were

Γr = 0.005, Γe = 0.55, σ = 0.0005 (2.44)

in the simulation. The simulation results are shown in Fig. 2.5 and Fig.

2.6. From the Fig. 2.5, one can observe that the original output tracks the

reference input perfectly. The controller is constructed with a feedforward

input to compensate the error between augmented output and original out-

put. The adaptive gains shown in Fig. 2.6 ultimately tend to reach constant

values.

2.5 Experimental evaluation

This section presents the experimental evaluation of the proposed scheme.

The experiment was conducted in a pilot-scale temperature control system,

as shown in Fig. 2.7. The objective of the experiment was to track the spec-

ified temperature and observe the robustness when adding the disturbance.
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Figure 2.5: Simulation of control result obtained by the proposed scheme.

Figure 2.6: Simulation of the trajectories of the adaptive gains.

The brief introduction of the operational mechanism of the pilot-scale

temperature control system is described in the following. There are two

heaters securing on a steel plate, and they work simultaneously. The tem-
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Figure 2.7: Appearance of the pilot-scale temperature control system.

perature of the steel plate could be measured by a thermo-couple that is

fastened to it. The measured signal, as a system output signal, is in the

analog form and sent to the D/A converter. Subsequently, the control signal

is computed by the proposed scheme after receiving a digital error signal,

and eventually it is converted to an analog signal by the A/D converter. The

sampling time (Ts) of the system was set to 1 s.

It should be noted that many practical systems are expressed by (2.1) -

(2.2), which does not include the direct term. Therefore, it is reasonable to

assume that the pilot-scale temperature control system does not satisfy the

ASPR condition. For the sake of designing a stable adaptive output feedback

control system, a proper PFC (i.e. the constant control parameter d stated

in the preceding remark) is required. The user-specified parameter d is set

to 1. The next chapter would investigate a optimal way of determining it by

adopting an algorithm. The control results are eventually shown in Fig. 2.8
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when the related parameters are given as follows.

Γr = 1.5× 10−5, Γe = 0.3, (2.45)

σe = 5× 10−6, σr = 5× 10−6. (2.46)

The adaptive gains are plotted in Fig. 2.9. It was obvious to observe that the

disturbance was happened at approximately 210 step; therefore, the adap-

tive gains changed to a large value to negate the disturbance. The merit

of adaptive control was also illustrated from the performance. The adap-

tive gains ultimately tended to reach constant values. The effectiveness and

convergence were finally confirmed through these results.

Figure 2.8: Control result obtained by the proposed scheme.

Moreover, the comparative study was conducted, the results of which

were shown in Fig. 2.10 and Fig. 2.11, respectively. In this case, d was set

as 5, whereas, other conditions remained the same. It can be seen that from

(2.17) the control input could be decreased if d was enlarged such that the

effect of suppressing the overshoot was restrained.
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Figure 2.9: Trajectories of adaptive gains in the proposed scheme.

Figure 2.10: Control result obtained in the comparative study.

2.6 Conclusion

In this chapter, the design of an adaptive output feedback control system

with a feedforward input was presented. The relationship between the PFC
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Figure 2.11: Trajectories of adaptive gains in the comparative study.

and the direct term d was also addressed. That is the parameter d could be

considered as a PFC without dynamic parts, based on which the constant

PFC d was properly designed to make the augmented system ASPR. There-

fore, the stability of the proposed adaptive output feedback control system

was guaranteed. In addition, the feedforward input was utilized to remove

the steady state error, and the feedforward input was obtained by only con-

sidering the integral action. Compare to other methods of generating the

feedforward input, the simpler structure in the proposed scheme reduced the

cost. Furthermore, the low-order controller could control the industrial pro-

cesses with high-order degree even in the presence of uncertainties. This

chapter also showed the rigorous proof of convergence of the adaptive out-

put feedback control system. The proposed scheme was verified through a

numerical simulation and by employing in a pilot-scale temperature control

system. The control results demonstrated the effectiveness and robustness
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of the proposed scheme. The adaptive gains ultimately reached a constant

value both in numerical simulation and in experimental evaluation.

The performance obtained from the proposed scheme was superior to

that from the comparative study. This resulted in that the constant PFC (i.e.

the constant value of d in this chapter parameters) existed a optimal value.

Therefore, the topic regarding to the determination of proper parameter d

by adopting an algorithm will be investigated in the next chapter.
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Appendix 2.A The proof of the Lemma

For the minimum-phase augmented system (2.1) - (2.3), the zero-dynamics

of this system is given in the following when the output at zero in spite of

the presence of input commands.

ya(k) = cTx(k) + du(k) (2.47)

that gives

u(k) = −d−1cTx(k). (2.48)

Substituting in (2.1) gives the zero-dynamics equation

x(k + 1) = Azx(k) (2.49)

where, Az = A − bd−1cT is the system matrix for the zero-dynamics. The

system is minimum-phase; thus, there exist two positive matrices, P and Q

such that

AT
z PAz − P = Q. (2.50)

Furthermore, for the augmented system (2.1) - (2.3), if a positive definite

output feedback gain k∗
e is utilized, the system matrix is given in the form

of (2.6). For the sake of simplicity, the following expression is considered in

the appendix.

k∗
e

1 + dk∗
e

= k̄e
∗
= (k∗−1

e + d)−1 ≤ d−1. (2.51)

Therefore, the (2.6) can be expressed by

Ac = A− bk̄e
∗
cT . (2.52)
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As a result,

AT
c PAc − P (2.53)

=(A− bk̄e
∗
cT + bd−1cT )TP (A− bk̄e

∗
cT + bd−1cT )− P

=ATPA− P − ATPbd−1cT + ATPb(d−1 − k̄e
∗
)cT − (bd−1cT )PA

− (bd−1cT )TPb(d−1 − k̄e
∗
)cT + (bd−1cT )TPbd−1cT

+ (b(d−1 − k̄e
∗
)cT )TPA− (b(d−1 − k̄e

∗
)cT )TPbd−1cT

+ (b(d−1 − k̄e
∗
)cT )TPb(b(d−1 − k̄e

∗
)cT )

=−Q+ ATPb(d−1 − k̄e
∗
)cT + (b(d−1 − k̄e

∗
)cT )TPA

+ (b(d−1 − k̄e
∗
)cT )TPb(b(d−1 − k̄e

∗
)cT )− (b(d−1 − k̄e

∗
)cT )TPbd−1cT

− (bd−1cT )TPb(d−1 − k̄e
∗
)cT

≤−Q+ ATPb(d−1 − k̄e
∗
)cT + (b(d−1 − k̄e

∗
)cT )TPA

+ (b(d−1 − k̄e
∗
)cT )TPb(b(d−1 − k̄e

∗
)cT )

− (b(d−1 − k̄e
∗
)cT )TPb(b(d−1 − k̄e

∗
)cT )

=−Q− ATPb(k̄e
∗ − d−1)cT − (b(k̄e

∗ − d−1)cT )TPA.

(2.54)

It can be seen that the above inequality is to be negative if the feedback gain

k∗
e is sufficiently large, and thus k̄e

∗
is sufficiently large. The proof of the

Lemma is completed.
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Appendix 2.B The detail of the clarification

In general, the practical system is strictly proper; thus, the system (2.1)

- (2.2), which is denoted as G : {A, b, cT , 0} in this Appendix, is given. The

following theorem is imposed with respect to the system G.

Theorem. Assume that there exists a proper, static or dynamic, stabilizing

feedback configurationH : {AH , bH , c
T
H , dH} such that the closed-loop system

is asymptotically stable. The augmented system Ga = G + H−1 is proper

and strictly minimum-phase and is therefore ASPR.

Proof.

The state-space representation of the feedback controller H can be ex-

pressed by :

xH(k + 1) = AHxH(k) + bHy(k) (2.55)

yH(k) = cTHxH(k) + dHy(k). (2.56)

The control signal is given as follows.

u(k) = −yH(k). (2.57)

The closed-loop system shown in the Fig. 2.12 with u(k) = −yH(k) as

the control input can be represented in the following. It should be mentioned

that the input signal is considered as zero in this case.

xz(k + 1) = Azxz(k), (2.58)

where

xz =

[
x(k)
xH(k)

]

Az =

[
A− bd−1

h cTH −bcTH
bHc

T AH

]
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Figure 2.12: Closed-loop system with controller H

This matrix Az is Hurwitz, which represents the close-loop system is asymp-

totically stable.

Now, let us consider the inverse system of H with u(t) as the input and

yh(k) = −y(k) as the output. The inverse system can be expressed by :

xh(k + 1) =
(
AH − bHd

−1
H cTH

)
xh(k)− d−1

H bHu(k) (2.59)

yh(k) = d−1
H cTHxh(k) + d−1

H u(k). (2.60)

The augmented system with the inverse system shown in Fig. 2.13 is then

expressed by :

xa(k + 1) = Aaxa(k) + bau(k) (2.61)

ya(k) = cTaxa(k) + dau(k), (2.62)

where,

xa =

[
x(k)
xh(k)

]

Aa =

[
A 0
0 AH − bHd

−1
H cTH

]

ba =

[
b

−d−1
H

]
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cTa =

[
cT

d−1
H cT

]

da = d−1
H

The zero dynamics of the augmented system can be obtained when the ya(k)

Figure 2.13: Augmented system with a configuration H−1

is expected to zero. The system matrix of the augmented system Aaz is given

by :

Az = Aaz =

[
A− bd−1

h cTH −bcTH
bHc

T AH

]

The system matrix of the augmented system has the same structure as the

matrix Az; therefore, the zero dynamics of the augmented system can be

stabilized by the inverse of the feedback configuration.

This theorem indicates that the PFC can be designed as the inverse of

the feedback configuration. Furthermore, it is reasonable to design a constant

PFC from the relation da = d−1
H without a dynamics part.

39



Chapter 3

Design of ASPR-based adaptive
output feedback control system
using FRIT

3.1 Introduction

This chapter provides a strategy to the problem mentioned in the previ-

ous conclusion. The Fictitious Reference Iterative Tuning (FRIT) approach

is employed to determine the value of constant PFC d by the use of one-shot

input/output experimental data directly in the SPR system. The notion of

FRIT is as one of the data-oriented controller tuning methods.

The data-oriented approach to the design of a controller has been at-

tracted considerable attentions in the recent years and is considered as one

of the effective ways for the desired performance. In conventional con-

troller design methods, the calculation of control parameters for a system

necessitates priori information such as the order and/or the relative de-

gree of the system. The process of obtaining such a priori information

is inevitably time- and cost-consuming. Though the controller is designed

based on the approximated information, a disaster performance is easy to be

emerged. Therefore, lots of researchers focus on the data-oriented controller
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design method, and some successful achievements are presented in literatures

[59, 60, 61, 62, 63, 64, 65, 66, 67, 68].

In order to achieve a desired tracking output, the Iterative Feedback

tuning (IFT) is proposed in [69], in which the cost function to be minimized

directly was represented. However, it costs considerable expense because of

the iteration of experiments. As an alternative data-oriented approach with-

out iteration, FRIT is originally developed in the literature [70]. The FRIT

approach only considers one-shot input/output experimental data; thus, it

is significant in practical sense that the approach enables practitioners de-

sign the controller without a mathematical model. As a result, the FRIT

approach is extensively investigated in [73, 74, 75, 76, 77, 78].

However, there is an important problem remained in [71, 72]. The prob-

lem is that the stability is yet to be clarified. Though, the data-oriented

approach is hard to be described in terms of mathematical model for anal-

ysis of stability, the controller based on the data-oriented approach in the

SPR system should be stable. In the previous chapter, the proposed adap-

tive control system, that is SPR system, has been proved stable with positive

value PFC d; therefore, in such system, the FRIT approach is safely to be

applied. As a consequence, the FRIT approach is able to be adopted in the

stable adaptive system and optimize the control parameter d.

This chapter is organized as follows : the problem is stated in section 3.2;

the proposed scheme is explained in section 3.3; the numerical simulation and

analysis are presented in section 3.4, and the chapter is concluded in section

3.5.
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3.2 Problem statement

The constant PFC d is considered as the ASPR configuration while the

feedforward input is utilized to remove the steady state error, which is con-

cluded in the previous chapter. The basic idea here focuses on optimization

of the value d; thus, the feedforward input is yet to be under consideration

when the initial data is obtained.

Consider the original SISO system (2.1) - (2.2) with an equivalent con-

troller C(d), as shown in Fig. 3.1. The equivalent controller is formulated

based on the (2.17) as follows

C(d) =
ke

1 + dke
. (3.1)

The symbol ue0(k) and y0(k) are denoted as the respective initial input and

output, and r(t) is the reference signal.

Figure 3.1: The closed-loop system.

Here, it is assumed that one can obtain an input/output data {ue0(k),

y0(k)} for an initial appropriate parameter d0. The objective is to obtain

an optimal constant PFC dm through the use of FRIT approach by utilizing

this set of data.
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3.3 Design of the proposed scheme

The proposed scheme is given detail in this section. The first subsection

addresses a problem in terms of the stability issue. The second subsection

is shown the block diagram and the mechanism of the FRIT applied to the

adaptive output feedback control system.

3.3.1 Stability analysis

The literature [71] has documented a remark in terms of the stability

issue. The remark is that the issue with respect to whether the closed-loop

is stable or not is not clarified in the design of a controller. In other words,

if the stability can not be guaranteed, the discussion of applying the FRIT

does not make sense. The theorem in the previous chapter has clarified that

under certain assumptions, the constant d exists to render the augmented

system ASPR, which implies the system is stable via constant feedback gain.

The FRIT can be applied to design the constant d which is contained in this

stable system, which results in the proposed scheme below.

3.3.2 Fictitious reference iterative tuning for the PFC
design

The details of the proposed scheme are given in this section. As seen

equivalent control signal represented in (2.17), the control parameter d is

incorporated in the signal and determined by the FRIT approach. Fig. 3.2

presents the block diagram of the FRIT approach as applied to the proposed

scheme.

As shown in the block diagram, ue0(k) and ye0(k) express the initial

input and output, respectively. r(k) denotes the given reference signal, ũe(k)
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Figure 3.2: Block diagram of the FRIT approach as applied to the proposed
scheme.

represents the fictitious input signal, and ỹ0m(k) represents the fictitious

output signal. Gaspr represents the given ASPR systems, and the constant

PFC dm is the optimal control parameter to be determined.

From the Fig. 3.2, the fictitious input signal is derived as follows

ũe(k) =
ke

1 + dmke
{r(k)− y0(k)}. (3.2)

Therefore, the fictitious output can be obtained as follows.

ỹ0m(k) = ũ(k)Gaspr − dmũe(k) (3.3)

The following cost function, related to the proposed scheme, is described by

J(dm) = ‖ỹ0m(dm)− y0‖2. (3.4)

Under these settings, J(dm) is to be minimized using different dm and

the optimal control parameter can therefore be determined.

dm = arg min
dm

J(dm). (3.5)
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3.4 Numerical simulation

The effectiveness of the proposed scheme is verified through a numerical

simulation.

Consider the following second-order non-minimum phase plant which is

presented as :

G(z) =
z + 1.5

z2 − 0.7z
(3.6)

It is apparent to see that there is a zero outsider of the unit circle, yet it is

stable from the transfer function. Additionally, in the mathematical sense,

the degree of denominator is larger than that of numerator, which results in

the strictly proper of this system. The controlled plant is yet to satisfy the

ASPR conditions mentioned in the previous chapter. As a consequence, the

constant PFC d is needed to configure the ASPR condition; therefore, the

stability of the adaptive system is under guarantee. Thus, the initial data

are certain to be obtained when the parameters are set as follows :

r = 1, d0 = 2, ke = 0.5 (3.7)

where r denotes the reference signal; d0 is the initial user-specified parameter,

and ke is the constant feedback gain that is utilized to stabilize the controlled

plant. The simulation of the initial data is shown in Fig. 3.3 where the steady

state error emerged because of not use of the feedforward input.

It should be emphasized that the feedforward input is for the track-

ing issue, while the stability of the adaptive system should be guaranteed

primarily when the initial data is obtained.

For the sake of implementation of FRIT approach to this scheme, the
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Figure 3.3: The simulation of initial data for the FRIT approach.

ASPR system should be given in the following.

Gaspr =
5z − 2.9

z − 0.9
. (3.8)

By considering the equations (3.2) - (3.4), the optimal parameter is expressed

as dm and is shown as follows.

dm = 5. (3.9)

As a consequence, the optimal parameter dm is applied to the adaptive

control system which results in the Fig. 3.4. The adaption coefficients were

set by

Γr = 0.04, Γe = 0.7. (3.10)

The adaptive gains are depicted in Fig. 3.5 which shows they ultimately

tend to reach constant values.
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Figure 3.4: Simulation of control result obtained by the proposed scheme.

Figure 3.5: Simulation of trajectories of control gains.

The comparative study was simulated under the same condition except

the parameter d. The parameter d was set as 2, and the control result is

shown in Fig. 3.6. The overshoot in the output emerged, which is caused
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by the unsuitable d. The trajectories of adaptive gains are plotted in Fig.

3.7. To achieve the better performance, the optimal parameter dm should be

obtained.

Figure 3.6: Simulation of control result in comparative study.

Figure 3.7: Simulation of trajectories of control gains in comparative study.
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3.5 Experimental evaluation

This section presents the experimental evaluation of the proposed scheme.

The experiment was conducted using a motor application, the image of which

is shown in Fig. 3.8. The schematic diagram of the equipment is shown in

Fig. 3.9. The objective of the experiment was to maintain the disk at the

same rotational speed (unit: [rad/s]) as the one specified by the reference

signal.

Figure 3.8: Picture of motor application.

Figure 3.9: Block diagram of motor application.

The operational mechanism of the motor application used in the exper-

iment is introduced briefly in the following section. The rotational speed of

the disk was measured by a sensor. The measured signal was in the analog

form and therefore sent to the D/A converter. Subsequently, the controller
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received a digital error signal such that the control signal was computed by

an algorithm. The A/D converter converted the digital signal to an analog

signal. The function of the motor driver was to amplify the signal, which

was then used to operate the motor to allow rotation of the disk. It should

be emphasized that the operation voltage in this experiment was limited to

a value between 0 V and 24 V. The sampling time (Ts) of the system was

set to 0.02 s.

Many practical systems do not include the direct term; therefore, it is

reasonable to assume that the motor application can be presented as (2.1) -

(2.2). For the purpose of designing a stable adaptive output feedback control

system, the PFC d needed to be calculated. In this experiment, the initial

input/output data was obtained first, by setting the related parameters as

shown below, in order to apply the FRIT approach.

r = 1000, d0 = 5, ke = 10 (3.11)

where r is the value of reference signal, d0 is a user-specified initial param-

eter, and ke is a constant that could stabilize the motor application. From

Fig. 3.10, it is seen that the final steady output could not reach the given

reference value, since the feedforward input was not implented. As explained

in the previous section, the purpose of this step is to obtain the stable ini-

tial input/output data so as to proceed the FRIT to the next step in motor

application.

The given ASPR system was set to the following configuration in the

second step.

Gaspr =
5z − 1.7

z − 0.9
. (3.12)

Here, d was reasonably restricted to a value in the range between 0
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Figure 3.10: Initial data for the FRIT approach.

and 20. By using (3.2) to (3.4), the proper control parameter dm can be

represented as follows.

dm = 9.2. (3.13)

Eventually, Fig. (3.12) shows the control output when the related pa-

rameters were set as

Γr = 4× 10−6, Γe = 6× 10−4. (3.14)

The adaptive gains are plotted in Fig. (3.11).

The disturbance in Fig. (3.12) was introduced at approximately 500

step, and the adaptive gains appeared to change to large values trying to

negate the disturbance. As time advanced by 120 steps, the output attained

the reference value again. This fact reflected the advantage of adaptive con-

trol. The adaptive gains ultimately tended to reach a constant value. These

results verified the effectiveness of the proposed scheme and the convergence

was also illustrated.
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Figure 3.11: Trajectories of control parameters in the proposed scheme.

Figure 3.12: Control result obtained by the proposed scheme.

Additionally, a controlled comparative study was executed in terms of

the proposed scheme. All the conditions remained the same, except for d,

which in this case was set to 20. From (2.17), it could be seen that a larger
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value of d led to a decrease in the control input, which implies that the control

input can-not effectively and timely suppress the output. The overshoot

finally appears in Fig. 3.13, and the adaptive gains in the comparative study

are depicted in Fig. 3.14

Figure 3.13: Control result in comparative study.

Remark. The experimental evaluation was conducted only under the

consideration of input/output data. The controller was able to be designed

based on the output signal. All the signals in the adaptive control system

were bounded, which confirmed the theorem. The proper value of d was

determined by the FRIT approach.

3.6 Conclusion

In this chapter, the design of an adaptive output feedback control system

with a feedforward input by applying the FRIT approach was presented. A

rigorous proof of convergence regarding to the adaptive control system was

53



Figure 3.14: Trajectories of control parameters in comparative study.

provided in the previous chapter. The proof indicated that the d could be

designed safely. As a result, the FRIT approach was able to be applied to

optimize the parameter d, and this chapter explained the implementation

of the FRIT approach in the proposed scheme. The major feature of the

proposed scheme was that the proper constant PFC d was determined by

using one-shot experimental input/output data with no mathematical model.

This was significant from the practical point of view since the accurate model

was hard to be estimated, and the potential use of the proposed scheme

should be focused on. The steady state error was eliminated and the output

of the original plant was found to track the reference value.

An experiment was conducted in a motor system to confirm the effec-

tiveness of the proposed scheme. According to the control results, the pro-

posed scheme negated the implanted disturbances, which shows the power of

adaptive control. The comparative experiment was also studied in terms of
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different parameter d, which confirmed that the parameter d determined by

the FRIT approach was the optimal one.

The passivity property, which is equivalent to SPR in LTI systems, was

discussed in this and previous chapters while the passivity property in non-

linear systems would be addressed in the next chapter.
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Chapter 4

Design of OFSP-based adaptive
output feedback control for
non-linear systems using
data-driven approach

4.1 Introduction

This chapter investigates the passivity property in nonlinear systems.

Moreover, the data-driven approach is adopted as a tool to perform the

update of adaptive gains rapidly.

Researchers have focused their attention on approaches to deal with

nonlinear systems, since the majority of practical processes contain non-

linearities. One particular interest of those approaches is a controller design

based strict passivity property for discrete-time nonlinear systems. The strict

passivity property has played an important role in assuring stability in adap-

tive control systems, and it has been characterized by some relations in the

form of state-space representation. These relations are called strict passivity

condition based on which the stability of an adaptive control system can be

assured by using Lyapunov’s stable theory.
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A discrete-time version Kalman-Yacubovitch-Popov (KYP) Lemma pro-

posed in [39] plays a crucial role in establishing a relationship between strict

passivity and Lyapunov function. That is a positive-definite matrix can be

determined by using the KYP Lemma such that the matrix satisfies the Lya-

punov function. As a result, a strict passive system, which is of the strict

passivity property, can be obtained.

In this chapter, the output feedback strict passive is discussed. A dy-

namical system that needs an output feedback to become strictly passive has

been called output feedback strictly passive (OFSP) [79, 80, 90, 91]. Re-

searchers can easily design an adaptive control system based on OFSP such

that the augmented system has robustness against disturbances and uncer-

tainties. The issue of stability of adaptive output feedback control based

on OFSP for nonlinear systems has been investigated in [80, 13, 85]. Once

the stability of the adaptive control systems can be guaranteed, the adaptive

gains can be varied in a bounded range to minimize the tracking error.

The sufficient conditions required for a discrete-time system to be OFSP

have been presented in the technical literature [80]. However, since most

practical systems do not satisfy OFSP conditions, it is unsuitable to render

the adaptive output feedback method for use in practical applications. One of

the significant ideas was proposed in [45, 80], wherein a parallel feedforward

compensator (PFC) was considered to alleviate the restrictive conditions.

Additionally, it should be noted that the strict passive system must have a

direct term, which results in the relative degree zero [39]. However, under this

condition, the causality problem emerges in the controller design in discrete-

time domain. The equivalent controller is considered in the proposed scheme

to address this problem.
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The data-driven approach is one of the control strategies applied in

nonlinear systems, and it can adjust the control parameters rapidly at each

equilibrium point. This approach can be adopted as a tool to accelerate the

convergence of adaptive gains when the nonlinearity of a system is strong.

Moreover, the data-driven approach is able to optimize the control param-

eters by utilizing the database generated from input/output data without

priori information of the controlled system. Furthermore, the control pa-

rameters are manipulated in a local bounded neighbor data. Successful im-

plementations of the data-driven approach have been presented in technical

literatures [81, 82, 83, 84]. However, the stability of the data-driven approach

applied in those mentioned literatures has not been investigated. Therefore,

the stability issue is discussed and explained in this chapter. The proposed

scheme is employed in a numerical simulation to assess the performance.

This chapter is organized as follows : the problem is stated in section

4.2; the proposed scheme is examined in section 4.3; Section 4.4 provides the

simulation and analysis, and the paper is concluded in section 4.5.

4.2 Problem statement

Consider the following single-input single-output (SISO) discrete-time

nonlinear system with state-space, represented as

x(k + 1) = f(x)x(k) + g(x)u(k) (4.1)

y(k) = h(x)x(k) (4.2)

ya(k) = h(x)x(k) + du(k). (4.3)

The original system is considered as strictly proper and denoted by (4.1) -

(4.2), and the augmented system is expressed by (4.1) - (4.3). x(k) ∈ Rn
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is a state vector, and u(k) and y(k) ∈ R are the input and output of the

original of the original system, respectively. f(x(k)) : Rn → Rn, g(x(k)) :

Rn → Rn, and h(x(k)) : Rn → Rn are smooth in x(k). ya(k) denotes the

augmented output of the system.

Definition. The system represented by (4.1) - (4.3) is said to be OFSP if

there exists a positive definite output feedback gain θ∗e such that the resulting

closed-loop system shown in Fig. 4.1 is strict passive.

Figure 4.1: Passive system.

It is easy to utilize the controller

u(k) = −θ∗e(ya(k)− r(k))

= −θ∗e(h(x)x(k) + du(k)− r(k)) (4.4)

= − θ∗e
1 + dθ∗e

(h(x)x(k)− r(k))

= −θ̄∗e(h(x)x(k)− r(k)),

where,

θ̄∗e =
−θ∗e

1 + dθ∗e
,

such that the augmented system gives

x(k + 1) = fa(x)x(k) + ga(x)x(k)r(k) (4.5)

ya(k) = ha(x)x(k) + dar(k) (4.6)
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with

fa(x) = f(x)− θ̄∗eg(x)h(x) (4.7)

ga(x) = −θ̄∗eg(x)r(k) (4.8)

ha(x) = (1− dθ̄∗e)h(x) (4.9)

da = dθ̄∗e . (4.10)

That is the resulting closed-loop system is proper and minimum-phase after

adding the positive d compared to the original system.

Remark 1. It has been clarified in [80, 13, 85] that the stability of a

nonlinear adaptive control system is guaranteed if the inverse of the feedback

gain is used as PFC to augment the plant to be controlled, and it is reasonable

to design a constant PFC in the nonlinear adaptive control system. From the

definition aforementioned, in the system (4.1) - (4.3), d can be regarded as

parallel feedforward with the original system and is considered to be a PFC.

However, unfortunately, the steady state error exists after introducing

the PFC. In order to eliminate the steady state error between the augmented

system and the reference signal in the control results, the literatures [86, 87]

has proposed a scheme, in which the feedforward input was utilized. Based

on this achievement, the following assumption is imposed.

Assumption. Considering the output of the original system is expected to

track the reference value, there exists an ideal feedforward input v∗ such that
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the following equations hold.

x∗(k + 1) = f(x∗)x(k) + g(x∗)x(k)v∗ (4.11)

y∗(k) = h(x∗) = r(k) (4.12)

y∗a = h(x∗) + due(k) (4.13)

= y∗(k) = r(k). (4.14)

Therefore, under the assumption, the objective of this study is to design

an adaptive output feedback control system by applying the data-driven

approach. As a result, the optimal adaptive gains can be updated rapidly,

and the output of the original system can track the reference value. The

block diagram of the proposed scheme is depicted in Fig. 4.2.

Figure 4.2: Block diagram of the proposed adaptive control system.

4.3 Design of the proposed scheme

This section discusses the design scheme in terms of three aspects. The

controller structure is described in the first subsection. The detail of the

data-driven approach employed in the proposed scheme is given in the second
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subsection. The third subsection gives the stability statement of the proposed

scheme.

4.3.1 Controller structure

The implemented adaptive controller is described as

u(k) = ue(k) + v(k), (4.15)

That is

u(k) = −θe(k)ea(k)− θr(k)r(k), (4.16)

where

ea(k) = ya(k)− r(k), (4.17)

and the adaptive gains are generated by the following algorithm

θe(k) = θe(k − 1)− Γee
2
a(k) (4.18)

θr(k) = θr(k − 1)− Γrea(k)r(k), (4.19)

where Γe and Γr are positive constants.

The direct term in parallel with the system is required for an OFSP

discrete-time system. Therefore, the control signal (4.16) can not be im-

plemented directly because the current step ea(k) is not available owing to

the causality problem. To solve this problem, the equivalent control input is

considered and obtained from the following equation.

ue(k) = −θe(k)ea(k)

= −θe(k)(h(x(k)) + due(k)− r(k))

= −θe(k)
e(k)

1 + dke(k)
,

(4.20)

where e(k) is the error between the output of the original system and the

reference signal.
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4.3.2 Data-driven approach application

The mechanism of the data-driven approach is reviewed in this subsec-

tion. Several mathematical explanations must be considered firstly. The

historical data from output of original system and control input construct a

vector called information vector which is defined by the following equation:

φ(k − 1) := [y(k − 1), · · · , y(k − ny), u(k − 1), · · · , u(k − nu)] (4.21)

where ny and nu are the order of the system output and control input, re-

spectively.

It should be noted that, the output from the original system is consid-

ered. It is apparent that the information of controlled system can be indicated

by those elements included in φ(k − 1). Furthermore, the data in the form

of the information vector expressed in (4.21) is stored in the database. The

procedures of the data-driven approach are stated in the following.

[STEP 1] Generate the initial database

The data-driven approach can not work unless the initial database is

generated by the historical data. The parameter d is required in order to

facilitate the robust implementation of the adaptive output feedback control

system. After the stability is guaranteed, the initial control parameters ex-

pressed in (4.18) - (4.19), input/output data and the reference signal r(k)

are stored in the database indicated by Φ(j) as follows:

Φ(j) := [φ̄(kj),Θ(kj)], j = 1, 2, · · · , N, (4.22)

where N denotes the dimension of the initial database, and φ̄(kj) and Θ(kj)

have the form

φ̄(kj) :=[r(kj + 1), r(kj), y(kj), · · · , y(kj − ny + 1),

u(kj − 1), · · · , u(kj − nu + 1)],
(4.23)
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Θ(kj) = [θe(kj), θr(kj)]. (4.24)

[STEP 2] Calculate the distance and select the neighbors

The query φ̄(k) which presents the information vector in the current step,

is introduced firstly. The distance between the query and the information

vector φ̄(kj) is calculated by the following L1-norm with some weights:

d(φ̄(k), φ̄(kj)) =

ny+nu+1∑
l=1

∣∣∣∣ φ̄l(k)− φ̄l(kj)

maxm φl(m)−minm φl(m)

∣∣∣∣ ,
j = 1, 2, · · · , N(k)

(4.25)

where N(k) denotes the dimension of the database, φl(k) denotes the lth

element of the query at current step k, and φ̄l(kj) expresses the lth element

of the jth information vector. Moreover, maxφl(m) is the maximum element

among all lth element of all information vector, and the similar explanation

with minφl(m). Therefore, the database is arranged by an ascended order

based on the calculated distance, and then the q-pieces neighbors can be

selected.

[STEP 3] Re-calculate the adaptive gains

From the database selected in the previous step, the suitable control

parameters Θ(kj) can be calculated around the query by the following equa-

tion:

Θold(k) =

q∑
i=1

wiΘ(i),

q∑
i=1

= 1, (4.26)

where

wi =
exp(−di)
q∑

i=1

exp(−di)

.
(4.27)

[STEP 4] Updata the adaptive gains
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It is necessary to update the calculated adaptive gains such that the

better performance can be obtained. The following steepest descent method

is considered.

Θnew(k) = Θold(k)− η
∂J(k + 1)

∂Θ(k)
, (4.28)

where η = [ηke , ηkr ] denotes the learning coefficient, and J(k + 1) is defined

by the following criterion.

J(k + 1) :=
1

2
ε(k + 1)2, (4.29)

ε(k) := yr(k)− y(k). (4.30)

The output yr(k) is obtained from a reference model given by:

yr(k) =
z−1P (1)

P (z−1)
r(k), (4.31)

P (z−1) = 1 + p1z
−1 + p2z

−2, (4.32)

p1 = − exp

(
− ρ

2μ

)
cos

(√
4μ− 1

2μ
ρ

)

p2 = exp

(
−ρ

μ

)
ρ = Ts/α

μ = 0.25(1− β) + 0.51δ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (4.33)

where Ts is the sampling time, α indicates the rising time, and β denotes the

decreasing parameter.

Furthermore, the partial differential term of (4.28) is expanded in the

form
∂(k + 1)

∂ke(k)
=

∂(k + 1)

ε(k + 1)

ε(k + 1)

∂y(k + 1)

∂y(k + 1)

∂u(k)

∂u(k)

∂ke(k)

= ε(k + 1)
e(k)

1 + dke(k)

∂y(k + 1)

∂u(k)

∂(k + 1)

∂kr(k)
=

∂(k + 1)

ε(k + 1)

ε(k + 1)

∂y(k + 1)

∂y(k + 1)

∂u(k)

∂u(k)

∂kr(k)

= ε(k + 1)r(k)
∂y(k + 1)

∂u(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.34)
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It should be noted that ∂y(k + 1)/∂u(k) is required to calculate (4.34).

The literatures [81, 88] have been stated that it is reasonable to assume that

the |∂y(k + 1)/∂u(k)| is included in η.

The proposed scheme then can be summarized briefly as follows:

[ step 1 ] Apply the conventional method to obtain the data that is stored in

the initial database

[ step 2 ] Acquire the query φ(k), and calculate the distance by (4.25)

[ step 3 ] Sort the database in a ascended order based on the distance, and

select the neighbor data

[ step 4 ] Re-calculate the control parameters by (4.26)

[ step 5 ] Update the calculated adaptive gains based on (4.28), (4.31) and

(4.34)

[ step 6 ] Send the updated control parameters into database, and iterate the

above steps.

The adaptive gains can be optimized by the above procedures such that

the better performance is attained.

4.3.3 Stability analysis

The stability is the first condition in controller design for an adaptive

system, especially for a nonlinear system. In the literature [56], the passivity

based adaptive output feedback control design for a discrete-time nonlinear

system was investigated. The very important achievement was to clarify a

discrete-time nonlinear version of the Kalman-Yakubovich-Popov Lemma,

and the rigorous proof was given in adaptive feedback control system design

for discrete-time nonlinear systems. The adaptive gains and control output

can be guaranteed boundedness.
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Moreover, the data-driven approach has been an effective method for

nonlinear systems, and it can adjust the obtained parameters by steepest

descent method. The [89] documented that the convergent of steepest descent

method is proved. As a result, the stability of the proposed scheme can be

guaranteed.

Remark 2. Under the assumption in the aforementioned section and

the above statement, it is apparent that the objective of the proposed scheme

can be achieved in a theoretical sense. All the signals in the initial database

are bounded, and then are updated by the data-driven technique.

4.4 Numerical simulation

A numerical simulation is implemented to verify the effectiveness of the

proposed scheme in nonlinear systems. The Hammerstein models [81] are

considered and are given in the following form.

System 1

y(k) =0.6y(k − 1)− 0.1y(k − 2)

+ 1.2x(k − 1)− 0.1x(k − 2) + ξ(k)

x(k) =u(k)− u2(k) + u3(k)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (4.35)

System 2

y(k) =0.6y(k − 1)− 0.1y(k − 2)

+ 1.2x(k − 1)− 0.1x(k − 2) + ξ(k)

x(k) =1.5u(k)− 1.5u(k)2 + 0.5u(k)3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (4.36)

where ξ(k) is the white Gaussian noise with zero mean and variance of 0.012.

The static property of the above systems are depicted in Fig. 4.3. The
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Figure 4.3: Static property of System 1 and System 2.

reference signal values are set as follows:

r(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1(0 ≤ k < 50)

0.8(50 ≤ k < 100)

1.5(100 ≤ k < 150)

1(150 ≤ k < 200)

. (4.37)

The data-driven approach can work only if the initial database is gener-

ated. Therefore, the conventional adaptive output feedback control is applied

in the model, and the related parameters are set in Table 4.1. It should be

Table 4.1: User-specified parameters for obtaining initial database

System configuration d 5
Sampling interval [s] 1.0[s]
Coefficients Γe = 0.05

Γr = 0.05

noted that in the first 200 steps, the System 1 is as the controlled object;
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whereas, the System 2 is considered in the rest of the steps. The control

results are shown in the Fig. 4.4 and Fig. 4.5, respectively. It is apparent to

see that the rising time is large when the reference signal is changed. More-

over, from the static property of the System 2, the nonlinearity is strong in

the case where the output equals to 1 such that the tracking error can not

be eliminated after 300 step.

Figure 4.4: Control result obtained by the conventional method.

The results show the stability, and the initial database then is generated

by the obtained data in Fig. 4.4 and Fig. 4.5. The related parameters

required in this approach are summarized in Table 4.2. The polynomial

P (z−1) included in the reference model was designed as:

P (z−1) = 1− 0.5896z−1 + 0.0183z−2. (4.38)

As a result, Fig. 4.6 shows the output of the system and the control

input, and Fig. 4.7 illustrates the trajectories of the adaptive gains adjusted
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θ
θ

Figure 4.5: Trajectories of adaptive gains.

Table 4.2: User-specified parameters for the proposed scheme

Order of the information vector ny = 2
nu = 2

Numbers of neighbors q = 10
Γr = 0.05

Learning rates ηke = 2
ηkr = 2

by the data-driven approach. The rising time in Fig. 4.6 is improved, which

occurred both at approximatedly 10 step and 200 step, since the adaptive

gains were increased rapidly by data-driven approach. Furthermore, the

control performance is maintained after 300 step in the proposed scheme,

since the adaptive gains were decreased rapidly to reach the optimal value.

The data-driven approach is adopted to update the adaptive gains rapidly to

fit the right gains to the righ situation, and the approach also demonstrated
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Figure 4.6: Control result obtained by the proposed scheme.

θ
θ

Figure 4.7: Trajectories of adaptive gains in the proposed scheme.

a characteristic that is against the nonlinearity of the system.

Remark 3. The controller design in the proposed scheme only considered

the output of the system. All the signals are bounded from the control
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results, which confirmed the stability of the proposed scheme. The control

results obtained by updated control parameters outperformed the one which

obtained by the conventional method.

4.5 Conclusion

In this chapter, the design of a data-driven adaptive output feedback

control based on the OFSP was presented. In the proposed scheme, the PFC

was considered to configure the plant such that the OFSP conditions could

be satisfied. Moreover, it was reasonable to assume constant d as a direct

term in the propose scheme for non-linear system, and the constant d could

be considered as a PFC. Additionally, the feedforward input was utilized so

as to remove the steady state error for a nonlinear system. The stability

statement was provided, and control parameters were adjusted based on the

database such that desired performance could be attained. Furthermore, only

the input and output data were utilized in the proposed scheme without the

mathematical model. The effectiveness of the proposed scheme was verified

analytically through a numerical simulation. The response of the output was

improved in terms of rising time, and the tracking error was eliminated. The

better performance was maintained even though the system changed. The

control parameters ultimately converged to a constant value in the proposed

scheme.
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Chapter 5

Conclusion

In this thesis, the control problem regarding the design of a adaptive

output feedback control system based on passivity was addressed. Both

linear systems and non-linear systems were studied in terms of the passivity

property. The tracking problem was also addressed and the feedforward input

was introduced to remove the steady state error. This thesis clarified the

relationship between the PFC and the direct term d, that is, the direct term

d could be considered as the constant PFC. Several algorithms for optimizing

the parameter d and facilitating the update of adaptive gains were proposed.

The efficacies of the proposed schemes were verified analytically through

numerical examples and experimental evaluations. The brief summarizations

were as follows:

(i) ASPR-based adaptive output feedback control system was designed

with feedforward input;

(ii) The FRIT approach was applied to optimize the constant PFC in terms

of the adaptive output feedback control system;

(iii) The data-driven approach was considered for OFSP-based adaptive

output feedback control system.
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In Chapter 1, the research background was introduced in terms of adap-

tive output feedback control. The stability issue was not taken into consid-

eration until the MIT-rule ended in failure. The introduction of passivity

and its use towards to guaranteeing the stability of the adaptive control sys-

tem are the good basis, on which the adaptive algorithm can be built. The

objective of this thesis was briefly summarized as well.

In Chapter 2, the design of an adaptive output feedback control system

with a feedforward input was addressed. The relationship between the PFC

and direct term d was also clarified, and that was the d could be considered

as the PFC without dynamic parts in the proposed scheme. The PFC was

properly designed to make the augmented system ASPR such that the sta-

bility was guaranteed. Additionally, the feedforward input was utilized to

remove the steady state error, and the feedforward input was obtained by

only considering the integral action. The simpler structure was superior over

other methods with respect to the learning cost. The proposed low-order

controller was certain to control the industrial processes with high-order de-

gree even in the presence of uncertainties. The rigorous proof of convergence

was also shown in terms of the proposed adaptive output feedback control

system. Furthermore, the proposed scheme was verified through a numerical

simulation and was employed in the pilot-scale temperature control system.

The control results confirmed the effectiveness and robustness of the proposed

scheme.

In Chapter 3, the problem regarding to the design optimal parameter d

was addressed. Therefore, the design of an adaptive output feedback control

system with a feedforward input by applying the FRIT approach was pro-

posed. The parameter d was able to be designed safely, which was proved
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in the previous chapter. Due to this reason, the FRIT war certain to be ap-

plied to optimize the parameter d under the stable adaptive control system.

The implementation of the FRIT approach in the proposed scheme was also

explained in detail. The major feature of the proposed scheme was that the

proper constant PFC d was determined by using one-shot experimental in-

put/output data without mathematical model. This was significant from the

practical point of view since the accurate model was hard to be estimated.

In the practical sense, the use of FRIT in the proposed scheme widened the

range of applications potentially. Moreover, the steady state error was elim-

inated, and the output of the original plant was found to track the reference

value. To assess the performance of the proposed scheme, an experiment was

conducted in a motor system. According to the control results, the proposed

scheme could negate the implanted disturbance. The comparative experi-

ment was also studied under the same condition except a different parameter

d. The control results from comparative study showed oscillation; therefore,

the d determined by the FRIT approach was the optimal one.

In Chapter 4, the passivity property was discussed in terms of non-linear

system. The design of a data-driven adaptive output feedback control based

on OFSP was presented. Similarly to the previous, the PFC was considered

to parallel a plant such that OFSP conditions could be satisfied. Moreover,

this chapter clarified that it was reasonable to assume constant d as the

direct term in this proposed scheme for non-linear system, and the constant

d could be considered as a PFC. The stability statement was provided, and

control parameters were adjusted based on the database such that desired

performance could be attained. Additionally, only the input and output

data were utilized in the proposed scheme without a mathematical model. A
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numerical simulation was shown to confirm the effectiveness of the proposed

scheme. The response of the output was improved, and the tracking error was

eliminated. Moreover, the better performance was maintained even though

the system changed. The adaptive gains ultimately reached a constant value

in the proposed scheme.

The future works are discussed in several aspects as follows.

The schemes presented in this thesis can be extended to a linear time-

variant system as well as a multiple-input-multiple-output (MIMO) system.

A crucial problem should be addressed, that is the use of right form of the

Kalman-Yacubovitch-Popov (KYP) Lemma. The KYP Lemma has been

recognized as a basic tool of stability proof in system theory, and it varies

regarding to different system. This lemma and its applications have been

investigated in lots of literatures [41, 80, 92, 93, 94, 95]. It should be careful

to utilized the right form of the KYP Lemma to prove the stability issue in

various systems.

This thesis provided a approach to optimize the parameter d based on

stable adaptive output feedback control system. Once the control system is

certain to be stabilized under certain conditions, various algorithms can be

developed. Thus, this work can be extended in developing new algorithms

that are practically implementable and applicable in real world.

Considering time-delay in the proposed schemes is still an open problem

to be addressed. Time-delay occurs frequently in chemical, biological and

mechanical systems. Therefore, it is of significant concern when one tries to

apply the proposed scheme to practical plants with time-delay. The litera-

tures [96, 97, 98] have investigated the case where one can design a stable

adaptive output feedback based output tracking control system for single in-
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put single output system in continuous-time domain. Time-delay is handled

in these literatures by considering the Pade approximation with relative de-

gree zero. As a consequence, time-delay can be considered in the proposed

schemes for discrete-time system. The relative degree of Pade approximation

is zero, based on which the SPR conditions may not be hard to be satisfied.

The data-driven approach applied in adaptive output feedback system

has been verified analytically through simulation. This work can be ex-

tended by adopting the proposed scheme into practical applications so as to

contribute to control community.
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