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ABSTRACT

The Eastern Ghats Belt (EGB), India is a Proterozoic orogen which co-evolved
with its Precambrian neighbors (East Antarctica, Australia, China and parts of
Laurentia) during several supercontinental cycles before cratonized with the
Archean Proto-India. Such orogen preserves the evidence of deep-crustal
tectonothermal events in the orogen-interior. However, the exterior of the
orogen (boundary) may preserve the record of both deep- to shallow-crustal
events until the final amalgamation process. Hence, the boundary between the
orogen and the adjacent craton is the best candidate to understand the
comprehensive evolutionary history. To unravel such history of the EGB with
respect to the Proto-India during and prior to its amalgamation, the detailed
petrological (qualitative and quantitative analyses) and the geochronological
investigations are carried out in the present study. The geochronological
investigations include high-resolution U-Pb isotopic analyses of zircon (using
SHRIMP) and texturally well-constrained U-Th-total Pb analyses of monazite
(using EPMA) on the systematically sampled rocks collected in a transect
across the western boundary of the EGB. The deep- to shallow-crustal rocks are
exposed on the present day erosional surface of the study area. The inherited
zircon grains of ~2915-2470 Ma age from the migmatitic quartzofeldspathic
gneiss and the mafic granulite represent the protolith ages of the respective
rocks. Age of the granulite metamorphism is estimated as ~950-900 Ma by

zircon and monazite dating from the charnockitic augen gneisses and aluminous



granulites. A strong decompression-related reaction microtexture and REE
chemical signatures in the associated monazite of the reacting garnet suggest
that decompression by the exhumation occurred at ~800 Ma during the Rodinia
breakup. The zircon grains of the charnockitic augen gneisses also yield the
similar age. The results of this study further revealed that along a narrow zone
near the thrust-bound margin between the EGB and the Proto-India, the entire
crustal segment, from the deep-crustal granulites to the mid-crustal cratonic
amphibolites to the shallow-crustal quartz breccia, all were involved actively in
the thrust-related tectonics during amalgamation of the EGB at ~550-500 Ma.
This youngest imprint of the ~550-500 Ma event erased all the earlier age
histories recorded in the zircon and monazite grains of the granulites from the
orogen-boundary. The older tectonothermal imprints are only preserved in the
rocks farther ~30 km eastward from the thrust boundary, as the thrust-related
tectonics had little or no effect in the orogenic interior. The geochronological
and petrological evidence from the cratonic rock firmly testify that the
amalgamation was achieved during the Gondwana assembly. In the present
study, a comprehensive and geochronologically well-constrained tectonic model
of the EGB, which encompasses its earliest deep-crustal to the latest shallow-
crustal tectonic events up to the stage of final amalgamation is presented by
combining all the geochronological data with qualitative and quantitative
results of the petrological investigations. The new geochronological data

coupled with field evidence and textural evidence from the shallow-crustal rock
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finally suggest that the amalgamation related final thrusting was continued, at

least, up to Late Cambrian, i.e., post-dating the Kuunga orogeny.

il



CONTENTS

ABSTRACT

CONTENTS

LIST OF FIGURES

LIST OF TABLES
ACKNOWLEDGMENTS

Chapter 1: INTRODUCTION

Chapter 2: BACKGROUND GEOLOGY

2.1 Eastern Ghats Belt (EGB)

2.2 Bastar Craton (BC)

2.3 Nature of the western boundary of the EGB
Chapter 3: GENERAL GEOLOGY OF THE WESTERN
BOUNDARY

3.1 Lithological distribution of the exposed rocks

3.1.1 Eastern part (in and around Bhawanipatna town)
3.1.2 Western parts
3.1.2.1 Area A: in and around Parla village
3.1.2.2 Area B: in and around Dharamgarh town

3.2 Structural features of the entire study area

3.3 Targeted samples for multipurpose investigations
Chapter 4: METHODOLOGY

4.1 Qualitative petrological analyses

v

v
viii
X11

X1l

11
11
15
16

20
20
20
21
21
22
23
25
36
36



4.1.1 Optical Microscopy (OM)

4.1.2 Scanning Electron Microscopy (SEM)

4.1.3 SEM-Electron Backscatter Diffraction (EBSD)

4.2 Quantitative petrological analyses
4.2.1 Electron Probe Microanalyzer (EPMA)
4.2.2 X-Ray Fluorescence (XRF)
4.2.3 X-Ray Diffraction (XRD)
4.3 Geochronological analyses
4.3.1 Sensitive High-resolution Ion Microprobe
(SHRIMP Ile)
4.3.2 Electron Probe Microanalyzer (EPMA)
Chapter 5: PETROLOGICAL EVOLUTION
5.1 Petrography and microstructure
5.1.1 Deep-crustal rocks of the EGB
5.1.1.1 Charnockitic augen gneiss
5.1.1.2 Mafic granulite
5.1.1.3 Aluminous granulite
5.1.1.4 Meta-ironstone
5.1.2 Mid-crustal rocks of the BC
5.1.2.1 Migmatitic hornblende gneiss
5.1.2.2 Migmatitic quartzofeldspathic gneiss
5.1.3 Shallow-crustal marginal rocks

5.1.3.1 Foliated quartz breccia

36
36

37
37
38
38
39

39
40
42
42
42
42
44
46
48
48
48
50
51
51



5.2 Mineral chemistry
5.2.1 Garnet
5.2.2 Orthopyroxene
5.2.3 Clinopyroxene
5.2.4 Plagioclase
5.2.5 Spinel
5.2.6 Hornblende
5.3 Geothermobarometry
5.4 Thermodynamic modeling of metamorphic evolution
Chapter 6: GEOCHRONOLOGICAL DATA
6.1 Zircon U-Pb SHRIMP Ile data
6.1.1 Charnockitic augen gneiss
6.1.2 Mafic granulite
6.1.3 Aluminous granulite
6.1.4 Meta-ironstone
6.1.5 Migmatitic hornblende gneiss
6.1.6 Migmatitic quartzofeldspathic gneiss
6.1.7 Foliated quartz breccia
6.2 Monazite U-Th-total Pb EPMA data
6.2.1 Charnockitic augen gneiss
6.2.2 Aluminous granulite
6.2.3 Meta-ironstone

6.2.4 Foliated quartz breccia

vi

52
52
53
54
54
55
55
55
57
77
77
77
80
81
83
84
85
85
88
88
89
91
91



6.2.5 Migmatitic quartzofeldspathic gneiss
Chapter 7: DISCUSSIONS AND CONCLUSIONS

7.1 Significance of the Mesoarchean to Mesoproterozoic ages
7.1.1 Mafic granulite
7.1.2 Migmatitic hornblende gneiss and migmatitic

quartzofeldspathic gneiss

7.1.3 Foliated quartz breccia

7.2 Significance of the Neoproterozoic to Late Cambrian ages
7.2.1 ~1000-900 Ma ages
7.2.2 ~850-775 Ma ages
7.2.3 ~550-495 Ma ages

7.3 Age-zonation across the boundary of orogen

7.4 Age-integrated tectonic modeling

7.5 Supercontinent correlation

7.6 Conclusions

References

vii

92
138
138
138

140
141
141
142
144
146
150
152
154
156
162



LIST OF FIGURES

Chapter 1

Figure 1: Generalized geological map of the EGB depicting subdivisions into
different provinces (Fig. 1a) and isotopic domains (Fig. 1b) according to

Dobmeier and Raith (2003) and Rickers et al. (2001), respectively.

Chapter 3

Figure 2: A broad geological map is showing lithological variations in an E-W
transect across the EGB-BC boundary. The rectangular boxes mark the precise
study areas (eastern part as Fig. 3, south-western part as Fig. 4a and north-
western part as Fig. 4b).

Figure 3: A detailed geological map in and around Bhawanipatna town is
showing lithological distribution along with the structural data.

Figure 4a: A detailed geological map in and around Parla showing the
lithological distribution along with the structural data.

Figure 4b: A detailed geological map in and around Dharamgarh town showing
lithological distribution along with the structural data.

Figure 5: Field exposure-scale photographs of the studied rocks.

Figure 6: Structural features of the rocks from the western boundary of the

EGB.

viil



Chapter 5

Figure 7: Microphotographs of the three samples of the charnockitic augen
gneisses.

Figure 8: Microphotographs of the two samples of the mafic granulites.

Figure 9: Microphotographs of two varieties of the aluminous granulite and the
meta-ironstone.

Figure 10: Microphotographs of the migmatitic hornblende gneiss, the
migmatitic quartzofeldspathic gneiss and the foliated quartz breccia.

Figure 11: P-T pseudosection for the mafic granulite (sample BP12B)
constructed in the chemical system Na;O-CaO-FeO-MgO-Al>03-Si02-H>0-

Ti02-MnO.

Chapter 6

Figure 12: Internal structure of zircon grains and U-Pb SHRIMP data plots of
the charnockitic augen gneiss (sample BP1).

Figure 13: Internal structure of zircon grains and U-Pb SHRIMP data plots of
the charnockitic augen gneiss (sample BP3).

Figure 14: Internal structure of zircon grains and U-Pb SHRIMP data plots of
the charnockitic augen gneiss (sample BP2)

Figure 15: Internal structure of zircon grains and U-Pb SHRIMP data plots of

the mafic granulites (sample BP12B and BP4).

X



Figure 16: Internal structure and inclusion study of the zircon grains along with U-Pb
SHRIMP analytical plots of the aluminous granulites (sample BP12A and sample
BP12C).

Figure 17: Internal structure of zircon grains and U-Pb SHRIMP data plots of
the meta-ironstone (sample DG33E).

Figure 18: Internal structure of zircon grains and U-Pb SHRIMP data plots of
the migmatitic hornblende gneiss (sample DG33F).

Figure 19: Internal structure of zircon grains and U-Pb SHRIMP data plots of
the migmatitic quartzofeldspathic gneiss (sample BP6).

Figure 20: Internal structure of zircon grains and U-Pb SHRIMP data plots of
the foliated quartz breccia (sample DG17B).

Figure 21: Internal structure of monazite grains and U-Th-total Pb EPMA
monazite data plots of the charnockitic augen gneiss (sample BP1).

Figure 22: X-ray elemental mapping and U-Th-total Pb EPMA dating of
monazite grains from the aluminous granulite (sample BP12A).

Figure 23: X-ray elemental mapping and U-Th-total Pb EPMA dating of
monazite grains from the aluminous granulite (sample BP12C)

Figure 24: Internal structure of monazite grains and U-Th-total Pb EPMA
monazite data plots of the meta-ironstone (sample DG33E) and the foliated
quartz breccia (sample DG17B).

Figure 25: Internal structure of monazite grains and U-Th-total Pb EPMA

monazite data plots of the migmatitic quartzofeldspathic gneiss (sample BP6)



Chapter 7

Figure 26: Different metamorphic stages on P-T plane correlated with high-
resolution and texturally well-constrained geochronological data.

Figure 27: The maximum deposition age of foliated quartz breccia calculated
using the detrital monazite geochronological data.

Figure 28: The probability density diagrams showing the spatial variation of the
zircon 297Pb/?%Pb ages of different geological events in a transect across the
western boundary of the EGB.

Figure 29: The tectonic evolutionary model of the EGB during and before its

amalgamation with the Proto-India (marked here as the Bastar Craton).

X1



LIST OF TABLES
Chapter 1
Table 1: Summary of ages recorded previously from the western boundary of

the EGB.

Chapter 5
Table 2: Summary of textural and geochronological data of the studied samples.
Table 3: Representative mineral chemical data of the studied rocks.

Table 4: Whole rock XRF data of mafic granulite (sample BP12B).

Chapter 6

Table 5: Analytical results of SHRIMP U-Pb zircon geochronology.

Table 6: Analytical results of EPMA U-Th-total Pb monazite geochronology.

Xii



ACKNOWLEDGMENTS

From the core of my heart, I am thankful to my supervisor, Dr. Kaushik
Das for his valuable advice and constant support throughout my Ph.D. research.
His unique suggestions and consistent encouragement made my Ph.D. research
very productive. I am indebted to Prof. Hiroshi Hidaka for giving an excellent
opportunity to pursue my Ph.D. at the Hiroshima University. His academic
assistance during the span of the Ph.D. was very crucial. I appreciate the
thorough guidance from Prof. Sankar Bose during the Ph.D. research. I am
grateful to him for his help during the fieldworks in India. I would like to
express special thanks to Prof. Jun-ichi Ando for his critical comments to
improve my Ph.D. work. I would like to acknowledge Prof. Madhusoodhan
Satish-Kumar and Mr. Proloy Ganguly for their constructive comments for the
betterment of the Ph.D. research. The help from Dr. Kosuke Kimura during and
before SHRIMP analyses are unforgettable. I am thankful to Dr. Yasutaka
Hayasaka and Dr. Yasuhiro Shibata for their assistance during EPMA analyses. |
would like to thank all the staffs and collegues of the Department of Earth and
Planetary Systems Science, Hiroshima University. This research is funded by
Monbukagakusho Honors Scholarship from Japan Student Services
Organization (JASSO), 2015-2016, 2017-2018 and Ishihara Endowment Fund
from Department of Earth and Planetary Systems Science, Hiroshima
University, 2017. Finally, I am grateful for the immense patience and consistent
help and encouragement from my parents, brother, and Miss Sayoni Banerjee

during my Ph.D. research.

xiii



Chapter 1:

INTRODUCTION

Orogenic belts are one of the key crustal domains that record the
signature of continental crustal dynamics and its recycling through the
geological time. Such orogenic belts eventually culminate and cratonized with
pre-existing cratonic crust through accretionary and collisional tectonics
(Condie, 2005; Cawood et al., 2009). These orogenic belts, especially of
Proterozoic time, are usually known to experience multiple phases of
tectonothermal events prior to the final cratonization due to its prolonged trail
of tectonic cyclicity during various supercontinent build-up and breakup
episodes (Ennih and Liégeois, 2008; St-Onge et al., 2009; Brown, 2007). The
margin of the orogenic belt, compared to the orogen’s interior, are expected to
better preserve the evidence of such multiple tectonothermal histories as the
boundary of the orogen participated more actively during the cratonization.
Hence, the deep- to shallow-crustal marginal rocks of the orogenic belt can
elucidate the understanding of the tectonic evolution of an orogenic belt and the
processes of its final amalgamation, (Gray et al., 1997).

Careful analysis of petrological and structural data linked with high-
precision and texturally well-constrained geochronological data can help in
determining the age-integrated tectonothermal evolution and growth history of
ancient orogens prior to and during its amalgamation. Such history can also be

used as a tool for transcontinental correlation involving dispersed continental



fragments (Zegers et al., 1998), which were once co-evolved in several
Supercontinental cycles since Precambrian time. However, the exercise is
difficult as the majority of the high-grade rocks lose primary mineralogical and
textural features during multiple phases of metamorphism and deformation
since Precambrian time. Generally, it is observed that the bulk rock chemistry,
apart from P-T-fluid conditions, controls the development and preservation of
mineralogical and textural records of different tectonothermal events that a
high-grade terrain suffers. The same is applicable for the datable minerals like
zircon and monazite from various bulk rock compositions (Kelsey et al., 2008),
which often record the different isotopic/chemical signatures in response to
different tectonothermal event(s) in a poly-deformed, poly-metamorphosed
terrain (Das et al., 2011; Bose et al., 2016a). Thus, the ages of different
tectonothermal events can be calculated from the datable minerals which were
isotopically or chemically affected by the associated thermal events. Therefore,
depending on the different bulk rock compositions for various lithologies, it is
rare for a particular rock to record all the age imprints of different
tectonothermal pulses. For that reason, it is particularly important to inspect all
the possible rock types present at the boundary between the craton and the
orogenic belt. Thus, the integration of structural and tectonothermal histories
with high-precision geochronological data from deep- to shallow-crustal
marginal rocks will not only elucidate the local geological history but also can

play a pivotal role for transcontinental correlation.



Such orogen-craton juxtaposition can be found in the Precambrian
continental blocks, for example, India. Peninsular India is composed of multiple
Archean cratonic blocks which are bordered by several Proterozoic orogenic
belts (Southern Granulite Terrain in the south and Eastern Ghats Belt in the
east). Eastern Ghats Belt (EGB), being one of such Proterozoic orogenic belts,
drew the attention of the geoscientists for the last two decades due to its
regional-scale deep-crustal metamorphism and strategic position at least in the
three supercontinent reconstructions. The tectonic activities of the EGB
culminated through cratonization with the Archean Proto-India [Bastar Craton
(BC) and Dharwar Craton in the west, Singhbhum Craton in the north; Fig. 1].
The south of the Godavari rift, i.e., the southern EGB cratonized with the Proto-
India in Mesoproterozoic time during Columbia assembly (Vijaya Kumar et al.,
2011; Bose et al., 2011; Dasgupta et al., 2017, 2013; Sarkar et al., 2014).
However, the cratonization history of the northern EGB with the Proto-India is
still debatable, i.e., during Rodinia assembly (~980-940 Ma of Chattopadhyay
et al., 2015) or during Gondwana assembly (~550-500 Ma of Ghosh et al.,
2016; Dobmeier et al., 2006; Das et al., 2008; Biswal et al., 2007; Bhadra et al.,
2004). The amalgamation of the northern EGB with the Proto-India along its
northwestern margin was achieved through “hot” over “cold” thrusting (Gupta
et al., 2000; Bhadra et al., 2004; Gupta, 2012). The age of this thrusting is
intuitively considered as ~550—-500 Ma as it is the youngest age recorded, so
far, from the boundary and the thrusting is the last tectonic event. (e.g., Gupta

et al., 2000; Bhadra et al., 2004; Das et al., 2008; Upadhyay, 2008; Gupta,



2012). However, to delineate the exact age of amalgamation, the attempt could
have been made to inspect the adjacent cratonic rocks for petrological and
geochronological evidence which may record thermal imprints of thrusting of
the “hot” EGB over the “cold” BC during amalgamation. It is noteworthy that
the geochronological imprints of ~550-500 Ma are reported from the rocks
adjacent to the shear zones (Dobmeier and Raith, 2003), which suggests a
unique physico-chemical environment might have prevailed along a narrow area
adjacent to these shear zones. However, the understanding of such physico-
chemical environment is incomplete due to the lack of high-resolution and
texturally well-constrained geochronological data particularly along a geo-
transect along these shear zones.

Two older age peaks at ~1100-900 Ma and ~850-775 Ma, apart from
the above-mentioned ~550-500 Ma age peak, were recorded from the rocks of
the northern EGB. The UHT-HT granulite facies metamorphism in between
~1100-900 Ma is recorded from the rocks of the central part of the EGB (Shaw
et al., 1997; Mezger and Cosca, 1999; Upadhyay et al., 2009; Das et al., 2011;
Bose et al., 2011; Korhonen et al., 2013), which is succeeded by an imprint at
~850-775 Ma (Sarkar et al., 1989; Shaw et al., 1997; Simmat and Raith, 2008)
with unknown tectonic history. However, this ~850—775 Ma tectonothermal
event is reported sporadically from different areas within the northern EGB
(Bose at al., 2016b). Several similar ages are also reported from the EGB’s
Precambrian neighbor (during the Rodinia supercontinent), East Antarctica

(Shiraishi et al., 2008; Tong et al., 1995; Black et al., 1987). The documentation



of widespread ~850—775 Ma event from the East Antarctica implies that the
EGB also might have experienced the similar tectono-metamorphic pulses, but
so far limited from the EGB due to lack of high-resolution geochronological
data especially from the marginal rocks. A careful and tactical investigation can
be helpful to record the similar age imprints and associated textural
development from the marginal rocks of the EGB. Although the tectonic event
of ~850-775 Ma is less understood, the recent reports from the Chilka domain
suggest a possible decompression of the deep-crust (Bose et al., 2016b).

The evidence of such multiple tectonothermal events ranging in
between ~1100-500 Ma are not found along a single transect as these events are
spatially separated within the EGB. These areas belong to different domains
having variegated metamorphic, structural, and age histories. These issues
restrict to establish a petrogenetically, structurally and geochronologically well-
integrated unified tectonic evolutionary model of the northern EGB within the
above-mentioned time range. Thus, it is necessary to study an “appropriate”
area which experienced all these tectonothermal pulses occurred in between
~1100-500 Ma in order to construct the comprehensive tectonic model. As
discussed earlier, the most suitable candidates would be the deep- to shallow-
crustal rocks of a transect across the postulated boundary between the orogenic
belt and its adjacent craton, in which all the evidence of earliest deep-crustal
metamorphism to final cratonization might have been preserved.

The deep-crustal granulites, mid-crustal cratonic rock and shallow-

crustal sedimentary rock from a transect across the northwestern margin



between the EGB-BC are targeted in this study to understand the metamorphic,
structural, and geochronological evolution during and prior to the amalgamation
of the EGB with the Proto-India. The high-resolution and texturally well-
constrained geochronological data from the systematically sampled rocks are
very rare (Mezger and Cosca, 1999 among others, as summarized in Table 1),
although the rocks across this transect is well-studied in terms of structural and
metamorphic evolution (Bhadra et al., 2004; Biswal et al., 2007; Gupta et al.,
2000; Bhattacharya, 2004). The multi-stage tectonic evolutionary model of the
EGB (Bhadra et al., 2004; Bhadra and Gupta, 2016; Gupta, 2012; Gupta et al.,
2000) cannot be termed age-integrated due to the lack of such geochronological
data.

Hence, the present study focuses on the detailed qualitative and
quantitative petrological investigations, extensive high-resolution isotopic and
texturally well-constrained in-situ geochronological analyses (zircon U-Pb
SHRIMP and monazite U-Th-total Pb EPMA) on the deep-crustal granulites, the
mid-crustal amphibolites, and the shallow-crustal sedimentary rocks. Finally, an
age-integrated crustal-scale tectonic model has been offered by collating all
these findings with structural data, which will elucidate the pre- to syn-
amalgamation history of the EGB and its status in the supercontinental
evolution.

The background geological information corresponding to the EGB and
the adjacent craton (BC) is provided in the Chapter 2. This includes the

previously reported data of the petrological, structural, and available



geochronological results of these two terrains. Field-based general geology of
the entire study area is discussed in the Chapter 3, which provides the
mesoscopic description and the field relationship of the studied samples. The
methodologies for the multipurpose investigations are outlined in the Chapter 4.
The Chapter 5 is dedicated to understand the petrological evolution of the
studied rocks, and the results of geochronological analyses of these rocks are
presented in the Chapter 6. In the final chapter (Chapter 7), the interpretations
of the age data are carried out by combining all the qualitative and quantitative
mesostructural and microstructural evidence, which finally lead to establish an
age-integrated tectonic model of the EGB with respect to the adjacent Archean

Proto-India.
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Chapter 2:
BACKGROUND GEOLOGY

2.1 Eastern Ghats Belt (EGB)

The Eastern Ghats Belt (EGB) is an arcuate-shaped ~1000 km long
Proterozoic orogenic belt (Figs. 1a and 1b), which is characterized by regional-
scale deep-crustal high-temperature/ultra-high temperature (HT-UHT)
metamorphism (Lal et al., 1987; Sengupta et al., 1990, 1999; Dasgupta et al.,
1995; Bose et al., 2000; Das et al., 2006; Korhonen et al., 2013). The first
subdivision of the EGB into different longitudinal zones was based on the
distribution of different lithologies (Nanda and Pati 1989; Ramakrishnan et al.,
1998). However, such classification failed to explain the complex evolutionary
histories of different shear-zone-bound blocks of the EGB.

Rickers et al. (2001) subdivided the EGB into four different domains
based on Nd model ages, Rb-Sr isotopic data, and Pb-Pb isotopic data.
According to their classification, the western boundary of the EGB belongs to
domain 1 (Fig. 1b), which is further subdivided into domain 1A (south of the
Godavari Rift) and 1B (north of the Godavari Rift). Nd isotope Tpm age of
domain 1A for the orthogneisses and paragneisses are approximately 2700-2300
and 3200-2800 Ma, respectively (Rickers et al., 2001), while the metamorphism
occurred at approximately 1760-1540 Ma (Mezger and Cosca 1999; Upadhyay
et al., 2009; Bose et al., 2011; Sarkar et al., 2014). From domain 1B, the Nd

isotope Tpm age of orthogneisses range between ~3900 and 3200 Ma, while the
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high-grade metamorphism occurred at ~2800 Ma (Kovach et al., 2001). The
domain 2 is bounded against domain 1 by the Sileru Shear Zone in the west and
the Nagavalli-Vamasadhara Lineament in the east (Fig. 1b). Isotopic signatures
revealed homogeneous Nd isotope Tpwm ages of ~2100-2500 Ma for the
metasediments. However, the orthogneisses have highly variable model ages of
~3200-1800 Ma. To the north of domain 2, domain 3 is bounded by the
Nagavalli-Vamasadhara Lineament to the south and the Mahanadi Lineament to
the north (Fig. 1b), and shows homogeneous Nd isotope Tpm ages of ~2200—
1800 Ma for both the orthogneisses and the metasediments. Further to the north
of the domain 3 up to the southern boundary of the Singhbhum Craton, the
domain 4 is situated (Fig. 1b). The metasediments of the domain 4 display Nd
isotope Tpm ages of ~2800-2200 Ma, whereas the orthogneisses show Nd
isotope Tpm age of ~3200 Ma. The study area of this research situated at the
north of domain 1B (Fig. 1b) according to this subdivision

The latest and most widely used subdivision of the EGB was proposed
by Dobmeier and Raith (2003) into four provinces according to the different
style and timing of metamorphism and structural evolution. The south of
Godavari rift is termed as Krishna Province (Fig. 1a), which is composed of
granulite and low- to medium-grade schist belt of common Paleoproterozoic
evolution. A short-lived magmatism at ~1720-1700 Ma (Kovach et al., 2001)
was followed by a granulite facies metamorphism between ~1620-1540 Ma
(Sarkar and Schenk, 2016) in the Krishna Province. The northwestern boundary

of the EGB, Jeypore Province (Fig. 1a), extends towards southwest from
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Bhawanipatna town to the BC. The high-grade metamorphism occurred at
~2800 Ma (Kovach et al., 2001). Ductile deformation gave rise to well-defined
gneissic layering during the peak metamorphic condition. Locally, later
overprinting of medium-grade metamorphism recorded along narrow mylonitic
shear zones., the central portion of the EGB, the Eastern Ghats Province (Fig.
la), extend from the east of the Jeypore Province to the Bay of Bengal in the
east. The Eastern Ghats Province (EGP) is composed of extremely deformed
granulite facies rocks. Alkaline magmatism occurred in this province at ~1500
Ma (Sarkar and Paul, 1998; Aftalion et al., 2000), while granulite facies
metamorphism occurred between ~1100-900 Ma (Das et al., 2011; Bose et al.,
2011; Korhonen et al., 2013). Extensive evidence of felsic volcanism at ~2800
Ma is reported from the several fault-bounded Rengali Province (Misra et al.,
2000; Fig. 1a) along the northern boundary of the EGB). The overall
characteristic features of Rengali Province favor its exclusion from the EGB.
The present study area is located at the north of Jeypore Province (Fig. 1a).
The predominant granulite facies metamorphism at the Jeypore
Province occurred during ~1100-1000 Ma (Upadhyay and Raith, 2006) with an
older report of charnockite emplacement at ~3400-2700 Ma (Kovach et al.,
2001). This age of metamorphism is broadly equivalent to the age of granulite
facies metamorphism (~1100-900 Ma) of Eastern Ghats Province (Shaw et al.,
1997; Mezger and Cosca, 1999; Upadhyay et al., 2009; Bose et al., 2011; Das et
al., 2011; Korhonen et al., 2013). The younger HT metamorphism at ~950-930

Ma is contemporaneous to the granulite facies metamorphism in parts of the
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Rayner Complex, East Antarctica (Kelly et al., 2002; Harley et al., 2013;
Morrissey et al., 2015), which implies that, at least, up to ~900 Ma, the EGB
was co-evolving with East Antarctica (Bose et al., 2011). Following the UHT-
HT events, a comparatively weak age-peak at ~850-800 Ma has been identified
sporadically from different parts within the EGB. However, disagreements
persist regarding the status of this thermal event. For example, Sarkar et al.
(1989) reported the emplacement of alkaline pluton at 856 + 18 Ma in Koraput,
whereas Shaw et al. (1997) suggested the possible granite intrusion occurred at
Rayagada during ~800 Ma. Simmat and Raith (2008) reported ~800 Ma
monazite chemical ages from Anantagiri and Gokavaram areas. Recent report of
~800 Ma age from the granulites of Chilka domain suggest the possible
decompression of the deep-crust (Bose et al., 2016b) before the final
amalgamation of the EGB with the Proto-India. Nanda and Pati (1989) opined
that during the amalgamation of the EGB with the Proto-India at ~550-500 Ma,
the granulite facies rocks were retrogressed to granulite-amphibolite
transitional facies along the western boundary. On the other hand, another
school of thought invoked that the granulite facies metamorphism was
prevailing during the amalgamation with the adjacent BC (Simmat and Raith,
2008; Bhadra et al., 2004; Bhattacharya, 2004; Das et al., 2008; Gupta and

Bhattacharya, 2000; Gupta et al., 2000; Neogi and Das, 2000).
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2.2 Bastar Craton (BC)

The adjacent Bastar Craton (BC) to the west of the EGB (Fig. 1a and
1b) is composed of tonalite-trondhjemite gneisses of ~ 3500-2500 Ma ages
(Sarkar et al., 1993; Ghosh, 2004), granitoids of 2500—2200 Ma ages (Sarkar et
al., 1981; Krishnamurthy et al., 1988; Pandey et al., 1989) and greenstone belts
(Mondal et al., 2006). Several dolerite, rhyolite, and trachyte dykes have
intruded within the craton during ~1400 Ma (Mallikarjuna Rao et al., 1995).

These mid-crustal rocks of the BC also acted as a basement of several
Mesoproterozoic sedimentary basins (the Singhora Basin, the Khariar Basin, the
Ampani Basin, the Sukma Basin, and the Indravati Basin) adjacent to the thrust
boundary between the EGB and the BC. These basins are roughly aligned in a
northeast-southwest trend. Recently, several geochronological data have been
published that helped to unravel the sedimentation history of some the basins.
Chronostratigraphic markers, such as rhyolitic ignimbrite, ash beds, bracketed
the sedimentation in between ~1600—1000 Ma in the Chhattisgarh Basin
(Patranabis-Deb et al., 2007, Das et al., 2009; Das et al., 2016; Chakraborty et
al., 2015), Khariar Basin and Ampani Basin (Das et al., 2015) Traditionally, the
Sukma Basin and Indravati Basin are considered as a part of the Chhattisgarh
succession to the north, and the Cuddapah and Pakhal successions to the south
(Kale and Phansalkar, 1991). The youngest zircon populations from the Ampani
Basin show that the sedimentation was younger than 2079 + 44 Ma (Saha et al.,
2016). The emplacement age of the tuffaceous rock unit from the middle part of

the Ampani stratigraphy has recently been dated as 1446 + 21 Ma, which
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suggests that the sedimentation in the Ampani Basin was restricted between
~2050 Ma and 1400 Ma (Saha et al., 2016). It is interesting to note that the
basement granite gneiss (incidentally, the closest to the present study area) of
sedimentary succession of the Ampani Basin yields an emplacement age of
2489 + 9 Ma (Saha et al., 2016). The presence of mylonitized pebbles within a
conglomerate of the Khariar Basin suggested that the sedimentation was
syntectonic which continued up to ~517 Ma (Ratre et al., 2010). Recently,
Bhadra and Gupta (2016) invoked that the Khariar Basin evolved through, at
least, two phases during the amalgamation of the EGB. They further proposed
that the Khariar Basin closed and developed as a foreland fold-thrust belt
(accretionary wedge) during the final phase of the orogeny along the
northwestern boundary of the EGB. The present study area lies south of the
Khariar Basin and east of the Ampani Basin, where both deep-crustal granulitic,

mid-crustal cratonic and shallow-crustal sedimentary rocks are exposed.

2.3 Nature of the western boundary of the EGB

Two outcrops of alkaline complexes are exposed near the study area
along the western boundary the EGB. These are the Khariar alkaline complex
and Koraput alkaline complex (Fig. 1a). However, geochronological data,
especially for the Khariar alkaline rocks, are debatable. Aftalion et al. (2000)
and Upadhyay and Raith (2006) suggested that the emplacement of alkaline
rocks occurred at ~1500 Ma, which were metamorphosed during ~550 Ma. On

the contrary, Biswal et al. (2007) invoked that these rocks emplaced in between
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576511 Ma. In the case of Koraput alkaline complex, Sarkar et al. (1989)
calculated the emplacement age as 856 + 18 Ma, whereas Nanda et al. (2008)
proposed that these rocks suffered post-intrusion granulite facies metamorphism
during ~870-700 Ma (U-Pb zircon age data). Generally, it is observed that the
dominant planar fabric is a solid-state deformation structure (Gupta et al., 2005;
Das et al., 2008; Nanda et al., 2008; Upadhyay, 2008), which was overprinted
by a thrust-related fabric (Das et al., 2008; Upadhyay, 2008). Structural study
along the northwestern boundary of the EGB suggests that the tectonic
discontinuity between the EGB and the BC is a thrust contact (Neogi and Das,
2000; Dobmeier and Raith, 2003; Biswal et al., 2007), which is geophysically
marked by a steep gravity gradient (Subrahmanyam and Verma, 1986). This
tectonic discontinuity is characterized by the presence of wide mylonitic belt
along this thrust contact (Gupta et al., 2000; Neogi and Das, 2000; Bhadra et
al., 2003, 2004). From the microstructural observation, the sense of vergence of
the thrust is determined as top-to-the-west (Gupta et al., 2000; Bhadra et al.,
2004). On the current erosional surface, the contact zone is defined by the last
appearance of granulites on the amphibolite facies cratonic rocks while the
actual thrust planes could be buried under the EGB thrust sheets towards the
eastern side of the postulated boundary. The BC rocks present within the EGB
as “tectonic window” (Bhadra et al., 2004; Bhadra and Gupta, 2016), which
may vindicate such possibility. The amalgamation of the EGB with the Proto-
India achieved through this final phase of thrusting. The age of the final

thrusting is intuitively considered as ~550-500 Ma (Bhadra et al., 2004; Biswal
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et al., 2007; Das et al., 2008; Upadhyay, 2008) as thrusting was last
deformation event and ~550-500 Ma age is the youngest date recorded from
this region. However, zircon grains from the nepheline syenite of this area
yielded ~550-500 Ma date (Biswal et al., 2007). This emplacement of the
deformed nepheline syenite is claimed as syn-tectonic emplacement during the
thrusting (Biswal et al., 2007). Thus, they concluded that the amalgamation of
the EGB with the BC occurred during ~550—-500 Ma based on such observation
due to the thrusting of the “hot” EGB over the “cold” BC (Gupta et al., 2000;
Bhadra et al., 2004; Gupta, 2012).

Several age pulses are recorded in between ~1500-500 Ma from the
marginal rocks of the EGB. However, the interpretations of these age peaks
with the associated tectonothermal events is controversial in the existing
literature due to lack of texturally well-constrained and high-resolution
geochronological data from the systematically sampled rocks, which restricts to
offer a comprehensive and age-integrated unified tectonic model of the northern
EGB. As discussed earlier, the most suitable study area for such systematic
sampling would be the transect across the craton-orogenic belt boundary, which
might preserve the earliest to latest tectonothermal histories of the orogenic
belt. Thus, the marginal rocks of the western boundary of the EGB is targeted in
the present study for detailed petrological investigations and isotopic and
texturally well-constrained geochronological analyses. The combination of
microscopic petrological investigations and sophisticated geochronological data

with the mesoscopic field evidence finally will be helpful to advance an age-
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integrated tectonic model of the EGB. In the following Chapter 3, the field-
based general geology of the study area across the western boundary is
described in detail, whereas the results of microscopic petrological
investigations and geochronological analyses are described in Chapter 4 and 5,

respectively.
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Chapter 3:
GENERAL GEOLOGY OF THE WESTERN BOUNDARY

3.1 Lithological distribution of the exposed rocks

The study was carried out in a ~60 x 30 km transect across the north-
western boundary of the EGB, where seven lithologically different rocks are
exposed on the surface (Fig. 2). These rocks are charnockitic augen gneiss,
mafic granulite, aluminous granulite, meta-ironstone, migmatitic
quartzofeldspathic gneiss, migmatitic hornblende gneiss and foliated quartz
breccia. The entire field area was subdivided into three parts (Fig. 2) to
understand the regional geology and the field relationship of the rocks in detail,
i.e., the eastern part (in and around the Bhawanipatna town; Fig. 3), the area A
or the south-western part (in and around the Parla village; Fig. 4a), and the area
B or the north-western part (in and around the Dharamgarh town; Fig. 4b). The
lithological distribution is described in detail for each area in the following
sub-sections (3.1.1 and 3.1.2). The structural features of the entire study area
are summarized in the sub-section 3.2, whereas detailed mesoscopic to

microscopic description of the rocks are discussed in Chapter 5.

3.1.1 Eastern part (in and around Bhawanipatna town)
The area is located ~60 km eastward from the postulated western
boundary of the EGB (EGBSZ of Gupta et al., 2000; Fig. 2). The geological

map in and around the study area is presented in the figure 3. The dominant
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rock types of this region are charnockitic augen gneiss and migmatitic
quartzofeldspathic gneiss (Fig. 5a and 5b). However, the actual lithological
contact between the charnockitic augen gneiss and the migmatitic
quartzofeldspathic gneiss is not clear in the field. Thus, the exact contact cannot
be determined in and around the mapped area. The migmatitic
quartzofeldspathic gneiss is brown-colored which locally hosts isolated lenses
of dark-colored mafic granulite (Fig. 5¢). The charnockitic augen gneisses have
a greasy appearance in the outcrop. The field observation revealed that the both
coarse-grained and fine-grained zones occurred within a same body the
charnockitic augen gneiss. A sharp boundary differentiates the narrow fine-
grained portion from the coarse-grained portion, which possibly indicates that
the rock preserves both high-strain zones (fine-grained) and low-strain zones

(coarse-grained) (Fig. 5a) in the boundary shear zone.

3.1.2 Western parts
3.1.2.1 Area A: in and around Parla village

This area is located ~15 km eastward from the postulated western
boundary of the EGB (EGBSZ of Gupta et al., 2000; Fig. 2). The geological
map in and around the study area is presented in figure 4a. The area is
dominantly composed of aluminous granulite, mafic granulite, meta-ironstone,
migmatitic hornblende gneiss and migmatitic quartzofeldspathic gneiss. The
mafic granulite occurs as a continuous band between the aluminous granulite

and the migmatitic quartzofeldspathic gneiss (Fig. 4a). This variety of mafic
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granulite is dark-colored and contains porphyroblastic garnet grains (Fig. 5d).
The leucocratic layers around porphyroblastic garnet grains are mostly
composed of plagioclase (Fig. 5d). Two types of aluminous granulite were
observed in the field. The brownish white-colored aluminous granulite contains
megascopic porphyroblasts of garnet grains (~5 cm in diameter; Fig. Se),
whereas the other variety is dark-brown in color and contains elongated garnet
grains of varying sizes (Fig. 5f). The garnet grains of this rock are elongated in
shape possibly in response to deformation (Fig. 5f). Locally, the aluminous
granulite hosts small bodies of meta-ironstone (Fig. 4a). The meta-ironstone is
dark-brown colored rock and contains porphyroblastic garnet (Fig. 5g). In
places, pockets of aluminous granulite were found within the migmatitic
quartzofeldspathic gneiss (Fig. 4a). The migmatitic hornblende gneiss of the BC
occurs within the EGB as a “tectonic window” (Bhadra et al., 2004). The
migmatitic hornblende gneiss has a greasy appearance in the outcrop-scale (Fig.
5h). The thrust-plane was inferred based on the field relationship between the
migmatitic hornblende gneiss and the adjacent aluminous granulite (Fig. 4a).
3.1.2.2 Area B: in and around Dharamgarh town

The area is located very close to the postulated western boundary of the
EGB (~5 km eastward of EGBSZ of Gupta et al., 2000; Fig. 2). The geological
map in and around study area is presented in the figure 4b. Major part of the
area is composed of the migmatitic quartzofeldspathic gneiss. The foliated
quartz breccia occurs as a linear body adjacent to the thrust boundary between

the EGB and the BC (Fig. 4b). The pale yellow-colored rock contains the same
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regional foliation with an attitude of 0°/45° E (Fig. 5i). Discontinuous and
narrow bands of the mafic granulite are hosted within the foliated quartz
breccia and the migmatitic quartzofeldspathic gneiss (Fig. 4b). Isolated lenses
of the porphyritic charnockite within the migmatitic quartzofeldspathic gneiss

was documented from the south of this region (Fig. 4b).

3.2 Structural features of the entire study area

The entire study area is dominantly composed of deformed rocks, such
as the migmatitic quartzofeldspathic gneiss, charnockitic augen gneiss, mafic
granulite, and aluminous granulite. The early fabric of these high-grade rocks is
a banding (S1) which is defined by the segregated granulite facies minerals.
This S1 banding is attributed to the earliest stage of deformation (D). Previous
workers carried out high-resolution and extensive structural investigations in
this region (Das et al., 2008; Biswal et al., 2007; Bhadra et al., 2004; Gupta et
al., 2000). The outcome of their studies pointed out that the Si is isoclinally
folded during subsequent stage deformation, but with a development of a weak
fabric. However, such structures were not observed in the present study. These
rocks were intensely deformed by another phase of deformation (Dz), which
produced a regional-scale penetrative foliation (S2). In the present study, D»-S>
corresponds to the D3m-S3m of Bhadra et al. (2004) and Gupta et al. (2000). The
S, foliation is the dominant fabric of the entire area. Thus, the early structural
features prior to S>-D» were largely obliterated and/or overprinted by S»-D».

Hence, S1/S» transposed foliation is only identifiable in most of the places
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(Figs. 6a and 6b). The S, foliation at the eastern part is NW-SE trending and
steeply-dipping towards east (300-330°/60-70° E). The S» foliation is striking
almost N-S and moderately dipping towards east near the western boundary
(333°/35° E; average of data taken in two areas of western parts; Fig. 6d).
Adjacent to the western boundary of the EGB, two exposures preserve the
folded Si with the formation of axial planar Sz fabric. The folds are asymmetric
and close to tight in nature which are verging consistently towards the west
(Fig. 6¢). These axial planar S» foliations are low- to moderate dipping (Fig.
6¢). The mean orientation of the girdle (328°/31° E; Fig. 6d) which contains the
intersection lineation is identical to the mean attitude of the of S planes. The
S| fabric was offset along the S» foliation plane (Fig. 6f).

The S, foliation being a shear fabric developed due to the D> shear
deformation is established by studying several kinematic markers, such as the
asymmetricity of the sigmoidal augen (Fig. 6g) and asymmetrically folded Si.
The occurrence of the deep-crustal granulites on the mid-crustal amphibolitic
gneiss along the shear plane (Fig. 4a) indicates thrusting of the EGB on the BC.
The change in regional-scale dip amount of the S; foliation from east to west
(steeper in the eastern side and gentler near the western boundary) is, thus, due
to the westward propagation of the thrust plane. The consistent westward
asymmetricity of the kinematic markers and westward disruption of the S
fabric along the S; fabric (Fig. 6f) suggest top-to-the-west sense of thrusting on
the shear plane. The structural features described in this study are in accordance

to the results obtained by the previous workers of this area (Bhadra et al., 2004;
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Gupta et al., 2000; Das et al., 2008; Biswal et al., 2007). The schematic diagram
(Fig. 6h) depicts the structural features of the western boundary of the EGB,
where the degree of deformation in terms of asymmetricity of the interfolial
folds and augen, and flattening/elongation of grains decreases from the thrust
boundary to the interior of the orogen. The asymmetric folds are more open
towards the orogenic interior as the effect of thrust-related deformation was

weak towards the interior of the orogen.

3.3 Targeted samples for multipurpose investigations

On the present day erosional surface, seven lithologically different
rocks encompassing deep-crustal granulites to shallow-crustal sedimentary
rocks were systematically sampled on a transect across the EGB-BC boundary.
These deep-crustal granulites include the charnockitic augen gneiss, mafic
granulite, aluminous granulite, and meta-ironstone. Several lines of petrological
investigations, such as mineralogical evolution, textural relationships, P-T
estimation, phase diagram modeling are coupled with high-precision and
texturally well-constrained geochronological analyses (U-Pb zircon by SHRIMP
Ile and U-Th-total Pb monazite by EPMA) to understand the granulite facies
metamorphic evolution with time. For such petrological investigation, several
thin-sections were prepared. Four thin-sections were used for in-situ monazite
geochronology among these thin-sections. The mid-crustal rocks are the
migmatitic quartzofeldspathic gneiss and the migmatitic hornblende gneiss.

These rocks were targeted to find the petrological and geochronological
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signatures during the amalgamation of the EGB with the adjacent BC. Various
thin-sections were prepared for petrological investigations and in-situ monazite
geochronological analyses. The foliated quartz breccia is present within the
granulite package of the EGB occurs as the shallow-crustal component. This
rock was studied in terms of petrography, structure, and geochronology to
understand its evolution during the process of amalgamation of the EGB. One
thin-section of this foliated quartz breccia was prepared for the textural study
and in-situ monazite geochronology. Total four mounts were made for U-Pb
zircon geochronology encompassing all the deep- to shallow-crustal rocks. One
mount was used to identify the polymorph of aluminosilicates inclusions within
zircon grains using SEM-EBSD. In the following Chapter 4, the detailed

methodologies for multipurpose investigations are discussed.
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Figure 2: A broad geological map, which shows lithological variation in an E-W
transect across the EGB-BC boundary. The postulated boundary between the EGB and
the BC is summarized by Gupta et al. (2000) as EGBSZ. The rectangular boxes
indicate the precise study areas (eastern area as red box, south-western area as black

box and north-western area as green box).

27



Charnockitic augen gneiss Migmatitic _ _ Mafic
quartzofeldspathic gneiss granulite

10km II
* Sample location

Figure 3: A detailed geological map in and around Bhawanipatna town, which shows
the lithological distribution along with the structural data. Note that the structural data

presented here as the attitude of the S» foliation.
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Figure 4a: A detailed geological map in and around the Parla village, which shows the
lithological distribution along with the structural data. Note that the dotted line
represents the speculated lithological boundary. The structural data plotted in the

figure as the attitude of the gneissic (S») foliation.
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Figure 4b: A detailed geological map in and around the Dharamgarh town, which
shows the lithological distribution along with the structural data. Note that the

structural data presented here as the attitude of the gneissic (S2) foliation.
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Figure 5 continued in next page
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Figure 5 continued in the next page
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Figure 5: (a) Field photograph the charnockitic augen gneisss. The dotted line

differentiates the low-strain zone from the high-strain zone. (b) Field photograph of
the migmatitic quartzofeldspathic gneiss. (¢) Field photograph of hillock of the mafic
granulite occurs as an isolated outcrop in the field. (d) Field photograph of the mafic
granulite at the Parla village showing garnet (solid triangles) porphyroblasts. Note that
the length of the pen is c.a. 12 cm. (e) Field photograph of the pegmatoidal aluminous
granulite. (f) Field photograph of the deformed variety of aluminous granulite. (g)
Field photograph of the meta-ironstone. (h) Field photograph of the migmatitic
hornblende gneiss. (i) Field photograph of the foliated quartz breccia.
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Figure 6 continued in the next page
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Figure 6: Structural features of the western boundary of the EGB. (a-b) The traces of
the regional (S,) foliation in the migmatitic quartzofeldspathic gneiess and foliated
quartz breccia are marked by the dotted line. (c) West-vergent tight asymmetric folds
are preserved in the migmatitic quartzofeldspathic gneiess. (d) The stereonet contains
the poles of S, foliations (red contours) measured in the field, and the intersection
lineations (black circles) forming the S, plane (dashed line). (e) The asymmetrically
folded S; fabric cross-cuts the S, foliation plane (axial plane || S, foliation plane). (f)
The S, fabric is offset along the S, foliation plane. Note that the disruption is verging
towards the west. (g) Asymmetric sigmoidal augen observed in the charnockitic augen
gneiss. (h) Schematic block diagram depicts the structural features of the western
boundary of the EGB. The degree of deformation was weak away from the EGB-BC

boundary. The dotted lines mark the trace of the regional foliation.
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Chapter 4:
METHODOLOGY

4.1 Qualitative petrological analyses

4.1.1 Optical Microscopy (OM)

Several thin-sections of all the rocks were studied under the optical
microscope (OM) at the Hiroshima University, Japan to understand the
mineralogical assemblages and textural relationship between the different
mineral phases.

4.1.2 Scanning Electron Microscopy (SEM)

The Backscatter Electron Images (BSI) of the thin-sections were taken
using a JEOL JSM-6390A Scanning Electron Microscope (SEM) equipped with
a JED-2300 Energy Dispersive System (EDS) at the Hiroshima University,
Japan to understand the textural evolution under high-magnification and
identify the tiny and included mineral phases. The BSI and CL techniques under
SEM were adopted to observe the zoning pattern, surface condition, fracture
distribution and included mineral phases of monazite and zircon grains. The
operating voltage was fixed at 15 kV during the qualitative analysis.

4.1.3 SEM-Electron Backscatter Diffraction (EBSD)

The polymorphs of aluminosilicates were identified by the characteristic
Kikuchi patterns obtained using SEM-EBSD detector (Nordlys system)
equipped with JEOL JSM6390A at Hiroshima University. The samples were

polished chemically using colloidal silica for four hours to remove the damaged
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layers on the surface. The samples were set on a 70° pre-tilt holder with respect
to the incident electron beam to obtain the Kikuchi patterns. CHANNEL 5.0
software of Oxford Instruments HKL was used to index the generated Kikuchi
patterns. Data with <1° mean angle deviation between the Kikuchi bands were

only taken under consideration.

4.2 Quantitative petrological analyses

4.2.1 Electron Probe Microanalyzer (EPMA)

Quantitative mineral chemical analyses, as well as element mapping, were
performed using the JEOL JXA 8200 Superprobe at the Natural Science Centre
for Basic Research and Development, Hiroshima University. For element X-ray
mapping of monazite, the following conditions were maintained during the
analyses: beam current 100 nA, step size 0.5 mm, beam diameter 1 pm. The
three lines, U-M,, Th-M, and Y-L,, were measured for the U, Th and Y element
mapping. The synthetic YAl-garnet was used as a standard material to measure
yttrium content. ThO2 compound silicate glass and natural thorianite were used
as a standard material for Th, whereas U3Os compound silicate glass and natural
uraninite were used for U. The probe diameter was set in between 1-3 pm and
beam current was fixed in between 5—15 nA for the measurement of oxides. For
this analysis, the characteristic X-ray lines for all the elements were Kq, and the
acquired data were quantified as oxides by ZAF correction. The acceleration

voltage was set at 15 kV for both quantitative analysis and element mapping.
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4.2.2 X-Ray Fluorescence (XRF)

For whole rock chemical analysis, the representative samples were crushed
down to ~5 mm diameter chips using jaw-crusher or oil-press mill, and further
smashed down to fine powder (diameter < 250 um) using ball-mill or stamp-
mill. The powdered sample was dried in oven at 120 °C for 12 hours for
evaporation of the surface moisture, and then treated in Superburn for 6 hours
at 950 °C to eliminate the structural water. The powdered samples were fused
into glass disc using an oven-dried alkali flux, Johnson Matthery Spectroflux
100B [a mixture of lithium tetraborate (Li2B4O7) and lithium metaborate
(LiBO7) with a mixing ratio of 2:8] and lithium nitrate (LiNO3) as oxidising
agent. The disc was prepared from 2.000 gm of rock powder, 4.000 gm of flux
and 0.60 gm of LiNOs3 as an oxidizer and ~100 pL of 5% Lil solution added to
prevent adhesion to the Pt crucible. Whole-rock geochemical analyses for major
and trace elements of the samples were carried out by X-ray Fluorescence
(XRF) techniques using a Rigaku ZXS system equipped at Hiroshima
University. X-ray generated by a 3kW Rh-W dual anode tube was radiated on
fused bead samples. The accuracy and precision of this method is outlined in
Kanazawa et al. (2001).

4.2.3 X-Ray Diffraction (XRD)

The X-Ray Diffraction (XRD) technique was used for identification of
minerals within the clay-supported matrix of foliated quartz breccia. The

homogeneously powdered sample was analyzed using Rigaku XRD MultiFlex
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installed at Hiroshima University. Cu was used as the target material to generate
X-Ray. Cu-Ka radiation was generated at 40 kV/40 mA during the analysis.
4.3 Geochronological analyses

4.3.1 Sensitive High-resolution Ion Microprobe (SHRIMP Ile)

The samples were crushed down to ~5Smm diameter chips using jaw-crusher
or oil-press mill and further smashed down to powder (diameter ~250 um) using
ball-mill or stamp-mill. Zircon grains were, then, separated by heavy minerals
separation method using water from the powdered rock samples. The grains
were separated mainly using heavy mineral separation technique by sieving,
panning and by magnetic separation methods using hand-held Nd magnet and
Frantz Isodynamic Magnetic Separator (Model L1). Special care was taken to
avoid any contamination. The separated zircon grains together with the standard
zircon grains were then handpicked, mounted in epoxy resin. In the case of the
foliated quartz breccia, all the heavy minerals including the zircon grains were
mounted together with the standard zircon grains without handpicking. These
mounts were finally polished by 1 um diamond paste until the grains were
properly exposed on the surface. The zircon grains were analyzed for U-Pb
dating by SHRIMP Ile at the Hiroshima University. The spot size was about 18
um, and seven/five scans through the critical mass ranges were made for data
collection. The condition of SHRIMP Ile during the analysis was: Kdhler
aperture 70 um, source slit 80 um, collector slit 90 um, ESA voltage at 941.70
V, arc voltage at 60 mA, primary current at 2800 V. Counts of '°°Zr,0, 2%4Pb,

206pty, 207ppy, 208p 2381y, 248ThQ, 254UO and background (?°*!Pb) were measured
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seven times. The analytical technique was adopted from the methodology
outlined by Fujii et al. (2008). Two zircon standards, FC1 (1099 + 0.6 Ma;
Paces and Miller, 1993) and SL13 (572 Ma, U concentration = 238 ppm;
Claoué-Long et al., 1995) were used for the U-Pb calibration and the
calculation of U content in the samples, respectively. During each analytical
session, two points on the age-standard were measured before and after
measuring five points on the unknown zircon grains. The weighted average ages
of the standard were within the error range of the reference zircon grains (1099
+ 0.6 Ma). Based on the method developed by Compston (1999), common Pb
was corrected from the measured 2°*Pb. Finally, Isoplot/Ex 4.15 (Ludwig, 2012)
and CONCH (Nelson, 2006) were used for age calculations and various
statistical plotting of the age data. Only near-concordant ages (<5% discordant)
were considered for probability density plots and single population weighted
average age calculations. Spot dates are quoted at 16 level, whereas mean ages
are given at 95% confidence level.

4.3.2 Electron Probe Microanalyzer (EPMA)

The method outlined in Suzuki and Adachi (1991) was adopted for the
in-situ monazite EPMA U-Th-total Pb dating. The obtained raw data were
corrected through recalculation methods developed by Fujii et al. (2008) and
processed using Isoplot/Ex version 4.15 (Ludwig, 2012). The probe diameter
was set at 5 um and beam current was fixed at 200 nA. The acceleration voltage
was set at 15 kV. Fifteen characteristic X-ray lines were measured for each

element. These lines were Si-K,, Sm-Mp, Gd-Mp, Dy-Mp, Th-M,, U-Mjg, Ca-Kq,
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La-Lg, Ce-Lo, Y-Lo, P-Kq, S-Kq, Pr-Lgi, Nd-Lgi, Pb-Mp. Acquired data were
quantified as oxides by ZAF correction. The age standard used in these analyses
was Namaqualand monazite (1033 Ma; Hokada and Motoyoshi, 2006). During
every analytical session, five to ten points on the age-standard were measured
after measuring the unknown monazite grains. The weighted average ages of the
standard were within the 1% error range of the quoted value of the reference

material (1033 Ma).
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Chapter 5:

PETROLOGICAL EVOLUTION

Seven different lithological varieties of are exposed in the three parts of
the entire study area. These areas include rocks from different crustal-levels,
i.e., the deep-crustal granulites, mid-crustal cratonic gneiss and shallow-crustal
sedimentary rocks. The petrographic features, mineralogical assemblages, and
corresponding textural relationships are discussed in detail in the following

section. These details are summarized in table 2.

5.1 Petrography and microstructure
5.1.1 Deep-crustal rocks of the EGB
5.1.1.1 Charnockitic augen gneiss
Three different varieties of the charnockitic augen gneiss (sample BP1, BP3 and
BP2) were studied for petrological and microstructural observations.
Sample BP1

This rock sample was collected from the southeast of Bhawanipatna
town (Fig. 3). The coarse-grained charnockitic augen gneiss is composed of
orthopyroxene, K-feldspar, quartz, garnet, biotite, plagioclase, and ilmenite.
Augen are composed of K-feldspar. Both porphyroblastic (~800—-1000 pm in
diameter) and coronal (~5—10 pm in diameter) garnet was observed. The
dominant texture of this rock is granoblastic (Fig. 7a). The peak granulite facies

metamorphic assemblage is defined by coarse grain orthopyroxene, garnet,
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quartz and K-feldspar. The development of coronal garnet (with intergrown
quartz) over orthopyroxene resulted from the subsequent cooling event (Fig.
7b). The post-peak granulite facies rehydration event was documented where
biotite replaced K-feldspar and garnet (Fig. 7b).
Sample BP3

Another variety of the charnockitic augen gneiss was also collected
from the nearby area of sample BP1 which shows additional textures (Fig. 3).
This rock contains orthopyroxene (Opx), quartz (Qz), K-feldspar, garnet (Grt),
plagioclase (Pl), biotite, and ilmenite. Orthopyroxene, K-feldspar, quartz, and
garnet characterized the peak granulite facies metamorphic assemblage. Garnet
is both porphyroblastic (~500 um in diameter) and coronal. The latter variety of
garnet was intergrown with quartz and developed around the ilmenite grains
(Fig. 7c). The additional textures include the perthitic texture where blebs of
plagioclase were found within the K-feldspar host. Another textural feature
revealed that the porphyroblastic garnet was destabilized to form orthopyroxene
and plagioclase intergrowth (Fig.7d). Such porphyroblastic garnet break-down
texture suggest that destabilization occurred during the post-peak condition.
The formation of the intergrowth might had occurred through this reaction:

Grt + Qz = Pl + Opx

This reaction can occur either by heating or by decompression in the granulite
facies condition. Owing to the fine nature of the product phases, the second
possibility seems more feasible. Biotite was produced during post-peak

granulite facies rehydration.
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Sample BP2

This rock sample was collected near Atangaguda village area which is
located at the southwest of Bhawanipatna town (Fig. 3). The medium to fine-
grained rock is mineralogically similar to sample BP1 and BP3. However, this
rock preserves mesoscopic (Fig. 5a) and microscopic evidence of intense
deformation. The microtextures, such as the presence of curved grain boundary,
possibly suggest that the rock had experienced dynamic recrystallization (Fig.
7e) in response to deformation. Hence, combination of the field evidence (Fig.
5a), such as presence of high-strain zone adjacent to the low-strain zone, with
the microscopic evidence suggest that the rock was deformed possibly by shear

stress.

5.1.1.2 Mafic granulite
Two different varieties of the mafic granulite (sample BP12B and BP4) were
studied in detail to understand the petrological evolution.
Sample BP12B

This rock sample was collected near the Parla village (Fig. 4a). The
coarse-grained gneissic rock contains the porphyroblastic garnet (Fig. 8a). The
leucocratic layers around the porphyroblastic garnet are mostly constituted of
plagioclase (Fig. 8b), whereas the mesocratic layers are composed of
orthopyroxene (Opx1), clinopyroxene, garnet, ilmenite, hornblende, and biotite
+ zircon. Quartz is rare within the rock. Orthopyroxene (Opx1), clinopyroxene,

plagioclase (Pl1), quartz and garnet represented the granulite facies
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metamorphic assemblage. Garnet and clinopyroxene constituted the
porphyroblastic phases (up to 1 cm in diameter), whereas orthopyroxene and
plagioclase constituted the finer aggregates (~100-200 um in diameter).
[lmenite (maximum up to ~100 pm in diameter; Fig. 8a) and relict hornblende;
occur as inclusions within the porphyroblastic garnet (Fig. 8a). Symplectic
intergrowths of orthopyroxene (Opx2) and plagioclase (Pl>) were developed on
garnet (Fig. 8b), possibly due to the breakdown of the latter in the presence of
quartz through this reaction:
Grt + Qz = Pl + Opx2

This reaction can occur either by heating or by decompression. The textural
relationship between reactants and products suggest that the symplectite
development was due to decompression. Textural data further implied that the
plagioclase-rich leucocratic layer around the garnet grains was formed due to
the decompression melting. Additionally, the incipient late-hornblende> formed
at the site of symplectite intergrowth (Fig. 8b). The prominent growth of late-
hornblende> on clinopyroxene (Fig. 8c) suggests that the late-hornblende, was
formed during the post-peak rehydration. Thus, this rock preserves mineral
assemblages of both peak granulite facies and post-peak granulite-amphibolite
facies transitional facies.
Sample BP4

This dark colored medium-grained rock was sampled at a place ~25 km
southeast of the Dharamgarh town (Fig. 3), where it occurs as an isolated

exposure (Fig. 5¢). The rock is composed of orthopyroxene, clinopyroxene,
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plagioclase, garnet, ilmenite, hornblende and quartz. Plagioclase (~3—5 mm in
diameter) and garnet (~1 mm long and ~0.5 mm wide) are present within the
finer matrix which is composed of orthopyroxene, clinopyroxene, ilmenite and
quartz. Garnet also occurs as corona with intergrown quartz (Fig. 8d) around
ilmenite and clinopyroxene which were formed at the peak granulite facies
condition. Hence, the textural relationship suggests that such coronal garnet and
quartz intergrowth was possibly produced during post-peak granulite facies
cooling. Microstructural observation, especially curved grain boundary,

revealed that the rock was deformed and recrystallized dynamically.

5.1.1.3 Aluminous granulite
Two varieties of aluminous granulite (sample BP12A and BP12C) were studied
to understand the textural and microstructural development.
Sample BP12A

This sample was collected from a location close to the above-described
mafic granulite (sample BP12B; Fig. 4a). The coarse-grained rock contains
garnet, along with euhedral sillimanite, quartz, hemo-ilmenite, and magnetite +
zircon. Garnet, sillimanite, quartz, magnetite and hemo-ilmenite represent the
peak granulite facies metamorphic assemblage (Fig. 9a). The garnet is
porphyroblastic in nature. The core of the porphyroblastic garnet contains an
intergrowth of garnet, quartz, sillimanite, and hemo-ilmenite (Fig. 9b). The core
possibly grew syn-kinematically with the matrix foliation. The core of the

garnet is surrounded by the thick intergrowth-free garnet rim, which grew post-
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kinematically (Fig. 9b). The elongated finer-grained matrix minerals of quartz,
sillimanite and hemo-ilmenite defines the foliation. Sillimanite also occurs as a
coarse grain variety in the matrix, which appeared to bend against the garnet.
The sillimanite away from the porphyroblastic garnet exhibits post-kinematic
growth. The latter variety of sillimanite transformed to fibrolite during post-
peak granulite facies metamorphism (Fig. 9¢). The garnet and quartz in this
rock contain abundant secondary fluid inclusions, whereas primary fluid
inclusions are rare. In addition, exsolution lamellae of ilmenite was found
within the hemo-ilmenite, which presumably formed due to cooling during the
post-peak condition (Fig. 9a).
Sample BP12C

This sample was collected from the nearby area of the sample BP12A
(Fig. 4a). The mineralogy is similar to the sample BP12A. Outcrop-scale
evidence, such as presence of elongated garnet grains may suggest that this is a
highly deformed variety of aluminous granulite. Combination of several
mesoscopic evidence of shearing (discussed in the section 3.2) with the limited
microstructural evidence, such as the weakly developed shape-asymmetricity of
the garnet suggest that it suffered the same shear deformation (Fig. 9d). The
disposition of the thrust plane between the EGB and the BC was inferred by
combining the field occurrence of this deep-crustal sheared rock adjacent to the
mid-crustal cratonic rocks (Fig. 4a). The absence of K-feldspar indicated that
the metamorphic condition during the granulite facies was K-feldspar-invariant,

or partial melts were completely lost. However, no evidence was found in favor
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of either partial melting or K-feldspar invariance. The presence of both
magnetite and hematite indicated that oxygen fugacity was close to the

hematite-magnetite (HM) buffer.

5.1.1.4 Meta-ironstone

The coarse-grained meta-ironstone was sampled near the Parla village
(Fig. 4a). The rock is dominantly composed of magnetite, hematite, garnet,
spinel, and quartz. The presence of porphyroblastic magnetite and garnet
characterized the granoblastic texture of granulite facies metamorphic
condition. Hematite replaced magnetite grains along the intragranular fracture
planes (Fig. 9¢) due to oxygen enrichment along the fractures. Spinel occurs as
inclusion within the magnetite-hematite and garnet. Rarely, quartz was observed

to form around the garnet (Fig. 9e).

5.1.2 Mid-crustal rocks of the BC
5.1.2.1 Migmatitic hornblende gneiss

The medium to coarse-grained migmatitic hornblende gneiss was
collected near the Parla village (Fig. 4a). This rock is composed of hornblende,
clinopyroxene, plagioclase, orthopyroxene, quartz, K-feldspar, hematite,
ilmenite and garnet. The gneissic foliation was defined by the alternate layers
of mafic and felsic minerals. Mafic layers are dominantly composed of
hornblende, clinopyroxene, plagioclase and orthopyroxene (Fig. 10a). Minor

amount of quartz and K-feldspar were observed in the mafic layers. Presence of
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porphyroblastic hornblende and equilibrium texture between hornblende and
clinopyroxene (Fig. 10a) suggest that the hornblende and clinopyroxene formed
at the amphibolite facies condition. The progradation from the amphibolite
facies assemblage to amphibolite-granulite transition facies was evident by the
appearance of orthopyroxene on hornblende in the mafic layer (Fig. 10a). The
progradation reaction can be as follows:

Hbl+Qz = Opx+Pl+H20/melt
The liberation of H>O/melt could cause either by simple dehydration reaction or
by dehydration melting reaction. In this case, textural evidence of dehydration
melting, such as presence of leucocratic melt-mat, was not seen. Thus, the
reaction is considered as a dehydration reaction. The presence of plagioclase,
K-feldspar and quartz characterizes the felsic layers. Both quartz and feldspar
exhibit undulose extinction and the grain boundary of feldspar is curved. The
foliation-parallel quartz ribbon and deformed plagioclase suggest plastic
deformation. However, the adjacent amphiboles and pyroxene did not show
evidence of plastic deformation. Thus, it is plausible that the plastic
deformation of quartz and feldspar occurred at intermediate temperature (Stipp
et al., 2002; Rosenberg and Stiinitz, 2003), which was possibly corresponded to
the temperature of amphibolite-granulite transitional facies condition. Locally,
small amount of garnet is found in the felsic layers. Clinopyroxene is present
within the garnet grains as inclusion (Fig. 10b). The garnet is present around

the clinopyroxene and plagioclase as thick or thin corona. The formation of
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garnet from clinopyroxene in the presence of plagioclase can be explained by
the following reaction:

Cpx+Pl = Grt+Qz
This reaction can occur either due to compression or cooling. The kinetic
factors (rate of reaction) is slow in case of retrograde cooling, which favors
coronal texture of the product phase during retrograde cooling. Presence of the
coronal garnet around the clinopyroxene and plagioclase possibly suggests that

the garnet grew during retrograde cooling.

5.1.2.2 Migmatitic quartzofeldspathic gneiss

This sample was collected from the west of the Dharamgarh town on the
National Highway 130C (Fig. 4b). The medium-grained rock is essentially
composed of quartz, K-feldspar, plagioclase, garnet, biotite and ilmenite.
Garnet is porphyroblastic in nature (Fig. 10c). Garnet porphyroblasts are ~500—
700 um in diameter. The granulite facies porphyroblastic garnet was replaced
by biotite during post-peak rehydration (Fig. 10c). Inclusions of quartz grains
are present within the garnet grains (Fig. 10c). Feldspar was decomposed to
sericite. The anti-perthitic texture is present, where thin blebs of K-feldspar

occurred within the host plagioclase (Fig. 10d).
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5.1.3 Shallow-crustal marginal rocks
5.1.3.1 Foliated quartz breccia

The coarse-grained foliated quartz breccia was sampled from ~5 km
northwest of the location of sample BP6 (Fig. 4b). The rock is dominantly
composed of quartz, and was previously considered to be a component of the
granulite package of the EGB (Metapelite/Quartzite package of Gupta et al.,
2000). Microscopic observation revealed that this is a clastic rock where clasts
of quartz grains are highly angular, poorly sorted, and randomly oriented in the
thin-section scale (Fig. 10e). Such texture can form either due to brecciation of
a foliated quartzite or deposition of quartz-rich immature sediments with low-
degree of transportation. Characteristic textural evidence of a cataclastic
quartzites, such as irregular fracturing in the individual grains, extensive
intersecting micro-fracturing and mortar texture (Spry, 1969; House and Gray,
1982; Sibson, 1986) were not observed. Moreover, the adjacent rocks were not
showing any evidence of cataclasis (e.g., the granulites). Adding to that, the
presence of kaolinitic clayey matrix in the interstitial space between the larger
quartz grains was confirmed by the powder X-ray diffraction analysis (Fig.
10f), which is completely missing in the adjacent feldspar-bearing rocks. The
decomposition of feldspar as the origin of kaolinitic clayey matrix was ruled
out as the adjacent granulites are devoid of kaolinitic clay. Thus, sedimentary
origin of this rock was, further, validated by the presence of clayey matrix

which did not formed due to the decomposition of feldspar. Hence, all line of
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evidence led to infer that this is not a component of the granulite package of the
EGB, but a clastic sedimentary rock.

This clayey matrix-supported quartz breccia might had deposited in a
small basin formed adjacent to the progressing thrust-front (e.g., Schwans,
1988; DeCelles and Giles, 1996). The brecciation of the nearby source rocks
occurred possibly as a consequence of the thrusting, and supplied the highly

angular clasts as they experienced low degree of transportation.

5.2 Mineral chemistry

The mineral chemical data of four rocks were generated using the
EPMA. These data were used for conventional geothermobarometric
calculations and for understanding the chemical characters of some major
minerals of the rocks. In the following subsections, mineral chemical data of
the individual minerals of these rocks is described. The representative mineral
chemical data of the individual rocks are summarized in the Table 3.
5.2.1 Garnet

In mafic granulite (sample BP12B), core of the porphyroblastic garnet
of granulite facies metamorphic assemblage exhibited minor compositional
variation (Almss—eo Prp17 —21Grsi6—25Spsi-4). These garnet grains brokedown
along the rims to produce symplectite intergrowth of plagioclase and
orthopyroxene. Thus, the composition of these rims is slightly different than the
cores (Almso—ssPrpi2—18Grsis—23Spss-4). Consequently, the Xmg value between

the core to rim also vary (rim: 0.16—0.23; core: 0.23-0.28). Garnet of aluminous
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granulite (sample BP12A) documented a slight compositional variation between
core and rim (rim: Alm71-72Prp22-23GrsaSps3; core: Alm72-73Prp20-21Grs4Spss).
The Xwmg value increases from the core to rim (core = 0.22 and rim = 0.23—
0.25). Garnet in meta-ironstone (sample DG33E) displayed no discernible
zoning from core to rim (Alm7i-75Prp17-20Grss-10Sps1). Hence, the variation in
the Xwmg value was not observed between the core and rim (Xmg = 0.19-0.21).
Compared to the porphyroblastic garnet of granulite facies condition, the garnet
in the migmatitic hornblende gneiss (sample DG33F) of the BC is richer in
grossular content (Grs2s-26). However, this sample also exhibited very weak
compositional zoning between core and rim of the garnet (Almes2-65Prps-6Grsas-
265ps4). Consequently, the X, value almost remain constant between the core
to (rim: 0.06—0.08; core: 0.06—0.07).
5.2.2 Orthopyroxene

In mafic granulite (sample BP12B), the porphyroblastic orthopyroxene
of granulite facies metamorphic assemblage displayed no compositional
variation in terms of Fe-Mg distribution from core to rim (Xwmg = 0.49-0.50).
The compositional variation was observed in terms of Al content between core
and rim (core: 1.15-1.35 wt% Al2O3; rim: 0.84-1.1 wt% Al1,03). Blebs of
orthopyroxene of symplectite intergrowth are variably aluminium-rich (0.94—
1.47 wt% Al203) and slighly Mg-poor (Xmg = 0.45-0.50) than the
porphyroblastic phases. Orthopyroxene in migmatitic hornblende gneiss
(sample DG33F) is Mg-poor than the mafic granulite (Xmg = 0.39-0.40).

However, the Fe-Mg distribution is homogenous from core to rim.
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5.2.3 Clinopyroxene

The granulite facies porphyroblastic clinopyroxene from mafic granulite
(sample BP12B) displayed very weak compositional variation from core to rim
(rim: Xmg= 0.58-0.63, Xre = 0.37-0.42, Xca = 0.84-0.9; core: Xmg = 0.57-0.62,
Xre = 0.38-0.43, Xca = 0.86-0.91). The porphyroblastic clinopyroxene in the
mafic layer of migmatitic hornblende gneiss (sample DF33F) exhibited slight
variation in Fe-Mg distribution from core to rim (rim: Xmg = 0.52-0.56, Xge =
0.42-0.48; core: Xmg= 0.51-0.55, Xre = 0.45-0.49). Slight enrichment of Ca
was observed in the rim with respect to the core (rim: Xca= 0.87—0.89; core:
Xca=0.84-0.88). The included clinopyroxene within the garnet in the felsic
layer of migmatitic hornblende gneiss is Mg-poor (Xmg = 0.32-0.35) but Fe-rich
(Xre = 0.65-0.68) than the porphyroblastic clinopyroxene. The Fe distribution
is nearly homogenous, from core to rim. However, very weak compositional
zoning between Mg and Ca was noticed from core to rim (rim: Xmg = 0.34-0.35,
Xca=0.88-0.89; core: Xmg= 0.32-0.35, Xca= 087-0.9).
5.2.4 Plagioclase

The anorthitic plagioclase associated with the granulite facies
metamorphic assemblage in mafic granulite (sample BP12B) displayed wide
compositional variation in the core (Ab22-46Ans4-77010-1), as well as, in the rim
(Abi2-30An70-g8). The anorthitic plagioclase associated with the symplectite
intergrowth is compositionally similar with the rimmal portion of the
plagioclase of granulite facies metamorphic assemblage (Abgo—29An71-910ro-1).

The migmatitic hornblende gneiss (sample DG33F) contains albitic plagioclase
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in the felsic layer, which did not show any compositional zoning (AbsoAn3e-
380r3-4) from core to rim. The plagioclase in the mafic layer of migmatitic
hornblende gneiss is also compositionally homogenous (Abss—s6Ana1-43013-4).
However, the calcium content of these plagioclase grains is higher than the
felsic layer.
5.2.5 Spinel

The spinel in meta-ironestone (sample DG33E) is compositionally
hercynitic, which is a product of complete solid solution between hercynite and
spinel (Hcgo-72Splis-24). The spinel grains included within the garnet grains are
more magnesian (Xwmg = 0.23) compared to the spinel grains included within the
magnetite-hematite (Xmg = 0.14-0.16).
5.2.6 Hornblende

The porphyroblastic hornblende in the mafic layer of migmatitic
hornblende gneiss (sample DG33F) did not show appreciable compositional
variation from core to rim (Xmg = 0.43-0.45). Total Al in the T site also remains
constant in between core and rim (1.9-2). TiOz concentration in the hornblende

is varying in the range of 2.4-2.7 wt%.

5.3 Geothermobarometry

The mafic granulite (sample BP12B) had been chosen as the
representative rock to calculate P-T condition during different stages of the
metamorphic evolution due to its suitable mineral assemblages and textural

development associated at different stages. The textural evolution and
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development of corresponding mineral assemblages in response to the
metamorphic conditions were discussed in detail in the previous section.
Several conventional geothermobarometers were used for the quantitative P-T
estimation of each stages.

The granulite facies metamorphic assemblage was stabilized at 898 + 4
°C, 10—11 Kbar as estimated by the garnet-orthopyroxene thermometry (Lee and
Ganguly, 1988) and the garnet-clinopyroxene-plagioclase-quartz barometry
(Moecher et al., 1988). The geobarometric calculation for the granulite facies
condition by the garnet-orthopyroxene-plagioclase-quartz barometer (Perkins
and Chipera, 1985) yielded 10.77 £ 0.05 kbar, which is in accordance with the
calculated value obtained by the garnet-clinopyroxene-plagioclase-quartz
barometer. However, the garnet-orthopyroxene thermometry of Harley (1984)
yielded a lower temperature as 749 + 3 °C for granulite facies metamorphism.
The granulite facies temperature was calculated by the garnet-clinopyroxene
thermometer as 730 = 7 °C (Ellis and Green, 1979). Followed by the granulite
facies condition, the garnet-orthopyroxene-plagioclase-quartz barometer
(Newton and Perkins, 1982) estimated the decompression occurred at a pressure
of 7.5 +£ 0.04 kbar. The temperature during the decompression was calculated
from the garnet-orthopyroxene (from the symplectite texture) thermometry as
826 £ 12 °C (Lee and Ganguly, 1988) and 677 + 12 °C (Harley, 1984). The error
values in the P-T calculations are the external error of the data-set, without
considering the intrinsic error values of the corresponding

geothermobarometers.
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5.4 Thermodynamic modeling of metamorphic evolution

The P-T evolution of the granulites from the western margin of the EGB
was characterized by estimating the P-T conditions using several conventional
geothermobarometers. The mafic granulite (sample BP12B) was exclusively
targeted to understand the P-T evolution as it exhibits pre- to post- peak
granulite facies textural evidence. The conventional geothermobarometric data
were superimposed on the pseudosection modeling to determine the exact
position of each stage of metamorphism on a P-T plane. The software, Perple X
(Connolly and Petrini, 2002; version 6.7.7), was used for the pseudosection
modeling. The pseudosection modeling was carried out using the bulk rock
composition obtained by whole rock XRF analysis (Table 4).

A model chemical system of NaxO-CaO-FeO-MgO-A1,03-S102-H>0-
Ti02-MnO (NCFMASHTMn) was chosen for the pseudosection modeling
depending on the bulk rock composition and mineral assemblage. Fe2O3 was
excluded as a variable since the presence of Fe** in ferromagnesian phases is
minor particularly in this rock. The following mineral phases were included for
the pseudosection modeling: garnet (Grt), hornblende (Hbl), clinopyroxene
(Cpx), orthopyroxene (Opx), plagioclase (PI), quartz (Qz), ilmenite (Ilm), rutile
(Rt) and water (H20). Mineral phase diagram was calculated as a function of P-
T using the technique of free energy minimization (Connolly, 2005). The
perplex_option.dat file (Holland and Powell, 1998) was used for constraining
the solution properties of these mineral phases. The following activity models

were used for the corresponding mineral phases: garnet and clinopyroxene
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(Holland and Powell, 1998), clinoamphibole (Dale et al., 2005), orthopyroxene
(Holland and Powell, 2003) and plagioclase (Newton et al., 1980). Rutile,
ilmenite, and quartz were considered as pure phases. The mineral phases at the
higher temperature side of the pseudosection may be metastable with respect to
the assemblage involving melt. The absence of melt model for the metabasite
system hinders this assessment. However, the several experimental studies and
natural observations revealed that the topological variation of the phase
relationships and their change in position of the field boundaries are negligible
when mineral assemblages coexist with the fluid (H20) or melt (Wolf and
Wyllie, 1994; Vielzeuf and Schmidt, 2001; Pattison, 2003).

The resultatnt phase diagram revealed that the garnet is the only
mineral phase which is stable across all the mineral stability fields (Fig. 11).
The inclusion of relict hornblende and ilmenite within the porphyroblastic
garnet grains suggest that the porphyroblastic garnet of peak granulite facies
might had produced from hornblende during prograde metamorphism by
dehydration (Fig. 11). Thus, the pre-peak granulite facies metamorphic
condition (M) was assumed to lie in the field consist of orthopyroxene,
hornblende, garnet, clinopyroxene, plagioclase, quartz, and ilmenite. However,
the position of M could not be plotted on the P-T space due to lack of data in
the present study. The mineral assemblage of orthopyroxene: + clinopyroxene +
garnet + plagioclase; + ilmenite + quartz characterized the peak granulite facies
metamorphic assemblage (M2). The stability field for this mineral assemblage is

tiny on the P-T space for this bulk composition. The exact position of the M>
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within a P-T range was validated by the conventional P-T estimation (~900 °C
temperature and ~11-10 Kbar pressure). The formation of symplectite
intergrowth of orthopyroxene, and plagioclase> around the garnet grains in the
expense of quartz was due to the near-isothermal decompression. This near-
isothermal decompression upto ~825 °C temperature and ~7.5 Kbar pressure
characterizes the M3 event (Fig. 11). The formation of the incipient late-
hornblende also observed at the site of garnet breakdown. The precise position
of M3 on the P-T plane was determined by combining the mineralogical
assemblage with the conventional P-T calculation and observed dispositions of
the pyrope isopleths of garnet (Fig. 11). Followed by the M3 event, the M4
metamorphic event is characterized by the appearance of late-hornblende on
clinopyroxene was due to rehydration during retrogression from granulite facies
to granulite-amphibolite transitional facies. However, a speculative
metamorphic P-T path was constructed accordingly for the M4 event due to the

absence of precise P-T data for this event (Fig. 11).
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Figure 7 continued in the next page
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Figure 7: The mlcrophotographs of the three samples of charnockitic augen gneiss. (a)

The OM (PPL) image of sample BP1 represents the granoblastic texture of peak
metamorphic assemblage is composed of garnet (Grt), quartz (Qz), K-feldspar (Kfs).
(b) The SEM-BSI image shows development of the coronal garnet and quartz
intergrowth (black triangle) associated with the orthopyroxene (Opx) and plagioclase
(P1). (¢) The OM (PPL) image represents the formation of coronal garnet (Grt) around
ilmenite (Ilm) and orthopyroxene (Opx) in the sample BP3. (d) Porphyroblastic garnet
(Grt) broke down to orthopyroxene (Opx) due to decompression. (e) The OM (CPL)
microphotograph of grain-size refinement texture marked by the presence of both
porphyroclastic plagioclase (PI) and recrystallized fine grain aggregate surrounding

the porphyroclasts (white triangles) in the sample BP2.
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Figure 8: The OM microphotographs (PPL) of the two samples of mafic granulites
(sample BP12B and BP4). (a) The inclusion of early-hornblende (Hbl;) within the

porphyroblastic garnet grain (Grt) is observed in the sample BP12B. (b) The garnet
(Grt) broke down to symplectitic orthopyroxene (blebs-like intergrowth) and
plagioclases (Pl,). Incipient late-hornblende, (Hbl,) formed at the site of the
symplectite intergrowth. (¢c) The prominent growth of late-hornblende, (Hbl,) on
clinopyroxene is observed. (d) Garnet present as porphyroblastic phase and coronal

intergrowth (red triangle) around clinopyroxene (Cpx) in Sample BP4.
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Figure 9 continued in the next page
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Figure 9: The microphotographs of two varieties of aluminous granulite (sample
BP12A and BP12C) and meta-ironstone (sample DG33E). (a) The SEM- BSI
microphotograph is showing the overall mineralogical assemblage of aluminous
granulite (sample BP12A), which is composed of hemo-ilmenite (HI), quartz (Qz),
sillimanite (Sil) and garnet (Grt). (b) The SEM- BSI microphotograph represents the
intergrowth at the core of the porphyroblastic garnet, which comprises of sillimanite
(Sil), quartz (Qz) and hemo-ilmenite (HI). (¢) The OM image (PPL) is showing that
away from the porphyroblastic garnet grains, bladed sillimanite (Sil) transforming into
fibrolite (Fi). (d) The OM image (PPL) of sample BP12C shows porphyroclastic
garnet developing weak shape-asymmetricity due to shearing. (¢) The SEM- BSI
microphotograph of sample DG33E shows that the hematite (Hem) formed along the
intragranular fracture planes within the magnetite (Mag). Spinel (Spl) is included

within magnetite-hematite. Coronal quartz (Qz) formed around the garnet (Grt).
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Figure 10 continued in the next page
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Figure 10: (a) The OM microphotograph (PPL) shows representative mineral
assemblage in the mafic layer of migmatitic hornblende gneiss (sample DG33F),
which is composed of hornblende (Hbl), clinopyroxene (Cpx), plagioclase (P1) and
orthopyroxene (Opx). (b) The OM microphotograph (PPL) shows that the
clinopyroxene (Cpx) included within the garnet grains (Grt) in the felsic layer of the
same rock. (c) The OM microphotograph (PPL) of the migmatitic quartzofeldspathic
gneiss (sample BP6) shows that the porphyroblastic garnet (Grt) of peak metamorphic
assemblage contains inclusions of quartz (Qz). Biotite (Bt) was formed at the
boundary of the garnet grain. (d) The SEM- BSI microphotograph of the same rock
shows anti-perthite texture where the blebs of guest K-feldspar present within the host
plagioclase. (¢) The OM microphotograph (CPL) of foliated quartz breccia (sample
DG17B) shows highly angular, poorly sorted quartz grains. (f) The characteristic XRD
peaks of kaolinitic (KIn) clayey matrix in sample DG17B.
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Figure 11: P-T pseudosection for mafic granulite (sample BP12B) constructed in the
system Na,O-Ca0-FeO-MgO-A1,03-S10,-H,0-Ti0>2-MnO. The bulk rock composition
is mentioned on the top the phase diagram. The stability fields of different variance
are shown by blue and gray shades. The pre-peak granulite facies metamorphic is
considered as M. The peak granulite facies metamorphic assemblage is denoted as M
in the figure. The exact positions of M» and M3 within specific P-T ranges (marked by
rectangular boxes) were deduced from the combination of conventional P-T
calculations and Xpy isopleths of garnet which was superimposed in the figure. The M4
represent the granulite-amphibolite transitional facies. The green dashed-line

represents the hornblende (Hbl)-out line.
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Table 4: Whole rock XRF data of mafic granulite (sample BP12B)

SiO, 45.33
TiO, 1.166
Al,O4 14.628
FeO* 15.506
MnO 0.304
MgO 7.042
CaO 10.206
Na,O 2.167
K,O 0.201
P,04 0.171
H,0 0.25
Total 96.971

FeO*= recalculated from measured Fe,04
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Chapter 6:
GEOCHRONOLOGICAL DATA

The geochronological investigations were carried out using zircon U-Pb
systematics by SHRIMP Ile and monazite U-Th-total Pb systematics by EPMA.

The geochronological data of individual rock are summarized in table 2.

6.1 Zircon U-Pb SHRIMP Ile data
Seven different rocks were analyzed in SHRIMP Ile after separating
zircon grains. Analytical data of the individual samples are presented in Table

5.

6.1.1 Charnockitic augen gneiss
Samples BP1

Total forty-three points were measured from out the thirty-eight zircon
grains separated this sample. Most of the grains were oval shaped with aspect
ratio ~2: 1 (length ~100 pm and breadth ~50 um). The SEM-CL images
revealed that most of the grains preserved a dark oscillatory zoned core which
were surrounded by brighter oscillatory zoned or homogenous rim (Fig. 12a).
However, few grains exhibited sector zoning [Fig. 12a(Il)]. The U and Th
contents from analyzed spots varied widely from 141 to 1564 ppm and from 61
to 598 ppm, respectively (Table 5). The Th/U ratio ranged between 0.10 and

1.93 (Table 5), and the Th/U vs. age plot (*°’Pb/?°Pb near-concordant age) did
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not reveal any pattern (Fig. 12b). All the analyzed on the Tera-Wasserburg
diagram (Fig. 12¢) defined a discordia line with 1514 £ 180 Ma as the upper
intercept and 877 £ 34 Ma as the lower intercept (MSWD = 3.1). MSWD was
high because of the wide scatter of data points near the lower intercept, whereas
the upper intercept yielded large error due to lack of data-points near the upper
intercept. The concordia diagram was rescaled between 1100—-700 Ma using the
same data-set, which exhibited that core of the zircon grains ranged between
approximately 990 and 850 Ma, whereas the overgrown rims were relatively
well-constrained and ranged between ~950 and ~900 Ma (Fig. 12d). In few
occasions, the cores yielded younger ages than the rims as they were
subsequently reset in response to the younger thermal event(s) during the
formation of the ~950-900 Ma rim. A single spot date of 773 + 22 Ma
(*°7Pb/?°°Pb date with 98% concordance, Th/U = 0.45) was recorded from the
dark-CL core of a grain [Fig. 12a(I)].
Sample BP3

Thirty-four points were analyzed from twenty-four zircon grains of this
sample. The grains were oval in shape, with varying length and width ranging
in between ~100 and 300 um and ~50 and 100 pm, respectively (Fig. 13a). The
SEM-CL images revealed that a few grains contained dark core which were
surrounded by bright overgrowth (Fig. 13a), whereas some grains preserved the
thin luminous overgrowth along the rim. The grains were mostly chaotically
zoned and occasionally preserved homogenous dark core. Oscillatory-zoned

zircon grains were rare. The U and Th contents from the analyzed spots ranged
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widely between 44 and 1771 ppm, and 63 and 356 ppm, respectively.
Consequently, the Th/U ratios also varied extensively (0.08—1.88; Table 5). No
pattern emerged from Th/U vs. age plots (2°’Pb/>%Pb near-concordant age: Fig.
13b). All the analyzed data were plotted on a Tera-Wasserburg diagram [Fig.
13c(I)]. Eighteen spots, analyzed from both core and rim, yielded near-
concordant data, which formed a single-population age cluster with a weighted
average mean age as 951 = 10 Ma [2°Pb/?°°Pb age, n = 15, MSWD = 1.8; Fig.
13c¢(II)]. Two spots yielded younger 2°"Pb/?°°Pb dates as 884 + 21 and 841 + 21
Ma, while an older spot date as 1034 = 16 Ma was also reported.
Sample BP2

Twenty-three zircon grains from this sample were measured. Most of
the grains were oval in shape. The SEM-CL images revealed that the grains
were irregularly and patchy zoned. Occasionally, the very thin overgrowth
along the rim was observed (Fig. 14a). The aspect ratios of the grains were ~2:1
(~200 pm in length and ~100 pm in width; Fig. 14a). The U and Th contents
varied from 36 to 233 ppm and from 56 to 433 ppm, respectively (Table 5). The
Th/U ratios ranged in between 0.8 and 2.7 (Table 5). Th/U vs. age data
(**’Pb/*°Pb near-concordant age) were plotted in figure 14b, which did not
show any correlation between the associated thermal event(s) and ratio. Only
nine near-concordant data-points were obtained from the thirty-seven analyzed
points. The Tera-Wasserburg plot of all the data-points exhibited a small spread

along the concordia line [Fig. 14c(I)]. The weighted average mean age from the
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overgrowth domain yielded the single-population age as 928 + 26 Ma

[2°7Pb/?%Pb age, n = 9, MSWD = 0.70; Fig. 14c(1)].

6.1.2 Mafic granulite
Sample BP12B

The majority of the zircon grains were rounded in shape with a diameter
about ~50 um. Occasionally, inclusions of orthopyroxene were found within the
zircon grains. The dark homogenous to patchy zoned cores were surrounded by
a thin homogenous but luminous-CL rim (Fig. 15a) in most of the grains.
Unfortunately, such overgrown rims, in most of the cases, were too thin to be
measured using the SHRIMP. The elongated and irregular shaped zircon grains
were rarely observed. U and Th contents varied between 681-144 ppm and 138—
33 ppm, respectively with Th/U ratio in the range 0.38-0.1 (Table 5). Total
twenty-one points were analyzed from fifteen zircon grains. The Tera-
Wasserburg plot of all data points yielded a single age group on concordia line
[Fig. 15b(I)]. Single population weighted mean age was calculated from the
eight near-concordant data points as 521 + 16 Ma [n = 8§, MSWD = 0.34 and
probability = 0.93; Fig. 15b(Il)]. From the core to rim, the spot dates did not
vary significantly (Fig. 15a).
Sample BP4

Thirty-three points from twenty zircon grains were measured from this
sample. All the grains were oval in shape, with length and width of ~150-200

um and ~100 um, respectively. Most of the grains exhibited homogeneous-CL
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response. Rarely, core-rim structure was observed. Such grains contained
irregular to oscillatory-zoned core which were surrounded by either oscillatory-
zoned or homogenous overgrowth (Fig. 15c¢). U (75-3385 ppm) and Th (72-446
ppm) varied widely (Table 5). Th/U ratios ranged between 2.382 and 0.132
(Table 5). Twenty-six data-points were observed as near-concordant, from
thirty-three analyzed points. The Tera-Wasserburg plot showed that the majority
of the analyzed data-point were distributed on the concordia line near the upper
intercept (Fig. 15d). The youngest spot 2°’Pb/>*°Pb date was 2468 + 7 Ma,

whereas the oldest spot 2°"Pb/?°°Pb date was 2915 + 4 Ma.

6.1.3 Aluminous granulite
Sample BP12A

Total sixteen points were measured on fourteen bulk-separated zircon
grains. Most of the grains were very small and irregular-shaped (aspect ratio
~2:1). Thus, only single analytical point per grain could be measured (Fig. 16a).
Rarely, the rounded to sub-rounded grains were observed. The elongated grains
were extremely scanty. Such grains had length and width of ~80—100 um and
~30-50 pum, respectively. The majority of the grains contained the inclusions of
quartz and/or aluminosilicate (Fig. 16a). The SEM-EBSD analysis revealed that
the obtained Kikuchi pattern of these included phase of aluminosilicate was
best matched with the Kikuchi pattern of the sillimanite (7-9 bands with Mean
Angle Deviation <1°; Fig. 16b). The sillimanite of this rock is dominantly

fibrous in nature, i.e., fibrolite. Thus, it is logical to consider that these
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included aluminosilicates are fibrolite. Similar inclusion within the zircon
grains of sample BP12C were also documented. The significance of the
inclusion of fibrolite within the zircon grain is discussed later during the
interpretation of the age data.

Most of the zircon grains exhibited a dark homogenous CL-response.
The SEM-CL images further revealed that rarely grains with brighter core
graded outward into a thin darker rim. U content varied in between 370 and 218
ppm, whereas Th content was low (5—1 ppm) (Table 5). Th/U ranged between
0.01 and 0.02. The Tera-Wasserburg concordia plot of all the data exhibited the
single-population >33U/2°Pb age distribution (Fig. 16¢). Only one 2°’Pb/?°Pb
spot date of 505 + 32 Ma retrieved as near-concordant (concordance 105%,
Th/U = 0.02) from a tiny and rounded zircon grain with homogenous CL-
response (16a).
Sample BP12C

Sixteen zircon grains were extracted from this variety of aluminous
granulite. Morphologically, most of the grains were oval to rounded in shape
where the diameter was varying from ~50 to ~30 pum (Fig. 16d). Inclusions of
sillimanite (fibrolite) (Fig. 16d and 16e) and/or quartz were present within most
of the zircon grains. The majority of the grains had homogenous and uniform
CL response. The SEM-CL images revealed that thin homogenous overgrowth
mantled the core of few grains. CL images further revealed that the boundary
between the core and rim was corroded. However, these overgrowths are too

thin to allow dating using the SHRIMP. It was rarely observed that few grains
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exhibit patchy, sector zoning pattern (Fig. 16d). U and Th contents ranged
between 1122-201 ppm and 32-2 ppm, respectively. Th/U ratio was consistent
in a range between 0.05-0.01 (Table 5). Out of eighteen analyzed points, six
near-concordant data-points were retrieved and only these data were considered
for the statistical age interpretations. All the data plotted on the Tera-
Wasserburg concordia diagram reflected a single age-population [Fig. 16f(I)].
The single population weighted mean age was calculated as 532 = 21 Ma from
these near-concordant age data [n = 6, MSWD = 0.56 and probability = 0.73;

Fig. 16f(ID)].

6.1.4 Meta-ironstone

Zircon grains of this rock morphologically varied from irregular to sub-
rounded, and rarely tabular. The aspect ratios of irregular grains were diverse
(~2:1-3:1). The sub-rounded grains had a diameter of ~50um, while tabular
grains were larger (~150 X 75 um) compared to irregular and sub-rounded
grains (Fig. 17a). The majority of the grains exhibited homogenous dark-CL
response. The SEM-CL images further documented that rarely grains preserved
luminous patchy core which was mantled by a darker rim (Fig. 17a). U and Th
contents were 799-494 ppm for U and 94-85 ppm for Th. Th/U ratios varied
between 0.11 and 0.18 (Table 5). Only one point per grain was measured for U-
Pb dating. Out of the thirteen zircon grains, total thirteen points were analyzed.
All the thirteen data-points on the Tera-Wasserburg diagram defined a

continuous spread of age data between ~560 and ~480 Ma [Fig. 17b(I)]. Out of
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the thirteen data-points, ten near-concordant data points yielded a single-

population weighted age as 521 £ 18 Ma [n =10, MSWD = 0.76; Fig. 17b(I1I)].

6.1.5 Migmatitic hornblende gneiss

Total sixty-nine points were measured from thirty-nine zircon grains.
The majority of the grains were observed as euhedral, subhedral and tabular in
shape, and their size varied in length (~150-200 pm) and width (~50-100 pm).
The cores of these grains commonly exhibited homogeneous dark-CL response,
which graded outward into a relatively luminous rim (Fig. 18a). The SEM-CL
images further revealed that the boundary between core and rim was,
occasionally, corroded. Some zircon grains preserved the xenocrystic cores
rarely, which were surrounded by an oscillatory zoned overgrown rim. The
irregularly shaped grains of varying sizes exhibited chaotic and convolute
zoning pattern (Fig. 18a). U content ranged widely from 75 to 1243 ppm,
whereas Th content varied between 26 and 435 ppm. Consequently, the Th/U
ratio also varied drastically between 1.1-0.11 (Table 5). All data points were
plotted on the Tera-Wasserburg concordia diagram, which yielded a discordia
line with 2425 + 32 Ma as upper intercept and 545 + 34 Ma as lower intercept
(MSWD = 0.25; Fig. 18b). Probability density diagram all the concordant data
(n = 12) shows two dominant *°’Pb/?°°Pb age-peaks at ~2400 Ma (n = 10) and
~570 Ma (n = 2; Fig. 18c). This ~550 Ma age was recorded from the
homogenous bright-CL rim. It was observed that the boundary between the core

and rim was corroded (Fig. 18a).
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6.1.6 Migmatitic quartzofeldspathic gneiss

Thirty points were measured from twenty-one bulk-separated zircon
grains from this sample. All the grains were oval shaped with length and width
varying from ~200 to ~250 pm and from ~80 to ~100 pm, respectively. Most of
the grains showed the core-rim structure (Fig. 19a). The SEM-CL images
revealed that the homogeneous and oscillatory-zoned bright core was rimmed
by dark homogenous (sometimes oscillatory-zoned; Fig. 19a) mantle and/or
rim. The U content of the grains varied between 3664 ppm and 75 ppm. Th
content ranged between 66 and 1553 ppm (Table 5). Th/U ratio varied between
0.06 and 0.88 (Table 5). Out of thirty analyzed points, twelve data-points were
found to be near-concordant where the spot dates ranged between 2345 + 4 and
2515 £ 11 Ma. All the analyzed points plotted on the Tera-Wasserburg
concordia diagram defined the discordia line with the upper intercept at 2448 +
19 Ma (n = 11) and lower intercept at 560 = 19 Ma (n = 1; MSWD = 1.7; Fig.
19b). The dark-CL rim of a single grain yielded the spot date of 525 £ 9 Ma
(?°7Pb/?%°Pb date with 102% concordance), whereas the brighter core of the
same grain yielded the spot date of 2487 = 5 Ma (**’Pb/?>°°Pb date with 98%

concordance).

6.1.7 Foliated quartz breccia
The detrital zircon grains with diverse morphological varieties were
recorded from this sample. The zircon grains were observed to be oval and sub-

rounded in shape. The prismatic, euhedral, as well as, irregularly shaped zircon
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grains were rarely seen (Fig. 20a). The aspect ratios of the majority of the
grains were ~2:1 (~100 X ~50 um). The zoning patterns of these detrital zircon
grains were also diverse. The SEM-CL images revealed that most of the grains
preserved the oscillatory zoned brighter core, which was mantled by the darker-
CL rim (Fig. 20a). The zircon grains occasionally preserved xenocrystic core
which emitted dark-CL signals. The complex growth zoning and homogenous
CL-response were rarely documented (Fig. 20a). U and Th contents of the
individual zircon grains varied widely (1390-70 ppm for U and 753-22 ppm for
Th). Hence, Th/U ranged extensively between 0.02 and 1.45 (Table 5). The total
sixty-two points were analyzed from thirty-two zircon grains. All the measured
data points plotted on the Tera-Wasserburg concordia diagram exhibited the
wide scatter of age data on the concordia line, especially from ~3200-2100 Ma
and ~850-500 Ma (Fig. 20b). Thus, the upper intercept and lower intercepts of
the discordia line could not be determined precisely, which made it difficult to
construct a meaningful discordia line. All the near-concordant data (n = 28; 90—
110% concordance) on the probability density diagram unveiled the multiple
age-peaks at ~530 Ma (n = 2), ~850 Ma (n = 2) and between ~3200-2100 Ma (n
= 24; Fig. 20c). The Neoproterozoic ages were recorded from the rim having

homogenous CL-response (Fig. 20a).

Varying degrees of reverse discordance in U-Pb zircon dates were

reported from the two samples of aluminous granulite (sample BP12A and

BP12C) and one sample of mafic granulite (sample BP12B). The reports of
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reverse discordance during zircon analyses are widespread in the published
literatures (Kelly and Harley, 2005; Kusiak et al., 2013 and references therein).
There are several reasons for the generation of reverse discordant age data. The
reverse discordance can be caused by local unsupported radiogenic Pb gain
(Williams et al., 1984; Compston, 1999), compositional artefacts (Wiedenbeck,
1995), or by matrix sputtering effects due to differential ion yield of the zircon
mounts (McLaren et al., 1994; Black et al., 1986). In this study, differential ion
yield of the zircon mounts can be ruled out as both unknown and standard
zircon grains were placed in the same mount. Hence, the matrix sputtering
effect was not responsible for the reverse discordance. The possibility of
common Pb contamination for reverse discordance is eliminated due to the
absence of high 2°*Pb count during the analyses. Radiogenic Pb can be
accommodated within the partially metamictized zircon domains (Mezger and
Krogstad, 1997; Geisler et al., 2003). Mobilization of such excess radiogenic Pb
can be facilitated from the metamictized domain either by fluids or through
annealing at elevated temperatures, whereas unmetamictized part witnessed no
Pb movement (Mezger and Krogstad, 1997). Kusiak et al. (2013) demonstrated
that concentration of radiogenic Pb in micro-domains produces spuriously older
dates, which validated the micron-scale Pb disturbance. Similar indicators of
micron-scale radiogenic Pb disturbance have been documented in other studies
(Compston, 1999; McFarlane et al., 2006). On the other hand, the ingression of
aqueous fluid at granulite-amphibolite transitional facies can disturb the

intragranular isotopic system by enhancing the Pb diffusion, which can cause
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normal and reverse discordance (Carson et al., 2002). Thus, in this study, the
possibility of micron-scale redistribution of radiogenic Pb for the reverse

discordance seems to be the most suitable explanation.

6.2 Monazite U-Th-total Pb EPMA data
In-situ monazite grains from five different rock types were analyzed in
EPMA by U-Th-total Pb systematics. Analytical data of these rock samples are

presented in Table 6.

6.2.1 Charnockitic augen gneiss

Eight monazite grains from the thin section were selected, and the total
of sixty-one spots were analyzed from the core, mantle, and rim regions (Table
6). The grains were morphologically oval to rounded in shape with the aspect
ratio of ~3:1 (~100 pum in length and ~30 um in width). The majority of the
grains exhibited compositional zoning between core and rim, where the dark-
BSI core was surrounded by brighter rim (Figs. 21a and 21¢). Compositionally
homogenous grains were rare. The spot dates varied between 689 + 20 and 984
+ 27 Ma. The oldest date of 984 + 27 Ma was recorded from the dark-BSI core,
whereas the youngest date of 689 + 20 Ma was measured from the brighter rim.
A representative grain (grain 17; Table 6) was chosen as it exhibited
compositional zoning (Fig. 21a) and preserved multiple age-peaks. The grain
was observed to present as the inclusion within the plagioclase outside the

porphyroblastic garnet. The brighter rim yielded the youngest spot date of 723
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+ 21 Ma, but the darker core and mantle exhibited the oldest pool age as ~940
Ma. Another representative grain was found as the inclusion within the
porphyroblastic garnet (Fig. 21b), which yielded the pool age of ~950 Ma (Fig.
21c). Two dominant pool ages of 772 £ 13 Ma (n = 13, MSWD = 4.1; Fig. 21d)
and 950 £ 6 Ma (n = 14, MSWD = 0.46; Fig. 21e) were obtained from all the
analyzed points. Apart from these age-peaks, two age-peaks at ~840 and ~910

Ma were also yielded.

6.2.2 Aluminous granulite
Sample BP12A

Three in-situ monazite grains were selected from the thin section of this
rock. Two of them were ~15 pm in length and ~10 pm in width and occur as the
inclusions within the garnet. The other grain was larger, with a diameter of
about 30 pm, and occurred as the inclusion within the quartz in the matrix of
the rock (Fig. 22a). A total of eleven points were analyzed from these three
grains (Table 6). The SEM-BSI image of the larger monazite grain (grain 3;
Table 6) revealed compositional zoning which was confirmed with the U-Th-Y
X-ray maps (Fig. 22b). The grain was compositionally homogenous in terms of
the Y and U distribution. However, enrichment of Th occurs along the rim
compared to the homogenous core. In figure 22c¢, the representative grain
exhibits variable spot dates. The single-population weighted mean age was
calculated as 519 + 5 Ma (n = 11, MSWD = 2.7; Fig. 22d), although the spot

dates ranged between 510 + 8 and 534 + 10 Ma.
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Sample BP12C

The monazite grains were more abundant in the variety of aluminous
granulite. The seven monazite grains were mapped for U, Th, and Y
distributions before the geochronological analysis. The total of forty-two points
within these grains were analyzed according to the zoning pattern and U, Th,
and Y distributions (Table 6). The monazite grains had the varying length (~20
to 100 pm) and width (~10 to 35 pm). Most of these grains were subhedral and
elliptical in shape, but the irregularly shaped grain was also observed. The
monazite grains from the matrix, as well as, the grains enclosed within the
peripheral regions of garnet, were selected. Some of these garnet porphyroblasts
preserved the included minerals, such as quartz, in between the interior and the
exterior zones. No zoning in terms of U and Y concentration was observed in
the matrix monazite grains. On the other hand, the included monazite grains at
the rim of garnet (grain 1; Fig. 23a) exhibited elemental zoning in terms of Th
and Y distribution [Fig. 23b(I-III)], possibly due to elemental redistribution
with the host garnet which was a source for the Y enrichment during the break-
down of garnet. One of such representative monazite grain preserved Y-rich
zone which was poor in Th content. However, the rest of the grain shows
homogenous Y and Th distribution [Fig. 23b(III)]. Six points were analyzed on
that grain, where the spot dates ranged between 512 + 15 and 797 + 41 Ma (Fig.
23c). The latter (oldest) date was acquired from the high-Y rich region, whereas
the rest of the grain (homogenous in terms of low-Y content) recorded dates as

~520 Ma. Another included monazite grain yielded a spot date of 745 + 43 Ma,

90



with three older spot dates of 891 =57, 913 + 31 and 928 £ 41 Ma. The
dominant single-population weighted average age recorded from the rock as 524
+ 5 Ma (n =37, MSWD - 1.6; Fig. 23d), which is similar to that of the other
aluminous granulite (sample BP12A). The age spectrum recorded from this rock

is shown in figure 23e.

6.2.3 Meta-ironstone

Eight in-situ monazite grains were selected from the thin-section for
geochronological analysis. The grains were small in size (~10 x 5 pm) and
highly irregular in shape (Fig. 24a). The majority of the grains were
homogeneous in terms of the zoning pattern as revealed by the SEM-BSI
images. However, some were observed as zoned grains (Fig. 24a). Most of the
monazite grains were found at the boundary of garnet grains or within the
garnet grains as inclusion. However, no significant difference in the spot dates
were recorded from the individual grains. The spot dates varied between 455 +
54 Ma and 529 + 64 Ma. The total twenty-one points were measured from the
eight grains, which yielded a single population weighted mean age as 499 + 5
Ma (n =21, MSWD = 1.11, probability = 0.33). The probability density

diagram in figure 24b displays the single age-peak at ~500 Ma.

6.2.4 Foliated quartz breccia

Total twenty-eight points were measured from seven grains of the thin-

section. Out of seven grains, five irregular shaped grains were small (~30-40
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um in length and ~20-30 pm in width). Rest of the grains were bigger in size
and morphologically elongated (aspect ratio ~2:1). The SEM-BSI images of the
individual grains displayed the distinct compositional zoning (Fig. 24c¢).
Individual spots for age dating were selected according to the different zoning
pattern. Textural investigation revealed that the monazite grains were either
located within the quartz grain as the inclusion or present within the kaolinitic
matrix. The representative monazite grain, which preserved all the age-peaks of
the rock, showed that the core yielded the oldest age as 2120 + 44 Ma,
surrounded by the mantle of 1365 +£ 71 Ma and then rimmed by a younger ~500
Ma domain (Fig. 24c). The spot dates varied between 2120 + 44 Ma and 494 +
20 Ma. The probability density diagram consist of all the data points exhibits
the strongest peak at ~500 Ma [n = 23; Fig. 24d(I)]. The weighted average pool
age as 509 + 4 Ma [n =23, MSWD = 1.15, probability = 0.28; Fig. 24d(II)] was

calculated from the ~500 Ma data-points.

6.2.5 Migmatitic quartzofeldspathic gneiss

Seven grains were selected for the in-situ analysis. Total forty-eight
points were measured from these seven grains (Table 6). The grains were oval
with aspect ratios of ~2:1 (~200 pm in length and ~100 pm in width). The
measured points were chosen in terms of the different zoning pattern in the
SEM-BSI images. However, no major difference in the spot dates was found

irrespective of the zoning pattern (e.g., grain 17; Fig. 25a). The spot dates
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ranged between 478 = 23 and 523 + 8§ Ma. All the data represented the single

population weighted mean age as 511 + 3 Ma (n =48, MSWD = 1.9; Fig. 25b).
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Figure 12: Internal structure of zircon grains and U-Pb SHRIMP analytical plots of the
charnockitic augen gneiss (sample BP1). a(I)-a(Ill) The SEM-CL images of
representative zircon grains are exhibiting different zoning pattern with spot date. (b)
Th/U vs. age plot (**’Pb/?°Pb near-concordant dates). (c) Tera-Wasserburg Concordia
diagram of all analyzed data is showing the age spread between ~1500 and 775 Ma.
(d) Magnified representation (~700—1100 Ma) on the concordia diagram is showing

the widespread core age along with a well-constrained younger rim.
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Figure 13: Internal structure of zircon grains and U-Pb SHRIMP analytical plots of the
charnockitic augen gneiss (sample BP3). (a) The SEM-CL images of representative
zircon grains exhibiting different zoning pattern with spot date. (b) Th/U vs. age plot
(*°7Pb/?%°Pb near-concordant dates). c(1) Tera-Wasserburg Concordia diagram is
showing most of the data clustering at approximately 950 Ma. c(II) Single-population

weighted-average age recorded from this rock as 951 = 10 Ma.
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Figure 14: Internal structure of zircon grains and U-Pb SHRIMP analytical plots of the
charnockitic augen gneiss (sample BP2). a(I) and a(Il) The SEM-CL images of
representative zircon grains exhibiting different zoning pattern with spot date. (b)
Th/U vs. age plot (**’Pb/?°Pb near-concordant dates). c(I) Tera-Wasserburg Concordia
diagram is showing all the data clustering at approximately 930 Ma. c¢(Il) Single-

population weighted-average age recorded from this rock as 928 + 26 Ma.
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mafic granulites. (a) The SEM-CL images of representative zircon grains from sample
BP12B exhibiting different zoning pattern with spot date. b(I) Tera-Wasserburg
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showing a spread of age data between ~2900 Ma and ~2400 Ma.
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BP12C). (a) The SEM-CL images of representative zircon grains from sample BP12A
are exhibiting different zoning pattern with spot date. Inclusions of fibrolite (Fi) found
within the zircon grain. b(I-II) Representative Kikuchi pattern obtain from the
included fibrolite (7 bands matched with sillimanite; MAD 0.72° and 0.85°,
respectively) c¢) Tera-Wasserburg concordia plot of sample BP12A. (d) The SEM-CL
images of representative zircon grains from sample BP12C are exhibiting different
zoning pattern with spot date. Inclusions of fibrolite (Fi) found within the zircon
grain. e(I-1I) Representative Kikuchi pattern obtain from the included fibrolite (7
bands matched with sillimanite, MAD 0.7°; 9 bands matched with sillimanite, MAD
0.67°, respectively) f(I) Tera-Wasserburg concordia plot is showing all data points
cluster around ~530 Ma. f(II) Single-population weighted-average age recorded from

this rock as 532 +£ 21 Ma.
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Figure 17: Internal structure of zircon grains and U-Pb SHRIMP analytical plots of the

meta-ironstone (sample DG33E). (a) The SEM-CL images of representative zircon

grains are exhibiting different zoning pattern with spot date. b(I) Tera-Wasserburg

concordia plot is showing all data points cluster around ~525 Ma. b(Il) Single-

population weighted-average age recorded from this rock as 521 + 18 Ma.
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Figure 18: Internal structure of zircon grains and U-Pb SHRIMP analytical plots of the

migmatitic hornblende gneiss (sample DG33F). (a) The SEM-CL images of

representative zircon grains are exhibiting different zoning pattern with spot date. The

core of the zircon grains yields mostly ~2400 Ma date whereas the rim exhibits ~550

Ma spot dates. (b) Tera-Wasserburg concordia plot reveals the upper intercept around

~2425 Ma and lower intercept around ~545 Ma as defined by the discordia line. (¢)

Probability density plot of the near-concordant data point showing two age-peaks at

~2400 Ma and ~550 Ma.
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Figure 19: Internal structure of zircon grains and U-Pb SHRIMP analytical plots of the
migmatitic quartzofeldspathic gneiss (sample BP6). (a) The SEM-CL images of
representative zircon grains are showing different zoning pattern with spot dates. (b)
The Tera-Wasserburg concordia diagram showing the widespread clusters with the
discordia line with upper intercept age between approximately 2500 and 2350 Ma. A

single concordant spot date of 525 + 9 Ma marks the lower intercept.
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Figure 20: Internal structure of zircon grains and U-Pb SHRIMP analytical plots of the
foliated quartz breccia (sample DG17B). (a) The SEM-CL images of representative
zircon grains are showing wide varieties of zoning pattern. The Neoproterozoic spot
dates (~850 Ma and ~520 Ma) are recorded mostly from the rim of Paleoproterozoic to
Archean zircon grains. (b) The Tera-Wasserburg concordia plot reveals the wide
scattering of age data ranging from ~3200 Ma to ~500 Ma, suggesting multiple
sources of sedimentation. (c) Probability density plot of near-concordant ages are

showing multiple peaks at ~530 Ma, ~850 Ma and between ~3200-2100 Ma.
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Figure 21: Internal structure of the monazite grains and U-Th-total Pb EPMA monazite
dating plots of the charnockitic augen gneiss (BP1). (a) The SEM-BSI image of a
representative monazite grain is showing compositional zoning with the spot dates
ranging between ~941 and ~723 Ma. (b) Another representative monazite grain occurs
as the inclusion within the porphyroblastic garnet. (c) Single cluster pool age of ~950
Ma recorded from the grain. (d) The weighted average mean age calculated from the
matrix monazite is 772 + 13 Ma. (e) The weighted average mean age calculated from

the included monazite is 950 + 6 Ma.
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Figure 22: X-ray elemental mapping and U-Th-total Pb EPMA dating plots of the
monazite grains from the aluminous granulite (sample BP12A). (a) The SEM-BSI
image reveal that the monazite (Mnz) is included within the quartz (Qz). b(I)-b(III)
Element maps of the analyzed monazite for U, Th, and Y. The concentration level of
the elements is shown on the right side of the subfigure b(Il). (¢c) The SEM-BSI image
of the monazite grain is showing the spot dates. (d) The single population weighted

average age is calculated as 519 £ 5 Ma.
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Figure 23: X-ray elemental mapping and U-Th-total Pb EPMA dating plots of
monazite grains from the aluminous granulite (sample BP12C) (a) The SEM-BSI
image reveal that the monazite (Mnz) is included within the rim of the garnet (Grt).
b(I)-b(IIT) Element maps of the analyzed monazite for U, Th, and Y. The concentration
levels of the elements are shown on the right-hand side of subfigure b(III). (c) The
SEM-BSI image of the monazite grain is showing compositional zoning with the spot
dates. (d) The most dominant weighted average of age is calculated as. (e) Probability
density plot of spot dates showing a strong peak at approximately 520 Ma, with two
minor peaks at ~920 and ~775 Ma.
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Figure 24: Internal structure of the monazite grains and U-Th-total Pb EPMA monazite
dating plots of meta-ironstone (sample DG33E) and the foliated quartz breccia
(sample DG17B). (a) The SEM-BSI image of a representative monazite grain is
showing compositional zoning with the spot dates. (b) The probability density plot of
all data points yields a single population age-peak at ~500 Ma. (¢) The SEM-BSI
image of a representative monazite grain is showing compositional zoning with the
spot dates. The representative monazite grain preserves the core of ~2100 Ma, which
is mantled by ~1350 Ma zone and then surrounded by the rim of ~500 Ma. d(I) The
probability density plot is showing strongest age peak at ~500 Ma (n = 23) with minor
peaks ~2100 Ma (n=1), ~1350 Ma (n = 1), ~930 Ma (n = 2), ~700 Ma (n = 1). d(II)
The weighted average age is calculated from the most dominant age cluster as 509 + 4

Ma.
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Figure 25: Internal structure of monazite grains and U-Th-total Pb EPMA monazite
dating plots of the migmatitic quartzofeldspathic gneiss (sample BP6). (a) The SEM-
BSI image of a representative monazite grain is showing compositional zoning with
the spot dates. (b) The single population weighted average age is calculated as 511 £ 3
Ma.
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Chapter 7:

DISCUSSIONS AND CONCLUSIONS

Eight different deep-crustal rocks (granulites) were studied in the
present research work in detail to understand the textural evolution and the ages
of different tectonothermal events. Apart from the deep-crustal granulites, the
detailed petrological and geochronological investigation were carried out on
two mid-crustal cratonic rocks and one shallow-crustal marginal rock from the
western boundary of the EGB. Multiple age-peaks in between ~3190 Ma and
~484 Ma are recorded from these rocks. The tectonothermal significance of

these geochronological data is discussed in the following sections.

7.1 Significance of the Mesoarchean to Mesoproterozoic ages
Mesoarchean to Mesoproterozoic ages are obtained from the deep-
crustal granulites, mid-crustal cratonic rocks and shallow-crustal sedimentary

rocks from the western boundary of the EGB.

7.1.1 Mafic granulite

The spot dates in between ~2915-2470 Ma were recorded from a
variety of mafic granulite, namely sample BP4 (Table 5). These spot dates were
observed to spread on the concordia line without yielding any population age
(Fig. 15d). It is noteworthy that the neoblastic zircon grain, once formed, does

not move along the concordia line even if it suffers Pb-loss. However, the near-
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concordant data-points from the inherited grains can spread along the concordia
line (Krogh, 1993), which reflects the age of the protolith. The zircon grains of
the studied mafic granulite record the older protolith ages, even if these rocks
experienced anataxis during the high-temperature metamorphism. The survival
of such older zircon grains of these rocks at the time of anataxis depend not
only on the ambient pressure, temperature, and fluid condition, but also on the
bulk-rock composition and zirconium saturation of the protolith (Kelsey et al.,
2008). Hence, there is a possibility that these protoliths evolved in such a
system where Zr saturation was high enough for the survival of few older zircon
grains by increasing the melting temperature. Considering all these points, it
can be inferred that these older zircon grains are the pre-Grenvillian
metamorphic inherited grains, which represents the age of the older crustal
components.

The origin and the evolution of this mafic granulite are, somehow,
obscured as the rock experienced the multiple phases of deformation and
metamorphism. One possibility is the mafic rock was emplaced at ~2900 Ma,
and, then experienced an early phase of granulite facies metamorphism at
~2450 Ma. However, the fact combining the textural evidence, field relationship
and, so far known tectonic setting of the EGB does not validate the possibility
of Paleoproterozoic granulite facies metamorphism. The internal texture of the
inherited zircon grains suggests that its protolith was most probably of
magmatic origin, which emplaced possibly at ~2450 Ma with inherited zircon

grains of ~2900-2500 Ma. It is also possible that the formation of this rock by
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the multiple stages of magmatic events occurred between ~2900 and 2450 Ma,
which later suffered UHT-HT metamorphism at ~1000-900 Ma as this rock
preserve the same regional-scale metamorphic foliation associated with the
Grenvillian orogeny. The latter two possibilities are geologically more plausible

from the present set of data.

7.1.2 Migmatitic hornblende gneiss and migmatitic quartzofeldspathic
gneiss

Both the cratonic gneisses yield the similar upper intercept and lower
intercept ages at ~2450 Ma and ~550 Ma, respectively (Fig. 18b and 19b).
Normally, the age data near the upper intercept is considered to provide the age
of crystallization (contextually, as the age of protolith), whereas the age data
near the lower intercept reflects the recrystallization age (contextually, as the
age of metamorphism) (Mezger and Krogstad, 1997). Emplacement of the
granitoids within the BC occurred during ~2500-2200 Ma (Sarkar et al., 1981;
Krishnamurthy et al., 1988; Pandey et al., 1989; Saha et al., 2016), which
coincides with the upper intercept age recorded in the migmatitic hornblende
gneiss and the migmatitic quartzofeldspathic gneiss. The well-constrained age
data near the upper intercept, high Th/U (>0.1) and the oscillatory zoned zircon
grains of the migmatitic hornblende gneiss and the migmatitic
quartzofeldspathic gneiss also vindicate the possibility in favor of magmatic
origin. Hence, the upper intercept age constrains the emplacement age of these

granitoid gneisses within the BC. The small spread of concordant ages at the
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upper intercept may result from the multiple stages of igneous activity
occurring between ~2500 and 2450 Ma. The cratonic gneisses, on the present
day erosional surface, are exposed within the EGB as a “tectonic window” that
represents the cratonic basement which buried under the thrust sheets of the
EGB (Bhadra et al., 2004) during the final amalgamation of the EGB with the

Proto-India.

7.1.3 Foliated quartz breccia

The detrital zircon grains and monazite grains exhibit multiple older
age-peaks in between ~3200 Ma and ~1350 Ma, apart from the Neoproterozoic
to Late Cambrian ages [Fig. 20c and 24d(IT)]. The similar ages are well-
documented from the detrital zircon and monazite grains (Saha et al., 2016
among others) studied from the adjacent craton-hosted basins (e.g.,
Chhattisgarh Main Basin, Khariar Basin, Ampani Basin, Sukma Basin and
Indravati Basin). The highly angular quartz grains in this rock suggest that the
degree of transportation was low as the sediments were supplied from the
nearby areas. Thus, the combination of the geochronological data with textural
evidence suggest that the sources(s) of Mesoarchean to Mesoproterozoic

sediments located within the BC.

7.2 Significance of the Neoproterozoic to Late Cambrian ages

The three dominant age-peaks in between ~1000-900 Ma, ~850—775 Ma

and ~550—495 Ma are recorded from the deep-crustal granulites and shallow-
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crustal sedimentary rock. The mid-crustal cratonic rocks record only the ~550—

525 Ma ages.

7.2.1 ~1000-900 Ma ages

The three textural variants of the charnockitic augen gneisses yield the
dominant age cluster from both zircon (sample BP1, BP2, and BP3) and
monazite grains (sample BP1) in between ~950 and ~930 Ma. One monazite
grain yielding ~950 Ma age (grain 16 in sample BP1) shares the straight
boundary with garnet, whereas another monazite grain is included within the
porphyroblastic garnet grain (Fig. 21c). These texturally well-constrained
geochronological data indicate that the porphyroblastic garnet grew during
~950 Ma. Two spot dates of 928 £ 41 Ma and 913 + 31 Ma are also recorded
from the monazite grain of aluminous granulite (sample BP12C). These dates
are similar to the age of granulite metamorphism (~1060-900 Ma) described
previously by Simmat and Raith (2008) from monazite of this area. The most
prominent granulite facies (UHT-HT) metamorphism in the Eastern Ghats
Province (northern and central parts of the EGB) occurred during 1030-900 Ma
(Shaw et al., 1997; Mezger and Cosca, 1999; Simmat and Raith, 2008;
Upadhyay et al., 2009; Bose et al., 2011; Das et al., 2011; Korhonen et al.,
2013). The spot date of 1034 + 16 Ma from the core of the zircon grain of
charnockitic augen gneiss (sample BP3) coincides with the upper-limit of this
age bracket which is the timing of UHT granulite facies metamorphism. The

Tera-Wasserburg concordia diagram (Fig. 12d) for the charnockitic augen
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gneiss (sample BP1) suggests the older core formation at approximately 1000—
980 Ma, which is partially reset during the later thermal event at approximately
950-900 Ma. This later thermal event was responsible for the wide scattering of
core ages (in between ~1000-850 Ma; Fig. 12d). The age imprint of the younger
(~950-900 Ma) thermal event is mostly recorded from the rim of older cores of
the zircon grains that exhibit the comparatively well-constrained age cluster.
These zircon grains preserved oscillatory-zoned older core which is rimmed by
a younger homogenous rim [Fig. 12a(III)]. This suggests that the crystallization
of the protolith of the charnockitic augen gneiss occurred at ~1000-980 Ma,
possibly as a result of the charnockite magmatism contemporaneous with the
UHT metamorphism reported from the domain 2 of the EGB (Bose et al., 2011;
Das et al., 2011; Korhonen et al., 2013). Thus, the evidence collected from this
area and the adjacent crustal domain 2 suggest that the younger age (~950-900
Ma) bracketed the age of the HT granulite facies metamorphic overprint(s),
which produced the porphyroblastic garnet in the charnockitic augen gneiss
(sample BP1) during the M, metamorphic event (Fig. 26).

The detrital monazite grains of foliated quartz breccia also yielded spot
dates of 940 + 21 Ma and 925 + 18 Ma. These characteristic ages of the EGB
are completely missing in the adjacent BC, which imply that sediments were
supplied both from the BC (Mesoarchean to Mesoproterozoic sources) and the
EGB (Mesoproterozoic to Late Cambrian sources). The spot dates from the
zircon grains of the charnockitic augen gneiss (sample BP3) as 884 £ 21 Ma

(Table 5) and the monazite grains of the aluminous granulite (sample BP12C) as
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891 + 57 Ma probably reflect the mixed ages. The spot dates from the monazite
grains of another variety of the charnockitic augen gneiss (sample BP1) were
obtained in between ~900 and 850 Ma. These age peaks may suggest either the
age of different tectonothermal events in between ~900 and ~850 Ma, or the

mixing of the older (~950 Ma) and the younger (~775-850 Ma) ages.

7.2.2 ~850-775 Ma ages

The strong peak at 772 = 13 Ma is recorded in the monazite grains of
the charnockitic augen gneiss (sample BP1; Fig. 21d). The ~775 Ma monazite
grains exist close to the porphyroblastic garnet and co-exist with plagioclase
and/or orthopyroxene. The textural relationship suggests that plagioclase and/or
orthopyroxene formed due to breakdown of the porphyroblastic garnet. Thus,
the associated monazite grains with the plagioclase and/or orthopyroxene
possibly grew during breakdown of the porphyroblastic garnet. The concordant
spot date of 773 £ 22 Ma is also obtained from the core of a single zircon grain
of this rock [Fig. 12a(I)]. The other two varieties of charnockitic augen gneisses
(sample BP2 and BP3) also documented two spot dates in the zircon grains as
847 £ 48 Ma and 841 + 21 Ma (Table 5). The textural evidence of breakdown of
porphyroblastic garnet, i.e., development of plagioclase and orthopyroxene
intergrowth at the boundary of the garnet, is reported in the sample BP3 (Fig.
7d). The foliated quartz breccia contains two detrital zircon grains of 852 + 13
Ma and 842 + 12 Ma age (Fig. 20b and 20c). The spot date as 797 + 41 was

recorded from one monazite grain of the deformed variety of aluminous
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granulite (sample BP12C) in addition. The analyzed monazite is located at the
exterior part of the porphyroblastic garnet. The ~800 Ma age from the grain was
documented from the Y-rich part of the monazite (Fig. 23b(I1I) and 23c). This
high-Y domain in the monazite grain is interpreted to form due to
destabilization of garnet during decompression, as the latter is considered as the
only sink for heavy rare earth elements (HREE), including Y (Pyle and Spear,
2003; Yang and Pattison, 2006). Therefore, the Y-rich monazite grain exhibits
the age of the possible garnet instability during decompression. Some of the
porphyroblastic garnet grains with the silicate mineral inclusions in between the
interior and exterior portion possibly indicate the presence of an early garnet,
and Y-rich monazite grain grew at ~800 Ma along the boundary of the early
garnet. The overgrowth of garnet occurred during later metamorphism. Neither
the charnockitic augen gneiss nor the aluminous granulite show the textural
evidence of classical garnet breakdown intergrowths. However, the prominent
garnet breakdown texture, i.e., symplectic intergrowth is developed in the
adjacent mafic granulite (BP12B, Fig. 8b). It is important to note that the
symplectic intergrowth might be formed either due to Na-metasomatism
(Spacek et al., 2013) or due to decompressive instability of the garnet grains
(Gupta et al., 2000). The symplectic intergrowth due to Na-metasomatism can
be ruled out in the present sample as the plagioclase grains at the site of
symplectite show the similar An-content compared to the porphyroblastic phase
formed at the peak metamorphic condition. Thus, the symplectite texture in the

mafic granulite was formed due to near-isothermal decompression, which is
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also vindicated by the conventional geothermobarometric calculation and
thermodynamic modeling (M3 of Fig. 11). The absence of such decompression-
related texture in the adjacent aluminous granulites is due to the highly Fe-rich
restitic bulk-rock composition. Hence, it is logical to suggest that the
decompression by exhumation (M3) of the lower-crust occurred ~800 Ma (Fig.
26) by combining all the textural evidence with in-situ and bulk-separated

geochronological data.

7.2.3 ~550-495 Ma ages

The deep-crustal granulites, mid-crustal cratonic gneisses, and shallow-
crustal sedimentary rock preserve the age imprints of ~550-495 Ma. Age
imprints of ~550-495 Ma are exclusively recorded in the rocks which were
collected in a E-W transect across the EGB-BC boundary. The granulites of this
region record the youngest age as ~530-500 Ma of both zircon and in-situ
monazite grains. The ~530-500 Ma aged neoblastic zircon grains from the
aluminous granulites (sample BP12A and BP12C) reveals that the sillimanite
(fibrolite) is present as inclusion (Fig. 16a and 16¢). The fibrolite could be
formed in the pelitic rock as a lower temperature variety of sillimanite (Sassi et
al., 2004). Moreover, Georgieva et al. (2002) conclude that the fluid-driven
fibrolite can grow in the shear zone at amphibolite facies. The ingression of
aqueous fluid in the presence of quartz enlarges the stability field of sillimanite
(fibrolite) at the expense of plagioclase in a lower pressure-temperature than

granulite facies condition (Amano and Kawakami, 2014). Hence, the ~530-500
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Ma zircon grains grew possibly at a lower pressure-temperature than the
granulite facies condition in the presence of an aqueous fluid. The role of fluid
was, further, vindicated by the appearance of late-hornblende on clinopyroxene
due to rehydration of the mafic granulite (Fig. 8c and M4 of Fig. 11). Hence, all
lines of evidence lead to the fact that these deep-crustal rocks were overprinted
by a later granulite-amphibolite transitional facies metamorphism (M4) during
~530-500 Ma (Fig. 26).

The neoblastic zircon growth during the granulite-amphibolite
transitional facies (Mg4) is intriguing. It is reported that the zircon can grow at
such condition (Kelsey et al., 2008; Kohn et al., 2015). Kohn et al. (2015)
explain that the zircon dissolution is possible by the generation of partial melt
due to change in the P-T condition, i.e., during isothermal decompression, and
the neoblastic zircon may crystallize from that melt during late stage
exhumation and cooling. However, the zircon growth depends not only on P-T
condition but also on the Zr-content of the rock (Kelsey et al., 2008). The
dissolution-reprecipitation of zircon at a lower temperature is possible due to
low Zr-content in the protolith. Such neoblastic zircon may contain the primary
solid and/or fluid inclusions (Tomaschek et al., 2003). The inclusion of fibrolite
and quartz in the ~530-500 Ma zircon grains of the aluminous granulites
(sample BP12A and BP12C) were reported in the present study, which suggest
the formation of such grains occurred at the granulite-amphibolite transitional
facies. Zircon also can grow at the lower temperature compared to the granulite

facies condition in the presence of aqueous fluids (Hoskin and Schaltegger,
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2003; Dubinska et al., 2004; Schaltegger, 2007; Ayers et al., 2012; Wilke et al.,
2012). The presence of fluids responsible not only for the growth of zircon but
also fluids can reset the isotopic clock (Pidgeon, 1992; Pidgeon et al., 1998).
The ingression of aqueous fluid at the granulite-amphibolite transitional facies
can also be responsible for the normal and reverse discordance due to the
intragranular isotopic disturbance by enhancing the Pb diffusion (Carson et al.,
2002). The analyzed rocks of the present study show similar discordance [both
reverse and normal; Fig. 15b(I), 16b and 16d(I)] as they possibly crystallized
under the influence of aqueous fluid. The presence of porphyroblastic
(pegmatoidal) garnet and aluminosilicate minerals further vindicate the role of
the fluid (Crowe et al., 2003). The similar pegmatoidal garnet (Fig. 5¢) and
sillimanite in the granulites from the orogen-boundary are reported in the
present study. This garnet contains abundant secondary fluid inclusions (sample
BP12A), which possibly suggest that the pegmatoidal growth was fluid-
assisted. Such pegmatoidal growth of minerals are not reported in the interior of
the orogen, which imply that the fluid invasion was facilitated through the
thrust planes and exclusively affected the rocks adjacent to the thrust boundary.
The contemporaneous rehydration reactions, i.e., the formation of the late
hornblende in the mafic granulite (sample BP12B) also validate the role of fluid
during ~530-500 Ma restricted near the thrust boundary. Thus, the mineral
inclusions of fibrolite and quartz within the neoblastic zircon grains, discordant
age data points and fluid-assisted pegmatoidal growth of minerals suggest the

neoblastic growth of zircon grains (or total resetting of the older isotopic clock)
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at ~530-500 Ma. Such neoblastic growth might have occurred either due to the
dissolution-reprecipitation during granulite-amphibolite overprinting or due to
the influence of aqueous fluids, or a combination of both.

Both the mid-crustal cratonic gneisses (sample DG33F and BP6) record
the age imprints of ~550—-500 Ma in the monazite and the zircon grains. The
monazite grains of the migmatitic quartzofeldspathic gneiss (sample BP6) yield
a very strong age-peak at 511 = 3 Ma. The rim of the zircon grains from the
migmatitic hornblende gneiss (sample DG33F) and the migmatitic
quartzofeldspathic gneiss (sample BP6) yield the lower intercept ages of the
discordia lines in the Tera-Wasserburg concordia diagrams as ~550 Ma, whereas
the core of the zircon grains yield ~2450-2400 Ma ages as the upper intercepts
(Figs. 18a, 18b, 19a and 19b). The lower intercepts of the discordia lines in the
Tera-Wasserburg concordia diagrams indicate that these rocks were overprinted
by a thermal event at ~550 Ma. This age coincides with the previously
documented age of ~550-500 Ma from the boundary region (Biswal et al.,
2007; Simmat and Raith, 2008; Upadhyay, 2008). However, the several craton-
hosted Mesoproterozoic sedimentary basins, as well as, the mid-crustal cratonic
gneisses in the further tens of kilometer westward within the craton did not
record any imprint of this ~550-500 Ma event (Saha et al., 2016; Das et al.,
2016). Thus, the influence of the top-to-the-west thrusting of the “hot” EGB
over the “cold” BC (Gupta et al., 2000; Bhadra et al., 2004; Gupta, 2012)
during the ~550-500 Ma is also restricted along the narrow zone adjacent to the

boundary even in the cratonic side. The textural evidence, such as the
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appearance of orthopyroxene on hornblende, also imply the change from the
amphibolite facies metamorphism to the amphibolite-granulite transitional
facies metamorphism due to the thrusting the “hot” EGB over the “cold” BC.
Metamorphic overgrowths of ~550 Ma rims are found in the zircon grains,
which record the timing of the amphibolite-granulite transitional facies
metamorphism due to the thrusting of the “hot” EGB over the BC.

The detrital zircon grains and the monazite grains in the foliated quartz
breccia (sample DG17B) preserve the very strong age imprints of ~530-495
Ma. The youngest spot date retrieved from the detrital zircon grain is 517 + 23
Ma, whereas the detrital monazite grain yields the youngest spot date as 494 +
20 Ma. The maximum depositional age of this sedimentary basin is calculated
as 484 (+ 10/- 18) Ma from the monazite age data (Fig. 27). The field evidence,
such as the presence of conformable thrust-related regional foliation (Fig. 51),
combined with the geochronological data (zircon and monazite grains of ~530—
495 Ma) suggests for the first time that the thrust-related deformation was post-
to syn-depositional of this shallow-crustal component. This implies that the

thrusting might have continued at least, up to, ~484 Ma.

7.3 Age-zonation across the boundary of orogen

It is interesting to note that the superposition of granulite-amphibolite
transitional facies metamorphism (M3s) on ~950-930 Ma granulite facies
metamorphic rocks (My) are widely documented from several regions within the

EGB. The present study indicates that the extensive neoblastic growth of minute
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zircon grains (or completely resetting the isotopic clock) during the granulite-
amphibolite transitional facies metamorphism erased almost all the earlier age
memory from the granulites (in and around the Parla village) near the thrust
contact between the EGB-BC. The age signatures of ~550 Ma on the cratonic
gneisses are also restricted very close to the western boundary of the EGB in
the cratonic counterpart. Such age imprints on the cratonic rocks are completely
absent at the farther away (westward) from the western boundary of the EGB
(Saha et al., 2016; Das et al., 2016). On the other hand, the granulites
outcropped ~60 km away from the boundary towards the interior of the orogen,
only preserve the older age imprints of ~950 Ma exclusively (in and around
Bhawanipatna town), with no record of ~530-500 Ma zircon growth/resetting.
Thus, the high-resolution zircon age data from the systematically sampled rocks
collected in a ~60 km long E-W transect across the EGB-BC boundary unveil an
age zonation across the western boundary of the EGB. Such spatial variation of
the metamorphic events and their corresponding ages in a E-W transect across
the boundary is depicted in Figure 28.

This spatial variation of the geochronological data of the extensive
zircon growth or resetting requires the unique physico-chemical environment
prevalent along the narrow zone adjacent to the both side of the thrust-bound
boundary. Such prevalence of the physico-chemical environment may be due to
the effect of the thrusting of the EGB on the BC during its amalgamation. The
influence of the thrust-related physico-chemical environment completely

diminished towards the interior of the orogen (in and around the Bhawanipatna

151



town). Thus, no age imprints of ~550-500 Ma are found from the rocks near the

Bhawanipatna town, ~60 km away towards the east of the thrust boundary.

7.4 Age-integrated tectonic modeling

Three distinct tectonothermal pulses are recorded in between ~950—-500
Ma from different areas within the northern EGB. The texturally well-
constrained and high-resolution age data demonstrates that the three age peaks
at ~950-930 Ma, ~850-775 Ma, and ~550—485 Ma are correlated with all the
corresponding tectonothermal events, which are recorded exclusively from the
western boundary of the EGB. Such correlation of the age peaks with respective
tectono-metamorphic events allows to propose the comprehensive age-
integrated tectonic model (modified after Bhadra and Gupta, 2016 and among
others) encompassing deep- to shallow-crustal events started from its Early
Neoproterozoic granulite facies metamorphism till the final amalgamation of
the EGB at the Late Cambrian period.

The stable mineralogical assemblage of garnet, orthopyroxene, K-
feldspar and quartz in the charnockitic augen gneisses reflect the deep-crustal
granulite facies metamorphism, which were collected at about ~60 km eastward
from the postulated boundary between the EGB and the BC. The zircon U-Pb
age dating method and the texturally well-constrained in-situ monazite U-Th-
total Pb dating method constrain the time of the granulite facies metamorphism
between ~950-930 Ma. It is noteworthy that no petrochronological signatures

of the granulite facies metamorphism are recorded from the adjacent Bastar
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Craton during ~950-930 Ma in the published literature, as well as, in the
present study. Such absence of the petrochronological signatures in the adjacent
rocks of BC suggests that the EGB was not co-evolving with the Proto-India
during ~950-930 Ma. Hence, along the western boundary of the EGB, the
evolution of the EGB with respect to the Proto-India is less understood during
~950-930 Ma (Fig. 29a).

The near-isothermal decompression of the EGB rocks was followed by
the post-peak granulite facies metamorphism at ~800 Ma. Such fact implies that
the initial phase of exhumation of the deep-crust to, at least, up to mid-crustal
level occurred during ~800 Ma. However, the published literature and the
present study revealed that the adjacent BC did not record any geochronological
signature of ~800 Ma event as well, which brings further uncertainty regarding
the evolution of the EGB with respect to the Proto-India during this period (Fig.
29b).

The juxtaposition of the EGB with the Proto-India was achieved by the
top-to-the-west thrusting during ~550-500 Ma. The combination of textural
evolution and geochronological data from the cratonic rocks suggest that this
thrusting caused the heating and the deformation in the footwall block (the BC)
due to the presence of the “hot” EGB on its top (Gupta et al., 2000; Bhadra et
al., 2004; Gupta, 2012; Bhadra and Gupta, 2016). Additionally, the thrusting
was responsible for the development of the small basin adjacent to the thrust

front and caused the brecciation of the nearby source rocks, which supplied the
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sediments from both sides of the thrust plane (the BC and the EGB) during the

final stage of thrusting up to, at least, ~484 Ma (Fig. 29c¢).

7.5 Supercontinent correlation

The EGB co-evolved with its Precambrian neighbors, such as East
Antarctica, Australia, China and parts of Laurentia, during three
supercontinental cycles including the Columbia, Rodinia and the Gondwana.
The strategic position of the EGB between the Archean Proto-India and its
Precambrian neighbors made it the suitable candidate to study the
supercontinental evolution with respect to the Proto-India. The present study
was carried along the western boundary of the northern EGB which separates
the Archean Proto-India from the Proterozoic orogenic belt. This study reveals
that the northwestern boundary of the EGB experienced the granulite facies
metamorphism at ~950-930 Ma during the Rodinia assembly, which was
contemporaneous with the granulite facies metamorphism in Rayner Complex
of East Antarctica (Harley et al., 2013; Morrissey et al., 2015). However, no
petrochronological signature of the thermal event is recorded from the adjacent
cratonic gneisses of the EGB. This suggests that during the Rodinia assembly
the northern EGB was not contiguous with the Proto-India, but co-evolving
with the East Antarctica. The northern EGB witnessed the early-phase of
exhumation in between ~850—775 Ma after the granulite facies metamorphism.
The similar age imprints are also reported from the East Antarctica. For

example, Black et al. (1987) reported granitic and pegmatitic magmatism at
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~770 Ma in the Rayner Complex. The U-Pb zircon age of 772 + 48 Ma in the
mafic granulite from the northern Mirror Peninsula, Prydz Bay is also reported
by Tong et al. (1995), which was explained as the age of the probable
tectonothermal event in response to the granulite facies metamorphism or
possibly reflecting a resetting age due to the overprint of Pan-African
metamorphism. High-grade metamorphism and mylonitic fabric development
have been reported at ~800 Ma at the cratonic interior part of the East
Antarctica (U-Th-Pb monazite age; Nichols and Fahey, 1996). Shiraishi et al.
(2008) reported similar ages of metamorphism between ~800—-700 Ma at the
western Rayner Complex. The time-frame between ~850—775 Ma is regarded as
the breakup period of the Rodinia supercontinent (Li et al., 2008). However, no
age imprints of ~850—775 Ma during the Rodinia breakup recorded in the
cratonic counterpart of the northern EGB, which further suggests that during
the Rodinia breakup the northern EGB was co-evolving with the East Antarctica
but not with the Proto-India.

The geochronological signature, as well as, the petrological evidence in
the cratonic gneisses suggest firmly that the amalgamation of the northern EGB
with the Proto-India initiated at ~550 Ma during the final phase of the
Gondwana assembly. The Gondwana assembly was achieved by two phases of
orogenesis. The initial phase is known as the East Africa Orogeny (~750—-620
Ma) and the final phase is known as the Kuunga Orogeny (~570-530 Ma,;
Meert, 2003). Thus, the amalgamation of the northern EGB was achieved

through the Kuunga Orogeny. However, the data of this study suggest that the
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amalgamation of the northern EGB during Gondwana assembly was continued,
at least, up to ~484 Ma, which post-dates the Kuunga Orogeny. Hence, the span
of the thrust-related tectonics during the amalgamation of the northern EGB
oversteps the Precambrian-Cambrian boundary and continued up to the Late

Cambrian period.

7.5 Conclusions

The detailed petrological and the geochronological investigations on the
deep- to shallow-crustal rocks collected at the western boundary of the northern
EGB reveal that the entire crustal segment participated actively during and
prior to the amalgamation with the Proto-India. The geochronological data
coupled with the petrological observations constrain the timing of various
tectono-metamorphic events ranging in between Mesoarchean to Late
Cambrian. The outcomes of this study are summarized below:

J The inherited zircon grains of ~2915-2470 Ma in mafic granulite
(sample BP4) represent the Late Archean to the Early Paleoproterozoic
protolith ages, which was metamorphosed under the granulite facies
condition during the Grenvillian time.

o The petrological and the geochronological evidence of the granulite
facies metamorphism during ~950-930 Ma was recorded exclusively in
the granulites, which are located at ~60 km eastward from the boundary

between the EGB and the BC. The granulite facies metamorphism
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during ~950-930 Ma suggests that the EGB was co-evolving with the
East Antarctica during the Rodinia assembly, but not with the Proto-
India as suggested by the available geochronological data.

The early-phase of exhumation of the deep-crust of the EGB occurred
between ~800 Ma during the Rodinia breakup.

The amphibolite-granulite transitional facies overprinting at ~530-500
Ma erased all the earlier geochronological histories in the granulites
near the boundary between the EGB-BC. On the other hand, the rocks
farther to the east and west of the thrust boundary did not record the
age imprints of ~530-500 Ma. Such spatial variation of the age imprints
confined along a narrow zone adjacent to the both sides of the thrust
boundary due to the effect of thrust-related tectonics.

The foliated quartz breccia preserves the conformable thrust-related
regional foliation. The maximum depositional age for deposition of the
foliated quartz breccia was calculated as 484 (+ 10/- 18) Ma.

The geochronological signatures, as well as, the petrological evidence
in the cratonic gneisses suggest firmly that the amalgamation of the
northern EGB with the Proto-India initiated at ~550 Ma during the final
phase of Gondwana assembly, which continued up to ~485 Ma and

post-dates Gondwana assembly.
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Figure 26: Different metamorphic stages on P-T space correlated with high-resolution

and texturally well-constrained geochronological data. The granulite facies
metamorphism (M3) occurred between ~950-900 Ma, followed by an exhumation (M3)

at ~800 Ma. Granulite-amphibolite transitional facies metamorphism (M4) took place
during ~530-500 Ma.
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Figure 27: The maximum depositional age of the foliated quartz breccia is calculated

as 484 (+ 10/- 18) Ma using the detrital monazite geochronology.
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Figure 28: The probability density diagrams showing the spatial variation of the zircon
207pp/206Ph ages of the different geological events in the transect across the western
boundary of the EGB. “%1.1” age-peak denotes the protolith age of the cratonic
gneiss (migmatitic hornblende gneiss), which is later overprinted by a weak ~550 Ma
thermal event (“% 1.2” age-peak). Note that the cratonic rock of the current study
(migmatitic hornblende gneiss) exposed within the EGB as “tectonic window”
(Bhadra et al., 2004). The granulite facies metamorphism at ~950 Ma is denoted by

the strong “%2” age-peak recorded ~60 km eastward from the boundary. Near the
margin, “*3” age-peak attests a strong overprinting of ~550-500 Ma granulite-

amphibolite transitional facies.
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Figure 29: The tectonic evolutionary model of the EGB during and before its

amalgamation with the Proto-India (contextually, the BC). (a) ~950-930 Ma granulite

facies metamorphism of EGB. The position of the EGB with respect to the Proto-India
during that time is uncertain. (b) The initial exhumation of the EGB at ~850-775 Ma.

The position of the EGB with respect to the Proto-India during the time is

inconclusive. (¢) The EGB amalgamated with the Proto-India during ~550-500 Ma.

The cratonic rocks of ~2450-2400 Ma subsequently suffered the deformation and the

metamorphism due to the thrusting. The linear basin was formed adjacent to the thrust

front and syn- to post-tectonic sedimentation initiated and continued up to < 484 Ma.
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