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Abstract

We investigated F (R) gravity, which is one of modified gravity theory. F (R) gravity can
describe slow roll inflation model and often describe Dark energy, Dark matter. There are
many F (R) model which explain unsolved cosmological problems. However observing of
F (R) gravity is difficult because of chameleon mechanism. In solar system the effect of F (R)
gravity is screened so we can’t observe F (R) gravity. Therefore we consider the case that
we can observe F (R) gravity. One of candidate is preheating era. We calculate behavior of
chameleon mechanism at preheating era.
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1 Introduction

The equations of motion devised by Newton in the 17th century allowed the motion of objects
to be treated mathematically. In Newtonian mechanics, force was understood as a remote action
acting instantaneously on distant points of matter. In contrast, electromagnetic mechanics,
invented by Maxwell in the 19th century, introduced a field called electromagnetic field to mediate
the force. In this theory, an object such as a magnet generates a magnetic field, and this field
acts on a distant substance to transmit force. This concept is called proximity action as opposed
to distance action. With the birth of electromagnetism, it was discovered that light is a wave
that propagates through an electromagnetic field. This electromagnetic field was thought to be
transmitted through an unknown substance called the ether. According to this conventional idea,
the speed of light changes depending on the relative speed of the inertial system and the ether.
However, actual observation and experiments have shown that the speed of light does not depend
on the inertial system. Einstein’s special theory of relativity showed that there is no such thing as
an absolutely stationary system in time and space, but rather that they are relative to each other
and vary depending on the observer. This discovery led to a unified understanding of Newtonian
mechanics and Maxwell’s electrodynamics. In addition, Einstein developed the general theory of
relativity to describe curved space. With this theory, he succeeded in calculating the movement
of the perihelion of comets, which had been impossible to calculate with Newtonian mechanics.

Despite the success of general relativity, there are still unsolved problems. Three typical
examples are Dark Energy (DE), inflation, and Dark Matter (DM). When the general theory of
relativity was first completed, Einstein thought that the solution that the universe is expanding
was unnatural. Therefore, he added a cosmological constant term to the Einstein equation to
cancel out the expansion. However, Hubble’s observation of the redshift of galaxies revealed that
the distance between two galaxies increases the relative velocity of their separation from each
other. This fact led to the discovery that the universe is expanding at an accelerating rate. To
explain this accelerated expansion, we need an unknown energy (DE) whose density does not
diminish with the expansion of the universe, and the cosmological constant added by Einstein
corresponds to this DE. The cosmological constant written by Einstein is equivalent to this DE.
There are various possible origins of this DE. For example, in quantum field theory, the vacuum
has a constant energy. However, this energy has the Planck scale Mpl ∼ O(1038)GeV 2 , which is
123 orders of magnitude higher than the DE energy scale Λ ∼ O(1085)GeV 2. Therefore, theories
to explain this hierarchy and the effects that produce DE are currently being studied.

The second unsolved problem is the inflationary universe, which was the subject of the Big
Bang theory proposed by G. Gamow in 1928, which states that the universe began as a ball of
fire. In 1928, G. Gamow proposed the big bang theory that the universe began as a ball of fire.
However, this theory raised the problems of flatness, in which the present universe is extremely
flat, the horizon problem, in which there are correlations in regions of space that cannot be
causally related, and the monopole problem, which has been predicted by the grand unified
theory but has not yet been found [1, 2]. The inflationary universe was devised as a solution
to these problems. In this theory, the universe expands rapidly at the beginning, and then the
expansion energy is instantaneously dissipated into heat energy to produce particles. However,
general relativity cannot induce the inflation that is said to have occurred at the beginning of
the universe.

There are two ways to solve the problem of inflation: one is to add an inflaton, a particle
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that causes slow-roll inflation, and the other is to extend general relativity. The latter method
is called the modified theory of gravity, in which the Einstein-Hilbert action R is replaced by a
function F (R) of an arbitrary Ricci scalar R, a scalar-tensor type one in which a scalar particle is
added, and a tortion T instead of R [3,4,6,8,26,27]. In the present study, we will consider one of
these methods, F (R). F (R) gravity is a theory proposed by H. A. Buchdahl in 1980, in which the
action was rewritten as φ(R) instead of F (R) [17]. As a result of this modification, the Einstein
equation was rewritten in a modified form. In particular, the F (R) gravity of R2- proposed by
Starobinksy [18], which adds a term of R2 to the Einstein-Hilbert action, is now restricted by
the observation of CMB fluctuations, e-folding number N = 50− 60, curvature power spectrum
ln(1010As) = 3.043 ± 0.014, spectrum index ns = 0.9652 ± 0.0042 [28]. By adding logarithmic
corrections to R2, constant-roll inflation, which is a transition from the inflationary period to the
present accelerating expansion universe, is now being studied [23,44].

On the other hand, galaxy rotation curves and gravitational lensing observations suggest the
existence of invisible matter, DM. In the case of the galaxy rotation curve, a problem has arisen
that galaxies are rotating faster than the expected rotation speed based on the observed total
mass of galaxies. To explain this problem, invisible particles (DM) were needed in the galaxy
clusters. It has also been observed that the light emitted from distant galaxies is bent by the
gravitational lensing effect due to the invisible mass. This gravitational lensing effect is thought
to be caused by the bending of space by DM. The gravitational lensing effect was also observed
in the case of cluster collisions, where the DM did not interact with each other. This means
that DM must be either non-interacting or very weakly interacting WIMPs (Weak Interaction
Massive Particles), which also affect the structure formation of the universe. Simulations have
shown that DM must have a non-relativistic (Cold) thermal velocity in order to reproduce the
observed structure of the universe. Therefore, the DM must be non-interacting or WIMP in
Cold. Candidates for the DM are the axion particle, whose existence is predicted by the strong
CP problem of the SM, the SUSY particle predicted by supersymmetry theory, and black holes.
Apart from these particles, an attempt has been made to solve the DM problem by using F (R)
gravity as a correction to the theory of gravity. In this paper, we try to solve the DM problem by
F (R) gravity based on the work of T. Katsuragawa and S. Matsuzaki [46,47]. In addition to the
analysis of the F (R) gravity treated here, models have been studied that focus on the contribution
of the higher derivative of the curvature R [45], including coupling with scalar fields [48–50]

In section 2 we explain the inflation mechanism as slow roll inflation. In section 3 we explain
preheating process, which is the next phase of universe from inflation era. In this phase in the
early universe, the inflaton and scalar fields decay exponentially due to parametric resonance.
We investigate this resonance by analyzing the matheu equation in a perturbative expansion. In
section 4 we show F (R) gravity as a modified gravity model. F (R) gravity has typical feature as
chameleon mechanism which is our main target of our work. We will focus on any F (R) model.
In particular, the logarithmic F (R) model is a model that we have proposed and analyzed. In
section 6 we numerically calculate inflaton time expansion at preheating era. Then we used
symplectic numerical integral method, which conserve the value of Hamiltonian. In section 6 we
discuss our results.
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2 Slow roll inflation

In this section, we will first describe the slow roll inflation proposed by [39]as a theory to describe
inflation. In this theory, the accelerated expansion of the universe that occurred in the early
universe is caused by the vacuum energy of a scalar field called an inflaton. Fig.(1) schematically
illustrates the behavior of inflaton in the early universe. First of all, the inflaton have an initial
state that is displaced from the true vacuum. The inflaton slowly rolls down from this state
to the true vacuum state. The inflaton then falls into the true vacuum, ending inflation, but
the inflaton begins to oscillate around the vacuum. The cooled universe is then reheated as the
vibrational energy of the inflaton decays into the interacting matter fields.

Figure 1: The potential of inflation and the behavior of inflaton in the early universe, where
inflation slowly rolls down to a true vacuum.

2.1 Friedmann equation

First of all, I would like to review the accelerated expansion of the universe before looking at
the behavior of the throw roll inflation in the early universe. In order to describe the expansion
of the universe, we take the following Friedmann-Lemaitre-Robertson-Walker (FLRW) metric as
the background space-time metric,

ds2 = gμνdx
μdxν (1)

= dt2 − a(t)2
(

dr2

1− kr2
+ r2dΩ2

)
. (2)

Here k is the curvature that determines the structure of the universe, and depending on the value
of k, the universe can be classified as follows,

k =

⎧⎨
⎩
> 0 closed space
< 0 open space
0 flat space

. (3)

The expansion of the universe is described using the Hubble parameter H. The H is defined by
the scale factor H = ȧ/a. Here, ˙ represents the derivative with respect to time. The time expand
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of scale factor a is given by use H as

da

a
= H(t)dt (4)

a(t) = exp

(∫ t

t0

H(τ)dτ

)
(5)

The power of exp of Eq(5) is represented N , e-folding number and the value should be N ∼ 60.
First, we analyze the EInstein-Hilbert action, which describes general relativity. The action

is defined as

S =

∫
d4x

(√−g
1

2κ2
R− 2Λ

)
, (6)

where κ = 1/Mpi and Λ describe dark energy term. The background space-time is described
by metric gμν . The equation of motion for the background spacetime, Friedmann equation, is
obtained by varying the above equation to metric. Friedmann equation is given as

G00 = H2 +
k

a2
− Λ

3
=

κ2ρ

3
(7)

Gij = δij

(
2Ḣ + 3H2 +

k

a2
− Λ

)
= −δijκ

2P. (8)

We will analyze the Hubble parameter H by solving this equation. At first we take derivative of
Eq.(7) with respect to t, we obtain

2HḢ − 2H
k

a2
=

κ2ρ̇

3
. (9)

We calculate -Eq(9) + H Eq(7),

3H

(
H2 +

k

a2
− Λ

3

)
= −κ2

(
ρ̇

3
+HP

)
(10)

κ2Hρ = −κ2

(
ρ̇

3
+HP

)
(11)

ρ̇ = −3H(ρ+ P ). (12)

Eq.(12) corresponds to the law of the conservation of energy. We consider two case that matter
effect is dominant and radiation effect is dominant. We place k = Λ = 0 because we don’t focus
the effect of curvature of universe and dark energy effect. First, we will focus on the Mattar
dominant and Radiation dominant background fields to see how the expansion of the universe
behaves.

2.1.1 Mattar dominant

First, let’s look at the period when the material field prevails. In mattar dominant era, the term
of P in Eq(12) is ignorable, then the equation becomes,

ρ̇

ρ
= −3

ȧ

a
(13)

ρ(t) = ρ0a(t)
−3. (14)
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The fact that matter density thins at the third order of spatial expansion is a result of intuition.
The fact that the background field dilutes at the third order of spatial expansion determines the
behavior of the expansion of the universe. Then we solve the Eq(7), the scale facter a(t) expands
as

H2 =
κ2ρ0
3

a−3 (15)

a1/2da =

√
κ2ρ0
3

dt (16)

a(t) ∝ t2/3. (17)

Thus, during the matter field dominance period, the universe decelerates and expands at the
order of 2/3 of time.

2.1.2 Radiation dominant

When radiation effect is dominant, the EoM is described as relativistic and the relation of energy
density and pressure is given as ρ = 3P . Then the law of the conservation of energy, Eq(12) is
solved as

Ṗ = −4HP (18)

P (t) = P0a(t)
−4. (19)

Then we solve the Eq(7), the scale factar a(t) expands as

H2 = κ2P0a
−4 (20)

a(t) ∝ t1/2. (21)

Thus, during the matter field dominance period, the universe decelerates and expands at the
order of 2/3 of time. While the matter field is diluted in the third order of space, radiation is
diluted in the fourth order. Therefore, even if radiation dominant at first, it transitions to matter
dominant as time goes by. Having reviewed the behavior of the expansion of the universe, we
will now review inflation.

2.2 Slow roll inflation

Slow roll inflation is the one of inflation model, the scalar called as inflaiton expand universe.
Inflation can be a particle that emerges from an extension of the Standard Model, or it can emerge
from a modified theory of gravity. In slow roll inflation, the vacuum energy of the inflation causes
the expansion of the universe. The action of slow roll inflation is given as,

S =

∫
d4x

√−g

(
1

2κ2
R− 1

2
gμν∂μφ∂νφ− V (φ)

)
. (22)

We consider scalar field is homogeneous, so we ignore the gradient term of scalar field. The EoM
of scalar field φ is given as

φ̈+ 3Hφ̇+ ∂φV = 0. (23)
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In slow roll inflation, the inflaton must roll down the potential slowly. We define the slow roll
condition for the inflaton to roll slowly down the potential. The slow roll conditions are defined
as

εV ≡ 1

2

(
∂φV

V

)2

(24)

ηV ≡
∂2
φV

V
, (25)

and these parameters must satisfy |εV , ηV | � 1 when universe was inflation era. Here, we
calculate the magnitude of the e-folding number as the inflaton rolls from φ1 to φ2 as a measure of
inflationary expansion. First, from the Friedmann equation, we obtain the following relationship
between H and the scalar field φ,

H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
. (26)

If φ satisfies the slow roll condition, the contribution of φ̈ can be regarded as negligible compared
to ∂φV and φ̇. In this case, the equation of motion of φ and the Friedmann equation can be
approximated as follows

3Hφ̇+ ∂φV = 0, (27)

H2 � κ2V

3
. (28)

By using the above two equations, we can describe the phi-dependence of the e-folding number
N . If we write N with t1 as the starting state and t2 as the ending state, we obtain

N =

∫ t2

t1

dtH =

∫ φ2

φ1

dφ
H

φ̇
� −

∫ φ2

φ1

dφ
κ2V (φ)

∂φV (φ)
. (29)

The e-folding number takes the value of 50 − 60. The value of the final state φ2 is determined
by the value of φ, which breaks the slow roll condition, and the value of the starting state φ1 is
determined by calculating backwards from the value of the e-folding number.

Infratons fluctuate from their expected value during inflation. This fluctuation is the seed of
the currently observed anisotropy of the CMB. Conversely, the observed CMB can be used to
impose restrictions on the model of slow roll inflation.

As =
κ4

4π2

V (φ)

εV

∣∣∣∣
φ=φ0

, ns = (1− 6εV + 2ηV )|φ=φ0 , r = 16εV |φ=φ0 , (30)

In slow roll inflation, the following relations are obtained for the power spectrum As, the spectrum
index ns, and the tensor-to-scalar ratio r [12, 14, 15]. In this study, we use these observations as
a limit on slow roll inflation.

3 preheating process

When the inflation of universe finish, the universe enter a new phase. In this phase the energy
of inflaton field transfer to elementary particle. At early universe, the universe must be reheat,
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because the universe became cold because of inflation. In the preheating phase, the exponential
decay of the inflaton into a scalar field is observed due to the resonance effect. In this chapter,
we will discuss how this resonance effect is caused.

3.1 Parametric resonance

Consider the case where the inflaton field has the simplest potential 1/2m2
φφ

2 and interacts with
the scalar field and −1/2g2φ2χ2. In this case, the potential is given as follows.

V (φ, χ) =
1

2
m2
φφ

2 +
1

2
m2
χχ

2 +
1

2
g2φ2χ2 (31)

In this case, assuming FLRW spacetime, the equations of motion for the inflaton φ and scalar
field χ are (

d2

dt2
+ 3H

d

dt
+m2

φ + g2χ2

)
φ = 0 (32)(

�+m2
χ + g2φ2

)
χ = 0, (33)

where the effect of the gradient is dropped, assuming that φ is uniform, and the temperature of
the preheating is cold, so it is assumed to be matter dominant. Therefore, the Habble scale H is
given by a(t) ∝ t2/3, and H is H(t) = 2

3t
. Substituting this expression into Eq.(32), the equation

of motion for the scalar field can be written as(
d2

dt2
+

2

t

d

dt
+m2

ϕ

)
φ = 0 (34)

Here, the contribution of χ is assumed to be negligible with respect to the scale of φ. Now, to
solve Eq.(34), we rewrite φ in terms of x as follows

ϕ = x(t)e−
∫ t
t0 dτ

1
2τ =

(
t

t0

)− 1
2

x(t). (35)

By using the function x given here, the derivative of φ with time can be written as follows.

φ̇ =

(
ẋ

x
− 1

2t

)
φ, (36)

φ̈ =

(
ẍ

x
+

1

t

ẋ

x
+

3

4t2

)
φ (37)

By substituting Eq.(36,37) into Eq.(34), we can rewrite the equation of motion of φ into a
differential equation of x.

ẍ

x
+

1

t

ẋ

x
+m2 − 1

4t2
= 0 (38)

Here, by performing the transformation t → t/m for time t, Eq.(38) can be rewritten as follows.

ẍ(t/m)− 1

t
ẋ(t/m) +

(
1− 1

4t2

)
x(t/m) = 0 (39)

8



The above equation corresponds to the differential equation of the bessel function, and by using
the differential formula of bessel, the solution can be obtained as follows

x(t/m) = c1J1/2(t/m) + c2Y1/2(t/m) (40)

J1/2(z) =

√
2

πz
sin(z), Y1/2(z) =

√
2

πz
cos(z), (41)

where c1, c2 represent arbitrary indefinite coefficients, respectively. Using the solution of x ob-
tained here, φ can be expressed as follows.

φback(t) =
A1 cos(mt) + A2 sin(mt)

2mt
, (42)

where A1, A2 are indefinite coefficients, respectively. Since the values of A1 and A2 can be chosen
arbitrarily, we choose the following as the solution for φ.

φ(t) � Φ sin(mφt)

t
(43)

Substituting the solution of φ obtained here into the equation of motion of χ and performing the
Fourier transform, the following equation is obtained.

χ̈k + 3Hχ̇k +

(
k2

a2
+

g2Φ2 sin2(mφt)

t2

)
χk = 0, (44)

where k corresponds to the wavenumber of the Fourier mode of χ. We also neglected the effect of
the mass of χ. For Eq.(44), if the effect of the expansion of the universe is sufficiently negligible
compared to the time evolution scale of φ, χ, the equation of motion of χ can be approximated
as follows

χ̈k +

(
k2 + g2Φ̃2 +

1

2
(1− cos(2mφt))

)
χk = 0 (45)

χ̈k +

((
k2 +

1

2
g2Φ̃2

)
− 1

2
g2Φ̃2 cos(2mφt)

)
= 0. (46)

The above equation can be approximated to an equation called the matheu equation.

3.2 Matheu equation

Eq.(46) can be rewritten as a differential equation called matheu equation as follows

d2u

dτ 2
+ (δ − 2ε cos (2τ))u = 0. (47)

In order to treat this differential equation analytically, we perform a perturbation expansion
under the condition |ε| � 1. In this case, the parameters δ and u(τ) are expanded as follows

δ = δ0 + εδ1 + ε2δ2 + ..., x(τ) = u0(τ) + εu1(τ) + ε2u2(τ) (48)
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Substituting this expansion equation into Eq.(47) and summarizing for each character of ε, the
differential equation for δ, u is given for each order as(

d2

dτ 2
+ δ0

)
u0(τ) = 0 (49)(

d2

dτ 2
+ δ0

)
u1(τ) + (δ1 − 2 cos(2τ))u0(τ) = 0 (50)(

d2

dτ 2
+ δ0

)
u2(τ) + (δ1 − 2 cos(2τ))u1(τ) + δ2u0(τ) = 0 (51)

Here, u(τ) is assumed to behave stationary with respect to time evolution. Therefore, we exclude
any solution for u(τ) that deviates from the oscillatory solution and proceed with the discussion.
Assuming that u(τ) has 2π as its period, the value of δ0 is δ0 = 0, 1, 4, .... In the following, we
will discuss the value of δ0 in different cases.

3.2.1 δ0 = 0 case

In this case, u0 is u0 = C0+C1t from the differential equation. Here, u0 is a constant and u0 = C0

from the condition of stationary oscillatory solution for u(τ). The differential equation for u1(τ)
at this time is

d2

dτ 2
u1(τ) + (δ1 − 2 cos(2τ))C0 = 0. (52)

Here, from the steady-state oscillation condition for u(τ), we get δ1 = 0, and the solution for u1

is

u1(τ) = −C0

2
cos(2τ). (53)

Substituting the above table expression of u1(τ) into the differential equation of u2(τ), we obtain
the following differential equation for u2(τ).

d2

dτ 2
u2(τ) + C0 cos

2(2τ) + δ2C0 = 0. (54)

If we choose −1/2 as the value of δ2, the above equation can be rewritten as follows.

d2

dτ 2
u2(τ) +

C0

2
cos(4τ) = 0. (55)

In this case, the solution of u2(τ) is as follows,

u2(τ) =
C0

32
cos(4τ). (56)

Thus, δ(epsilon) is then as follows,

δ = −1

2
ε2 +O(ε3). (57)
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3.2.2 δ0 = 1 case

Next, we analyze the case where we choose 1 as the value of δ0. In this case, the solution of u0(τ)
is given by the differential equation as follows,

u0(τ) = C0 cos(τ). (58)

Substituting the above solution of u0(τ) into the differential equation of u1(τ), Eq.(50), the
differential equation of u1(τ) is given by(

d2

dτ 2
+ 1

)
u1(τ) + (δ1 − 2 cos(2τ))C0 cos(τ) = 0. (59)

This equation can be transformed using the trigonometric formula. If we transform the trigono-
metric function so that it becomes first order, the formula transforms as follows

d2u1

dτ 2
+ u1(τ) = −C0 ((δ1 − 1) cos(τ)− cos(3τ)) . (60)

At this time, if the right hand side contains a term proportional to cos(τ), a function whose
period is 2π, the solution of u1(τ) will be unstable because a term proportional to tau is included
in the solution. Therefore, the condition for u1(τ) to be stable is δ1 = 1. The solution to u1(τ)
is given by

u1(τ) = −C0

8
(2 cos(τ) + cos(3τ)) . (61)

Substituting this result into Eq.(51), we obtain the following differential equation for u2(τ),(
d2

dτ 2
+ 1

)
u2(τ)− (1− 2 cos(2τ))

C0

8
(2 cos(3τ) + cos(3τ)) + δ2C0 cos(τ) = 0. (62)

If we transform the above equation to be the first order of the trigonometric function, the equation
can be rewritten as

d2u2

dτ 2
+ u2 = −C0

((
δ2 +

1

8

)
cos(τ) +

1

8
cos(3τ) +

1

8
cos(5τ)

)
. (63)

Therefore, the condition to be stable for u2(τ) is δ2 = −1/8. In this case, the ε dependence on δ
is written as follows,

δ(ε) = 1 + ε− 1

8
ε2 +O(ε3). (64)

If δ satisfies this condition, u(τ) performs steady oscillations.
On the other hand, if we choose the sin function as the solution of u0(τ), we get a different

solution. In this case, we take the solution of u0(τ) as follows,

u0(τ) = C0 sin(τ) (65)
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Substituting the above solution of u0(τ) into the differential equation of u1(τ), Eq.(50), the
differential equation of u1(τ) is given by(

d2

dτ 2
+ 1

)
u1(τ) + (δ1 − 2 cos(2τ))C0 sin(τ) = 0. (66)

This equation can be transformed using the trigonometric formula. If we transform the trigono-
metric function so that it becomes first order, the formula transforms as follows

d2u1

dτ 2
+ u1(τ) = −C0 ((δ1 + 1) sin(τ)− sin(3τ)) . (67)

Therefore, the condition for u1(τ) to be stable is δ1 = −1. The solution to u1(τ) is given by

u1(τ) = −C0

8
(2 sin(τ) + sin(3τ)) . (68)

Substituting this result into Eq.(51), we obtain the following differential equation for u2(τ),(
d2

dτ 2
+ 1

)
u2(τ)− (1− 2 cos(2τ))

C0

8
(2 sin(τ) + sin(3τ)) + δ2C0 sin(τ) = 0. (69)

If we transform the above equation to be the first order of the trigonometric function, the equation
can be rewritten as

d2u2

dτ 2
+ u2 = −C0

((
δ2 −

3

8

)
sin(τ) +

1

8
sin(3τ) +

1

8
sin(5τ)

)
. (70)

Therefore, the condition to be stable for u2(τ) is δ2 = 3/8. In this case, the ε dependence on δ
is written as follows,

δ(ε) = 1− ε+
3

8
ε2 +O(ε3). (71)

3.2.3 δ0 = 4 case

Next, we analyze the case where we choose 1 as the value of δ0. In this case, the solution of u0(τ)
is given by the differential equation as follows,

u0(τ) = C0 cos(2τ). (72)

Substituting the above solution of u0(τ) into the differential equation of u1(τ), Eq.(50), the
differential equation of u1(τ) is given by(

d2

dτ 2
+ 4

)
u1(τ) + (δ1 − 2 cos(2τ))C0 cos(2τ) = 0. (73)

This equation can be transformed using the trigonometric formula. If we transform the trigono-
metric function so that it becomes first order, the formula transforms as follows

d2u1

dτ 2
+ 4u1(τ) = −C0 (δ1 cos(2τ)− cos(4τ)− 1) . (74)
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At this time, if the right hand side contains a term proportional to cos(τ), a function whose period
is π/2, the solution of u1(τ) will be unstable because a term proportional to tau is included in
the solution. Therefore, the condition for u1(τ) to be stable is δ1 = 0. The solution to u1(τ) is
given by

u1(τ) =
C0

12
(3− cos(4τ)) . (75)

Substituting this result into Eq.(51), we obtain the following differential equation for u2(τ),(
d2

dτ 2
+ 4

)
u2(τ) + (1− 2 cos(2τ))

C0

12
(3− cos(4τ)) + δ2C0 cos(2τ) = 0. (76)

If we transform the above equation to be the first order of the trigonometric function, the equation
can be rewritten as

d2u2

dτ 2
+ 4u2 = −C0

((
δ2 −

5

12

)
cos(τ) + +

1

4
− 1

12
cos(4τ) +

1

12
cos(6τ)

)
. (77)

Therefore, the condition to be stable for u2(τ) is δ2 = 5/12. In this case, the ε dependence on δ
is written as follows,

δ(ε) = 4 +
5

12
ε2 +O(ε3). (78)

If δ satisfies this condition, u(τ) performs steady oscillations.
On the other hand, if we choose the sin function as the solution of u0(τ), we get a different

solution. In this case, we take the solution of u0(τ) as follows,

u0(τ) = C0 sin(2τ) (79)

Substituting the above solution of u0(τ) into the differential equation of u1(τ), Eq.(50), the
differential equation of u1(τ) is given by(

d2

dτ 2
+ 4

)
u1(τ) + (δ1 − 2 cos(2τ))C0 sin(2τ) = 0. (80)

This equation can be transformed using the trigonometric formula. If we transform the trigono-
metric function so that it becomes first order, the formula transforms as follows

d2u1

dτ 2
+ 4u1(τ) = −C0 (δ1 sin(2τ)− sin(4τ)) . (81)

Therefore, the condition for u1(τ) to be stable is δ1 = 0. The solution to u1(τ) is given by

u1(τ) = −C0

12
sin(4τ). (82)

Substituting this result into Eq.(51), we obtain the following differential equation for u2(τ),(
d2

dτ 2
+ 4

)
u2(τ)− (1− 2 cos(2τ))

C0

12
sin(4τ) + δ2C0 sin(2τ) = 0. (83)
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If we transform the above equation to be the first order of the trigonometric function, the equation
can be rewritten as

d2u2

dτ 2
+ u2 = −C0

((
δ2 +

1

12

)
sin(2τ)− 1

12
sin(4τ) +

1

12
sin(6τ)

)
. (84)

Therefore, the condition to be stable for u2(τ) is δ2 = 3/8. In this case, the ε dependence on δ
is written as follows,

δ(ε) = 4− 1

12
ε2 +O(ε3). (85)

Figure 2: Graph of the relationship between δ and ε. When the parameters are on the line, u(τ)
performs steady oscillation.

A plot of the relationship between δ and ε obtained above is shown in Fig.(2). The region of
parameters below the yellow and red lines and below the green and blue lines corresponds to the
solution where u(τ) behaves stably with respect to time evolution. Conversely, in the parameter
region outside of this region, the solution of u(τ) behaves exponentially diverging with time
evolution due to resonance with the friction term cos(2τ). In the non-perturbative regime of
the preheating phase in the early universe, it is speculated that this resonance effect causes an
exponential decay from inflaton to scalar particles.

4 F (R) gravity

The origin of the inflaton, a scalar particle introduced in chapter 2 to describe slow roll inflation,
is not yet known. There is a way to introduce this inflaton from an extension of the Standard
Model describing elementary particle theory. In this paper, we consider the modified gravity
theory as the origin of this inflaton. One of the modified gravity theories, F (R) gravity, has

14



been well studied as a theory that can describe inflation [9–12]. On the other hand, it is worth
mentioning that iflation can be written without introducing scalarons, but with the action of
F (R) [13].

We consider modified gravity theory as F (R) gravity which is the model that the curvature
R in Einstein-Hilbert action replace to arbitrary R’s function,

S =

∫
d4x

√−g
1

2κ2
F (R). (86)

We introduce auxiliary field A, the action is rewritten as

S =

∫
d4x

1

2κ2
(F (A) + F ′(A)(R− A)) (87)

We take the derivative of A, we restore the action as Eq.(86). gμν → g̃μν = e2κϕ/
√
6gμν . Then the

curvature R is changed as

R = e2κϕ/
√
6
(
R̃ +

√
6κ�̃ϕ− κ2g̃μν(∂μϕ)(∂νϕ)

)
(88)

We insert above equaiton into the action of F (R) gravity, we obtain reformed action as

S =

∫
d4x

√−g

(
1

2κ2
R̃− 1

2
g̃μν(∂μϕ)(∂νϕ)− V (ϕ)

)
, (89)

where the potential V (ϕ) is defined as

V (ϕ) ≡ 1

2κ2

F ′(A(ϕ))A(ϕ)− F (A(ϕ))

F ′2(A(ϕ))
, (90)

and we mach ϕ as e2κϕ/
√
6 = F ′(A(ϕ)).

4.1 Chameleon mechanism

When matter fields exit, the part of modified gravity affects to the matter fields. The interaction
of modified gravity and the matter fields can be described as the interaction between the scalar
field and each fields. The action of F (R) gravity and a matter field is given as,

S =

∫
d4x
√
−g̃

(
1

2κ2
R̃− 1

2
g̃μν∂μϕ∂νϕ− V (ϕ)

)
+ SMatter. (91)

The metric gμν which is defined before Weyl transformation has 5 DoF and g̃μν has 4 DoF.
The difference of DoF apere as the scalar field ϕ, so g̃μν don’t depend on the scalar field,
δ/δϕ(x)g̃μν(x′) = 0. We consider this point, we obtain the representation of the derivative
with respect to ϕ as,

δ

δϕ(x)
=

∂

∂ϕ(x)
+

δgμν(x′)
δϕ(x)

δ

δgμν(x′)

=
∂

∂ϕ(x)
+

2κ√
6
δ(4)(x− x′)gμν(x′)

δ

δgμν(x′)
. (92)
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We consider Eq(), the EoM of scalaron field is given as,

δ

δϕ(x)
S =

∫
d4x′√−g̃(x′)

(
δ(4)(x− x′)�̃ϕ(x′)− δ(4)(x− x′)V ′(ϕ(x′))

)
+

∫
d4x′√−g(x′)

2κ√
6
δ(4)(x− x′)gμν(x′)

δ

δgμν(x′)
LMatter

=
√
−g(x)

(
�̃ϕ(x)− V ′(ϕ(x))− κ√

6
e−4κϕ/

√
6T μ

μ(x)

)
= 0, (93)

where the energy momentum tensor Tμν is defined as

Tμν ≡
δ

δgμν
. (94)

We define the effective potential of scalaron field Veff (ϕ) as,

Veff (ϕ) ≡ V (ϕ)− 1

4
e−4κϕ/

√
6T μ

μ. (95)

When the scalaron stand on the vacuum state and scalaron field fluctuate around that point, we
expansion the effective potential as,

Veff (ϕ) � Veff (ϕmin) +
1

2
(ϕ− ϕmin)

2V ′′
eff (ϕmin) + ... (96)

We substitute this expansion form into Eq() and we ignore higher order of ϕ, we obtain Klein-
Gordon equation for ϕ as, (

�̃− V ′′
eff (ϕmin)

)
ϕ = 0, (97)

where we ignore constant factor of ϕ. Therefore we regard the second derivative of the effective
potential as scalaron mass becouse of Eq.(97). Then the scalaron mass depend on T μ

μ, so scalaron
mass depend on the energy of back ground matter field. This mechanism called as chameleon
mechanism,

V ′′
eff (ϕmin, T

μ
μ) = mϕ(T

μ
μ). (98)

4.2 Mattar field

ToEMT can obey the metric gμν . Therefore ToEMT also depends on scalaron. Then the behavior
of chameleon mechanism becomes bit difficult. We focus to interaction between each fields. We
consider the wyle transformation on matter field, the action transform as following,

SMatter =

∫
d4x

√−gLMatter(g
μν ,Ψ) =

∫
d4x
√
−g̃e−4κϕ/

√
6LMatter(e

2κϕ/
√
6g̃μν ,Ψ). (99)

We will investigate the interaction between scalaron particle and other particles.
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Figure 3: The constraints for α and RC/ΛDE. The colored area is permitted value for α and
RC/ΛDE.

4.2.1 m = 0 vactor field

At first we consider massless vector field. The Lagrangian of massless vector field is given as

LV (gμν , Aμ) = −1

4
gμαgνβFμν(Aμ)Fαβ(Aμ), (100)

Then the tensor Fμν is defiend as

Fμν = ∇μAν −∇νAμ = ∂μAν − ∂νAμ. (101)

The definition of Fμν is independent from metric gμν , so Fμν is invariant from wyle transformation.
Therefore the Lagrangian of massless vector field transform with wyle transformaiton as following,

LV (gμν , Aμ) = −1

4
e4
√

1/6κϕg̃μαg̃νβFμν(Aμ)Fαβ(Aμ). (102)

We substitute above form into the action SV , we obtain

SV =

∫
d4x
√
−g̃[−1

4
g̃μαg̃νβFμνFαβ]

=

∫
d4x
√
−g̃LV (g̃μν , Aμ). (103)

Then the interaction between scalaron ϕ and massless vector field don’t appear because the
transformation of

√−g and LV cancel. This result don’t contradictory from the fact that the
trace of energy momentum field becomes 0,

√−g

(
−1

2
TV μν

)
=

δ

δgμν

∫
d4x

√−g

(
−1

4
gαβgρσFαρFρσ

)

=− 1

4

√−g

(
1

8
gμν
(
gαβgμσFαρFβσ

)
− 1

2
gρσFμρFνσ

)
(104)

TV
μ
μ =0. (105)

Therefore we don’t need to redefine the massless vector field.
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4.2.2 m = 0 spinor field

Next we consider massless spinor field. The Lagrangian of massless spinor field is given as
following,

LF (γμ,Ψ) = iΨ̄γμ∇μΨ. (106)

Then the conformal derivative of Ψ is given as following,

∇μΨ = ∂μΨ+
1

8
ωμab[γ

a, γb]Ψ. (107)

Then γ, ω are defined as

2gμν = [γμ, γν ] = 2e2κϕ/
√
6g̃μν (108)

ωμab = eaν(∂μe
ν
b + Γνμρe

ρ
b) = eaν∇μe

ν
b , (109)

where the bracket [, ] describe commutation relation and {, } describe anti-commutation relation,
Greek index describe Lorentz index and Latinum index describe spinor index. The relation
between Lorentz and spinor index is given as

γμ ≡ eμaγ
a gμν = ηabe

a
μe
b
ν . (110)

We use above relation, we obtain the wyle transformation of spinor is

eaμ → ẽaμ = eκϕ(x)/
√
6eaμ γμ → γ̃μ = eκϕ(x)/

√
6γμ. (111)

We use above formulas, the wyle transformation of ω is

ωμab = e−σẽaν [∂μ(eσẽνb ) + (Γ̃νμρ − δνμσ,ρ − δνρσ,μ + g̃ναg̃μρσ,α)(e
σẽρb)]

= ω̃μab + ẽaν [ẽ
ν
bσ,μ − δνμẽ

ρ
bσρ − ẽνbσ,μ + g̃ναẽbμσ,α]

= ω̃μab − (ẽaμẽ
ρ
b − ẽbμẽ

ρ
a)σ,ρ. (112)

We substitute Eq.(112) into Eq.(107), we obtain the wyle transformation of the conformal deriva-
tive of spinor field as,

∇μΨ = ∂μΨ+
1

8
ωμab[γ

a, γb]Ψ

= ∂μΨ+
1

8
ωμab[γ

a, γb]Ψ− 1

8
(ẽaμẽ

λ
b − ẽbμẽ

λ
a)[γ

a, γb]Ψσ,λ

= ∇̃μΨ− 1

8
{[γ̃μ, γ̃λ]− [γ̃λ, γ̃μ]}σ,λΨ

= ∇̃μΨ− 1

4
[γ̃μ, γ̃

λ]σ,λΨ. (113)

We use the commutation relation as A[B,C] = {AB,C} − {A,C}B, we obtain the formula of γ
as,

γ̃μ[γ̃μ, γ̃
λ] = {γ̃μγ̃μ, γ̃λ} − {γ̃λ, γ̃μ}γ̃μ

= 8γ̃λ − 2g̃λμγ̃μ

= 6γ̃λ. (114)
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We use above formulas, we obtain the Lagrangian on wyle transformation as

LF (γμ,Ψ) = iψ̄γμ∇μΨ

= e
√

1/6κϕiΨ̄γ̃μ∇̃μΨ− 3i

2

√
1

6
κe

√
1/6κϕ(∂μϕ)Ψ̄γ̃μΨ, (115)

and the action transform as following,

SF =

∫
d4x
√
−g̃e3

√
1/6κϕiΨ̄γ̃μ

[
∇̃μ −

3

2

√
1

6
κ(∂μϕ)

]
Ψ. (116)

Then scalaron ϕ couple with spinor field, so the interaction between scalaron and spinor field
appear. For cancel this interaction, we redefine the spinor field as

ξ = e
3
2

√
1/6κϕΨ, ξ̄ = e

3
2

√
1/6κϕΨ̄. (117)

The conformal derivative of ξ is defied as

∇̃μξ = e−
3
2

√
1/6κϕ

(
∇̃μ −

3

2

√
1

6
κ(∂μϕ)

)
Ψ. (118)

Then we can show that the action of spinor field is invariant on wyle transformation,

SF =

∫
d4x
√
−g̃iξ̄γ̃μ∇̃μξ =

∫
d4x
√
−g̃LF (γ̃μ, ξ). (119)

The interaction between massless spinor field and scalaron disappear by redefinition of spinor field
ξ. We mention that the gauge transformation, ∇̃μ → ∇̃μ − igAμ don’t produce the interaction
between Aμ and ϕ.

4.2.3 m = 0 scalar field

The Lagrangian of massless scalar field is given as

LS(gμν , χ) = gμν(∂μχ
∗)(∂νχ). (120)

Then the wyle transformation of action is given simply,

SS =

∫
d4x
√
−g̃e−2

√
1/6κϕg̃μν(∂μχ

∗)(∂νχ). (121)

Then χ and ϕ couple, so the interaction between χ and ϕ appear. We redefine the scalar field

as Θ = e−
√

1/6κϕχ, similarly to presubsection. Then the action of massless scalar field transform
on wyle transformation as following,

SS =

∫
d4x
√
−g̃e−2

√
1/6κϕg̃μν(∂μe

√
1/6κϕΘ∗)(∂νe

√
1/6κϕΘ)

=

∫
d4x
√
−g̃{g̃μν(∂μΘ∗)(∂νΘ) + g̃μν

κ√
6
[(∂μϕ)Θ

∗(∂νΘ) + (∂μΘ
∗)(∂νϕ)Θ] +

κ2

6
g̃μν [(∂μϕ)(∂νϕ)Θ

∗Θ]}
(122)
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In this case, the interaction between scalaron and massless scalar field remain on the second
and third term of Eq.(122). For cancel the interaction, we add new term into the Lagrangian.
We choose this new term which satisfy following conditions, (i) Lorentz invariant, (ii) Gauge
invariant, (iii) Renormalization invariant. We can add a new term as a term which satisfy the
three conditions as aRχ∗χ, where a is an arbitrary constant value. Then the Lagrangian is
redefined as following,

LS = gμν(∂μχ
∗)(∂νχ) + aRχ∗χ. (123)

The second term of Eq.(123) transform on wyle transformation as,∫
d4x

√−gaRχ∗χ =

∫
d4x
√
−g̃a[R̃ + 6g̃μν∇̃μ∇̃ν(

√
1/6κϕ)− 6g̃μν(∂μ

√
1/6κϕ)(∂ν

√
1/6κϕ)]Θ∗Θ

=

∫
d4x
√
−g̃a[R̃ +

κ√
6
g̃μν∇̃μ∇̃νϕ− κ2g̃μν(∂μϕ)(∂νϕ)]Θ

∗Θ. (124)

Using these results, we can show the action is invariant on wyle transformation when we put a
as a = 1

6
,

SS =

∫
d4x
√
−g̃{g̃μν(∂μΘ∗)(∂νΘ) +

1

6
R̃Θ∗Θ+ g̃μν

κ√
6
[(∂μϕ)Θ

∗(∂νΘ) + (∂μΘ
∗)(∂νϕ)Θ + (∇̃μ∂νϕ)Θ

∗Θ]}

=

∫
d4x
√
−g̃{g̃μν(∂μΘ∗)(∂νΘ) +

1

6
R̃Θ∗Θ+ ∇̃μ[

κ√
6
g̃μν(∂νϕ)Θ

∗Θ]}

=

∫
d4x
√
−g̃[g̃μν(∂μΘ

∗)(∂νΘ) +
1

6
R̃Θ∗Θ]

=

∫
d4x
√
−g̃LS(g̃μν ,Θ). (125)

Then scalaron ϕ disappear on the action of massless scalar field, so the interaction between
scalaron and massless scalar field doesn’t appear. Next we calculate the trace of momentum
tensor of massless scalar field. Before redefining of scalar field,χ → Θ, we perform the derivative
of the action with respect to metric gμν ,

δ

δgμν
Ss =

δ

δgμν

∫
d4x

√−g

[
gαβ(∂αχ

∗)(∂βχ) +
1

6
Rχ∗χ

]

=
√−g

[
−1

2
gμνLS + (∂μχ

∗)(∂νχ) +
1

6
Rμνχ

∗χ
]
=

√−g

(
−1

2
Tμν

)
. (126)

Then we obtain the value of T μ
μ as T μ

μ = 2LS. Next we calculate the value of T μ
μ when we

perform the derivative of the action which is described by Θ with respect to ϕ. Then we consider
the derivatives are given as Θ δ/δϕΘ = δ/δϕe−κϕ/

√
6χ = −κ/

√
6Θ. Then the derivative of SS

with respect to ϕ is given as,

δ

δϕ
SS =

δ

δϕ

∫
d4x
√
−g̃

[
g̃μν(∂μΘ

∗)(∂νΘ) +
1

6
R̃Θ∗Θ

]

=
√
−g̃

[
− 2κ√

6
g̃μν(∂μΘ)(∂νΘ)− κ

3
√
6
R̃Θ∗Θ

]
= − 2κ√

6

√
−g̃L̃S. (127)
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We use the relation as T̃ μ
μ = 2L̃S, the relation between T μ

μ and T̃ μ
μ is given as

e−4κϕ/
√
6T μ

μ = T̃ μ
μ. (128)

The differential of T μ
μ and T̃ μ

μ is the factor as e−4κϕ/
√
6.

We can show the interaction between scalaron and massless field can disappear when we
redefine new field. This results are consist with the fact that massless field don’t interact to
gravitational field. Next we consider massive fields case.

4.2.4 m �= 0 vector field

The Lagrangian of massive vector field is given as

LV−mass(gμν , Aμ) = −1

2
m2
V g

μνAμAν , (129)

and the action transform on wyle transformation as,

SV−mass =
∫

d4x
√
−g̃e−4

√
1/6κϕLV−mass(gμν , Aμ)

=

∫
d4x
√
−g̃e−2

√
1/6κϕ

[
−1

2
m2
V g̃

μνAμAν

]
. (130)

We calculate the relation between T μ
μ and T̃ μ

μ . At first we perform the derivative with respect
to gμν for obtaining T μ

μ. We obtain T μ
μ as,

δ

δgμν
SV−mass =

√−g

[
−1

2
gμνLV−mass +

1

2
m2
VAμAν

]
=

√−g

(
−1

2
Tμν

)
, (131)

and the relation with LV−mass is given as T μ
μ = 2LV−mass. On the other hand, the derivative

with respect to ϕ is given as

δ

δϕ
SV−mass =

√
−g̃

(
− 2κ√

6
e−2κϕ/

√
6L̃V−mass

)
. (132)

When we define T̃ μ
μ = 2L̃V−mass, the relation betweenT μ

μ and T̃ μ
μ is given as

e−4κϕ/
√
6T μ

μ = e−2κϕ/
√
6T̃ μ

μ. (133)

We expand around |κϕ| � 1 on Eq.(130), the interaction between scalaron and massive vector
field is approximated as,

SV−mass =
∫

d4x
√
−g̃

[
−1

2
m2
V g̃

μνAμAν +
κm2

V√
6
ϕg̃μνAμAν

]
+O(κ2ϕ2)

=

∫
d4x
√
−g̃

[
LV−mass(g̃μν , Aμ) +

κm2
V√
6
ϕg̃μνAμAν

]
+O(κ2ϕ2). (134)

The interaction is given as three point coupling and the strength proportinal to the squared of
vector field mass,

LV−ϕ =
κm2

V√
6
ϕg̃μνAμAν . (135)

The interaction term don’t disappear compare to massless case.
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4.2.5 m �= 0 spinor field

The Lagrangian of massive spinor field is given as

LF−mass(Ψ) = −mF Ψ̄Ψ. (136)

We redefined spinor field in massless case,ξ = e
3
2

√
1/6κϕΨ, ξ̄ = e

3
2

√
1/6κϕΨ̄, so we rewrite the

Lagrangian by redefined field ξ. Then the Lagrangian is represented as

SF−mass =
∫

d4x
√
−g̃e−4

√
1/6κϕLF−mass(Ψ)

=

∫
d4x
√
−g̃e−

√
1/6κϕ

[
−mF ξ̄ξ

]
. (137)

We expand scalaron field similarly to vector field case, the action is approximated as,

SF−mass =
∫

d4x
√
−g̃

[
−mF ξ̄ξ +

κmF√
6
ϕξ̄ξ

]
+O(κ2ϕ2)

=

∫
d4x
√
−g̃

[
LF−mass(ξ) +

κmF√
6
ϕξ̄ξ

]
+O(κ2ϕ2). (138)

Then the second term of Eq.(138) correspond to the interaction term,

LF−ϕ =
κmF√

6
ϕξ̄ξ. (139)

Therefore the interaction between scalaron is given as three point coupling.

4.2.6 m �= 0 scalar field

The Lagrangian of massive scalar field is given as following,

LS−mass(χ) = −m2
Sχ

∗χ. (140)

We rewrite the action by redefined scalar field, Θ = e−
√

1/6κϕχ, the action is represented as,

SS−mass =
∫

d4x
√
−g̃e−4

√
1/6κϕLS−mass(χ)

=

∫
d4x
√
−g̃e−2

√
1/6κϕ[−m2

SΘ
∗Θ]. (141)

We calculate the trace of energy momentum tensor. At first we perform the derivative with
respect to gμν ,

δ

δgμν
S =

√−g

[
−1

2
gμνLS−mass

]
=

√−g

(
−1

2
Tμν

)
. (142)

Then the value of T μ
μ is given as T μ

μ = 4LS−mass. On the other hand, the derivative of the
action which is described by redefined field with respect to ϕ is given,

δ

δϕ
S =
√
−g̃e−2κϕ/

√
6

[
− 2κ√

6
L̃S−mass −

2κ√
6
L̃S−mass

]
=
√
−g̃e−2κϕ/

√
6

[
− 4κ√

6
L̃S−mass

]
. (143)
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vector spinor scalar
κm2

V√
6
ϕg̃μνAμAν

κmF√
6
ϕξ̄ξ

2κm2
S√

6
ϕΘ∗Θ

Table 1: The interaction term between scalaron and each fields

When we define 4L̃S−mass = T̃ μ
μ, the relation between T μ

μ and T̃ μ
μ of massive scalar field is

given as

e−4κϕ/
√
6T μ

μ = e−2κϕ/
√
6T̃ μ

μ. (144)

We expand κϕ, we obtain

SS−mass =
∫

d4x
√
−g̃

[
−m2

SΘ
∗Θ+

2κm2
S√

6
ϕΘ∗Θ

]
+O(κ2ϕ2)

=

∫
d4x
√
−g̃

[
LS−mass(Θ) +

2κm2
S√

6
ϕΘ∗Θ

]
+O(κ2ϕ2). (145)

Then the interaction term between scalaron and massive scalar field is given as

LS−ϕ =
2κm2

S√
6

ϕΘ∗Θ. (146)

The interaction is given as three point coupling.
Table 1 show the interaction term between scalaron and each fields. The strength of coupling

proportional to each field’s mass, so the interaction becomes stronger when the fields are heavier.

4.2.7 Higgs mechanism

We showed that massive field interact with scalaron field. The mass of SM fields are produced by
Higgs field, so the analysis of Higgs field on wyle transformation is important to understand the
interaction between scalaron and massive particle. The action of Higgs field and vector, spinor
fields are given as

S =

∫
d4
√−g

(
gμν(∂μφ)

†∂νφ−m2
S|φ|2 +

1

6
Rφ2

− 1

4
gμρgνλGa

μνG
a
ρλ

+ ψ̄iD · γψ − λψψ̄Φψ

gμν(DμΦ)(DνΦ)− μ2Φ†Φ + λ(Φ†Φ)2 +
1

6
RΦ2

)
(147)

where we define Higgs field as Φ. The conformal derivative Dμ is written as following,

Dμ = ∂μ − igAμ. (148)
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At first we consider the wyle transformation on the kinetic part of Higgs fields. This term is
expanded as following,

gμν(DμΦ)
†(DνΦ) =gμν [(∂μ − igAμ)]

†Φ(∂ν − igAν)Φ +
1

6
RΦ2

=gμν∂μΦ∂νΦ + gμνg2Aa
μA

a
νΦ

2 +
1

6
RΦ2. (149)

A curvature R transform on wyle tranformation as,

R = e2σR̃ + 2(D − 1)e2σ�̃σ − (D − 2)(D − 1)g̃μν(∂μσ)(∂νσ)

= e2σR̃ + 6e2σ�̃σ − 6g̃μν(∂μσ)(∂νσ). (150)

We replace scalar field Φ to h where h is defined as Φ = eσh, the kinetic term of Higgs field
transform. At first we perform wyle transformation, gμν → g̃μν = e2σgμν , the kinetic part of
Higgs field transform as following,

gμν(DμΦ)
†(DνΦ) = e4σg̃μν(∂μh)(∂νh) + e4σg̃μνg2h2Aa

μA
a
ν +

1

6
e4σR̃h2 + e4σ�̃(h2σ)

= e4σg̃μν(Dμh)
†(Dνh) + e4σ�̃(h2σ) (151)

Next we consider kinetic term of vector field. The tensor Ga
μν is defined as following,

Ga
μν = ∂μA

a
ν − ∂νA

a
μ − igvf

abc[Ab
μ, A

c
ν ]. (152)

Then we don’t have to change the definition of vector field.

gμρgνλGa
μνG

a
ρλ = e4σg̃μρg̃νλGa

μνG
a
ρλ (153)

We rewrite the action by new difined field, h, ξ, we obtain following action,

S =

∫
d4
√
−g̃(g̃μν(∂μφ

′)†∂νφ′ − e−2σm2
S|φ′|2 + 1

6
R̃φ′2 (154)

− 1

4
g̃μρg̃νλGa

μνG
a
ρλ (155)

+ ξ̄iD · γξ − λψ ξ̄hξ (156)

g̃μν(Dμh)(Dνh)− e−2σμ2h†h+ λ(h†h)2 +
1

6
R̃h2). (157)

Next we replace σ to σ = κϕ/
√
6, the action is represented as following,

S =S̃ + (1− e−2κϕ/
√
6)m2

S|φ′|2 + (1− e−2κϕ/
√
6)μ2h†h. (158)

Then the equation of motion for scalaron field is given as

�̃ϕ− ∂ϕV (ϕ) +
2κ√
6
e−2κϕ/

√
6
(
m2
S|φ′|2 + μ2h†h

)
= 0, (159)

and the effective potential is written as

Veff (ϕ) = V (ϕ) + e−2κϕ/
√
6
(
m2
S|φ′|2 + μ2h†h

)
(160)

. Then only scalar field affect the effective potential of scalafon field. The observation of the
decay of scalarons into photons is discussed [34].
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4.3 Starobinsky model

The one of most famous model of F (R) gravity is Starobinsky model which is the model that R2

is joint to Einstein-Hilbert action. The action is given as

S =

∫
d4x

√−g

(
1

2κ2
R + γR2 − 2Λ

)
. (161)

Models that extend this R2 term to arbitrary orders and so on are also well studied [41, 42].
When we perform Wyle transformation, the action is rewritten as

S =

∫
d4x
√
−g̃

(
1

2κ2
R̃ + V (ϕ)

)
, (162)

V (ϕ) =
1

2κ2

F ′(A(ϕ))A(ϕ− F (A(ϕ))

F ′2(A(ϕ)
(163)

At first we treat inflation with the Starobinsky model. We calculate the potential with the
Starobinsky model, we insert R2 into the potential. The first derivative of F (R) with respect to
R and the relation between an auxiliary field A(ϕ) and scalaron ϕ is given as following,

∂AF (A) = 1 + 4κ2γA(ϕ) = e2κϕ/
√
6, (164)

A(ϕ) =
1

4κ2γ

(
e2κϕ/

√
6 − 1

)
. (165)

We substitute above equation into Eq.(163), we obtain the effective potential of scalaron field on
Starobinsky model is given as,

Veff (ϕ) =
e−4κϕ/

√
6

2κ2

[
2κ2γA(ϕ)2 + 4κ2Λ +

κ2T μ
μ

2

]
(166)

=
e−4κϕ/

√
6

2κ2

[
1

8κ2γ
(e2κϕ/

√
6 − 1)2 + 4κ2Λ +

κ2T μ
μ

2

]
. (167)

We will focus on two era, early universe and late time universe.

4.3.1 Inflation era

At first we discuss about srow-roll inflation with Starobinsky model. We presume that there was
only scalaron field as early universe, so we ignore Tμν term. We show the effective potential as a
function of scalaron. As we can see from Fig.4, the potential is flat as large ϕ region. Therefore
the scalaron field roll to minimum slowly, and this field should introduce srow-roll inflation. We
can fit theorical parameters by observed values. At first we define the end time point when the
slow-roll inflation finish. The time srow-roll inflation finish is defined the condition that srow-roll
parameters becomes order 1, |ε, η| � 1. For obtain srow-roll parameter ε, η, we calculate the first
and second derivative of the potential with respect to ϕ,

V ′(ϕ) =
e−4κϕ/

√
6

2κ
√
6

[
1

2κ2γ

(
e2κϕ/

√
6 − 1

)
− 16κ2Λ

]
, (168)

V ′′(ϕ) =
e−4κϕ/

√
6

6

[
1

2κ2γ

(
2− e2κϕ/

√
6
)
+ 32κ2Λ

]
. (169)
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Figure 4: The effective potential as a function with respect to ϕ. The parameters are fitted,
γ = 1, κ4Λ = 10−3.

We substitute Eq(168,169) into Eq(24,25), we obtain the representation of ε and η as,

ε =
1

2κ2

(
V ′

V

)2

=
4

3

(
e2κϕ/

√
6 − 1− 32κ4γΛ(

e2κϕ/
√
6 − 1

)2
+ 32κ4γΛ

)2

(170)

η =
V ′′

κ2V
= −4

3

(
e2κϕ/

√
6 − 2− 64κ4γΛ(

e2κϕ/
√
6 − 1

)2
+ 32κ4γΛ

)
. (171)

As we can see from above equation, when κϕ � 1, ε and η becomes |ε, η| � 1 because the index
of exponential in denominator is large. On the other hand, when κϕ � 1, ε and η approach to
1. We solve the value of ε and η becomes 1, the value of ϕend is given as following,

ε = 1;

e2κϕend/
√
6 =1 +

1√
3
−

√
1− 32(2

√
3 + 3)κ4γΛ

√
3

, 1 +
1√
3
+

√
1− 32(2

√
3 + 3)κ4γΛ

√
3

, (172)

1− 1√
3
−

√
1 + 32(2

√
3− 3)κ4γΛ

√
3

, 1− 1√
3
+

√
1 + 32(2

√
3− 3)κ4γΛ

√
3

, (173)

η = 1;

e2κϕend/
√
6 =

1

3

(
5− 2

√
−2− 264γΛ

)
,

1

3

(
5 + 2

√
−2− 264γΛ

)
. (174)

The solution of Eq(174) are complex, so we exclude these values. The value of ϕend should be
the biggest one because scalaron field roll dawn to small ϕ from large ϕ. When the value of κ4Λ
is so small, ϕend should be as

e2κϕend/
√
6 =1 +

1√
3
+

√
1− 32(2

√
3 + 3)γΛ

√
3

. (175)
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We can define the initial point of ϕ because we defined the end point of ϕ. For defining the
initial point of ϕ, we consider e-folding number. We define ϕN as a value of ϕ when the e-folding
number bocomes N , e-folding numberis written as following,

N =

∫ ϕN

ϕend

dϕ
κ2V

V ′ =

∫ ϕN

ϕend

dϕ

√
6κ

4

(
e2κϕ/

√
6 − 1

)2
+ 32κ4γΛ

e2κϕ/
√
6 − 1− 32κ4γΛ

=

[
1

4

(
3e2κϕ/

√
6 −

√
6κϕ+ 96κ4γΛ ln

[
1− e2κϕ/

√
6 + 32κ4γΛ

])]ϕN

ϕend

. (176)

We can ignore third term of Eq(176) because Λ describe the dark energy and κ is the inverse of
Planck mass. When the value of e-folding number is 60, the value of ϕ0 becomes,

60 � 1

4

(
3e2κϕ0/

√
6 − 3 ln

(
e2κϕ0/

√
6
))

−
(
3e2κϕend/

√
6 − 3 ln

(
e2κϕend/

√
6
))

(177)

� 1

4

(
3e2κϕ0/

√
6 − 3 ln

(
e2κϕ0/

√
6
))

− 3

(
1 +

2√
3

)
+ 3 ln

(
1 +

2√
3

)
, (178)

e2κϕ0/
√
6 � 90. (179)

curvature power spectrum As is given as

As =
κ4

24π2

V

ε

∣∣∣∣
ϕ=ϕN

=

κ2e−4κϕ/
√
6

((
e2κϕ/

√
6 − 1

)2
+ 8γΛ

)3

256π2γ
(
e2κϕ/

√
6 − 1− 8γΛ

)2
∣∣∣∣∣∣∣∣∣
ϕ=ϕN

κϕN→∞−−−−−→ κ2e4κϕ/
√
6

256π2γ

∣∣∣∣∣
ϕ=ϕN

.

(180)

When we take κϕ0 = 5.4, we obtain As = 2.5 × κ2/γ. Therefore the order of κ2γ is given as
10−9. Then the value of r and ns is represented as

r � 12

N2
, 1− ns �

2

N
. (181)

4.3.2 DE dominant era

Before subsubsection, we discussed the slow roll inflation with Starobinsky model. In this section,
we will discuss about a scalaron in late time universe. In this era, we focus the effect of the
chameleon mechanism. Compare to inflation era, the effect of Tμν becomes important. The
scalaron should be in vacuum state, so we will gain the minimum point of scalaron field.

V ′
eff (ϕ) =

e−4κϕ/
√
6

2κ2

[
− 4κ√

6

(
1

8κ2γ
(e2κϕ/

√
6 − 1)2 + 2κ2Λ +

κ2T μ
μ

2

)
+

1

2κ
√
6γ

e2κϕ/
√
6(e2κϕ/

√
6 − 1)

]
(182)

=
κ√
6

e−4κϕ/
√
6

2κ2

[
− 1

2κ2γ
(e2κϕ/

√
6 − 1)2 − 8κ2Λ− 2κ2T μ

μ +
1

2κ2γ
(e4κϕ/

√
6 − e2κϕ/

√
6)]

]
(183)

=
κ√
6

e−4κϕ/
√
6

2κ2

[
1

2κ2γ

(
e2κϕ/

√
6 − 1

)
− 8κ2Λ− 2κ2T μ

μ

]
. (184)
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Therefore the minimum point of ϕ is given as following,

κϕ/
√
6 =

1

2
ln
[
1 + 16κ4γΛ + 4γκ4T μ

μ

]
. (185)

We evaluate the effective mass of scalaron field at minimum point, we obtain

m2
ϕ = V ”eff (ϕ)|ϕ=ϕmin

=− 4κ√
6
Veff (ϕmin) +

e−2κϕ/
√
6

6γ

∣∣∣∣∣
ϕ=ϕmin

=
1

12κ2γ (1 + 16κ4γΛ + 4γκ4T μ
μ)
. (186)

Then scalaron mass has gap at

−κ2T μ
μ =

1

2γ
+ 4Λ. (187)

We estimate the value of scalaron mass. For inflation condition, the value of γ is given as
κ2/γ ∼ 10−9, so the value of scalaron mass is given as

m2
ϕ =

1

κ2

κ2

6γ
∼ 1028 GeV2, (188)

where we ignore the effect of Λ and T μ
μ. Therefore the value of scalarom mass becomes Plack

scale order. This value is much heavier than the constrain of Dark Matter candidate, O(1) GeV.
Starobinsky model can describe inflation in early universe, but one cannot become the dark
matter candidate.

4.4 Starobinsky dark energy model

The Starobinsky model can describe inflation. Next time we only focus into dark energy dominant
era. One of F (R) gravity which can describe current universe expansion is following,

F (R) = R− βRc

(
1−
(
1 +

R2

R2
c

)−n)
, (189)

where the value of βRc is same as cosmological constant, βRc = 2Λ. This model can describe cur-
rent accelerating expansion of universe. When the value of curvature is large, which corresponds
to the curvature of current universe, R � Rc, Eq(189) approximated to

F (R) � R− βRc. (190)

The second term of Eq(190) corresponds to cosmological constant, so this approximation can
describe current accelerating expansion. For describe the picture of scalaron field, we approximate
at R � Rc condition. Then the function F (R) is approximated as

F (R) � R− βRc

(
1−
(
R2

R2
c

)−n)
. (191)
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By this approximation, we perform the wyle transformation and the scalaron description. The
relation between scalaron field ϕ and curvature is given as following,

F ′(A) = 1− 2n
βA

Rc

(
A2

R2
c

)−(n+1)

, (192)

A(ϕ) = Rc

(
1

2nβ

(
1− e2κϕ/

√
6
))− 1

2n+1

. (193)

Next we substitute above equations into Eq(163), we obtain the effective potential of scalaron as
following,

Veff (ϕ) =
βRc

2κ2
e−4κϕ/

√
6

[
1− (2n+ 1)

(
A(ϕ)2

R2
c

)−n]
− 1

4
e−4κϕ/

√
6T μ

μ

=
βRc

2κ2
e−4κϕ/

√
6

[
1− (2n+ 1)

{
1

2nβ

(
1− e2κϕ/

√
6
)} 2n

2n+1

]
− 1

4
e−4κϕ/

√
6T μ

μ. (194)

For calculate the minimum point of scalaron field, we calculate the first derivative of Eq(194)
with respect to ϕ is,

V ′
eff (ϕ) =

βRc

2κ2
∂ϕ

(
e−4κϕ/

√
6

[
1− (2n+ 1)

{
1

2nβ

(
1− e2κϕ/

√
6
)} 2n

2n+1

− κ2

2βRc

T μ
μ

])

=
βRc

2κ2
e−4κϕ/

√
6

(
− 4κ√

6

[
1− (2n+ 1)

{
1

2nβ

(
1− e2κϕ/

√
6
)} 2n

2n+1

− κ2

2βRc

T μ
μ

])

+
βRc

2κ2
e−4κϕ/

√
6

(
2κ

β
√
6
e2κϕ/

√
6

{
1

2nβ

(
1− e2κϕ/

√
6
)} −1

2n+1

)

=
βRc

2κ2
e−4κϕ/

√
6

(
− 4κ√

6

[
1− (2n+ 1)

{
1

2nβ

(
1− e2κϕ/

√
6
)} 2n

2n+1

− κ2

2βRc

T μ
μ

])

+
βRc

2κ2
e−4κϕ/

√
6

(
− 4κ√

6

[
− 1

2β

{
1

2nβ

(
1− e2κϕ/

√
6
)} −1

2n+1

+ n

{
1

2nβ

(
1− e2κϕ/

√
6
)} 2n

2n+1

])

=− 4κ√
6

βRc

2κ2
e−4κϕ/

√
6

[
−(n+ 1)

{
1

2nβ

(
1− e2κϕ/

√
6
)} 2n

2n+1

− 1

2β

{
1

2nβ

(
1− e2κϕ/

√
6
)} −1

2n+1

− κ2T μ
μ

2βRc

]
. (195)

This formula is so messy and it is difficult to solve minimum point. Therefore we consider
|κϕ| � 1 condition for simplify and we expansion exp part of Eq(195). We remark that this
condition is not contradiction to small curvature condition because of Eq(193). Then we obtain
approximated form as,

−(n+ 1)

(
− κϕ

nβ
√
6

) 2n
2n+1

− 1

2β

(
− κϕ

nβ
√
6

) −1
2n+1

− κ2T μ
μ

2βRc

= 0. (196)
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When we ignore first term of Eq(196) because of the order of κϕ’s order, we can solve with
respect to ϕmin,

κϕmin = −nβ
√
6

(
−κ2T μ

μ

Rc

)−(2n+1)

. (197)

The mass of scalaron field is given as the second derivative of the effective potential at minimum
point Eq.(197). The mass of scalaron is given as

m2
ϕ = V ′′

eff (ϕ)
∣∣
ϕ=ϕmin

=− 4κ√
6
V ′
eff (ϕ)

∣∣
ϕ=ϕmin

− 4κ√
6

βRc

2κ2
e−4κϕ/

√
6

[
− 2κ√

6
· 2n(n+ 1)

2n+ 1

{
1

2nβ

(
1− e2κϕmin/

√
6
)} 2n

2n+1

+
κ(2n+ 3)√
6β(2n+ 1)

{
1

2nβ

(
1− e2κϕmin/

√
6
)} −1

2n+1

− κ√
6β2n(2n+ 1)

{
1

2nβ

(
1− e2κϕmin/

√
6
)}− 2(n+1)

2n+1

]

�− 4κ√
6

βRc

2κ2

[
− 2κ√

6
· 2n(n+ 1)

2n+ 1

(
−κϕmin√

6βn

) 2n
2n+1

+
κ(2n+ 3)√
6β(2n+ 1)

(
−κϕmin√

6βn

) −1
2n+1

− κ√
6β2n(2n+ 1)

(
−κϕmin√

6βn

)− 2(n+1)
2n+1

]

� Rc

3βn(2n+ 1)

(
−κ2T μ

μ

Rc

)2(n+1)

. (198)

Then the mass of scalaron depend on the power of T μ
μ to the 2(n + 1). When we assume the

upper bound of scalaron mass, mϕ ≤ O(10) GeV, in solar system and βRc = ΛDE, the constant

parameter β must satisfy β < 10−30+ 13
n . Then RC must satisfy RC > 10−55− 13

n GeV2 and this
order corresponds to solar system scale, κ2ρ� ∼ 10−55 GeV2.

4.5 Logarithmic model

The scalaron with the Starobinsky dark energy model becomes so heavy, so we will consider more
smaller scalaron mass model. We define the action as logarithmic form [35],

F (R) = R− ΛDE

(
1− α

R

Rc

ln

(
R

Rc

))
+ κ2γ0

(
1 + γ1 ln

(
R

R0

))
R2, (199)

where α,RC andγ0, γ1, R0 are free constant parameters. The corrections to log are the expected
quantum corrections, and the corrections to log for R2 are investigated in [43]. Fig.(5) schemati-
cally shows the approach to the Dark Energy, Dark Matter problem by the chameleon mechanism.
scalaron potential has a flat potential in vacuum and a high curvature in the matter field. The po-
tential of scalarons is flat in vacuum and has high curvature in the matter field, so that scalarons
behave like Dark Energy as a constant potential in vacuum and become heavy in the vicinity of
galaxies, which makes them candidates for Dark Matter. This logarithmic form is motivated by
quantum correction. This model is stand from the starobinsky inflation model,

F (R) = R + fDE(R) + κ2γR2. (200)
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Figure 5: A chameleon mechanism approach to DE and EM problems. The red and blue lines
suggest the behavior of the scalaron potential in a matter field and in a vacuum, respectively.

If we consider one-loop corrections to coupling constants in multiplicatively renormalizable higher-
derivative quantum gravity [44], the coefficient γ in front of R2 should become logalithmic form
as eq.(199). We consider RC is DE scale and R0 is early time inflation scale. For explaining DE
era and early time inflation era, this model should be approximated as following ;

In early time inflation era, the DE term can be neglected and this condition is represented
as,

R0, κ2γ0[1 + γ1 ln(O(1))]R2
0 � ΛDE

[
1− α

R0

RC

ln

(
R0

RC

)]
. (201)

From above an inequality, we obtain the conditions for parameters as

RC

ΛDE ln(R0/RC)
� α, γ0γ1

κ2R0RC

ΛDE ln(R0/RC)
� α, R0 �

√
ΛDE
κ2γ0γ1

. (202)

We can constraint to some parameters γ0, γ1, R0 by slow roll approximation. When DE term is
dominant, the condition that inflation term not becomes effective is represented

RC , ΛDE[1− α ln(O(1))] � κ2γ0

[
1 + γ1 ln

(
RC

R0

)]
R2
C .

From above an inequality, we obtain the conditons for parameters as

1

κ2γ0
� RC ,

√
ΛDE
κ2γ0

� RC ,

√
αΛDE
κ2γ0

� RC . (203)

It is known that this logalithmic F (R) produce a inflation scenario in the Jordan frame [44].
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4.5.1 Slow Roll Inflation

The initial value of φ is determined from the value of e-folding number, which is obtained from
the effective potential of scalaron. We define the e-folding as

N =

∫ ϕN

ϕend

dϕ
Veff (ϕ)

V ′
eff (ϕ)

, (204)

where the value of e-folding is constrainted as N = 50 ∼ 60. We define the constraint that
srow-roll inflation finish as, the parameter ε is defined as

ε|ϕend
≡ 1

2κ2

(
V ′
eff (ϕ)

Veff (ϕ)

)2
∣∣∣∣∣
ϕend

, (205)

the parameter η is defined as

η|ϕend
≡ 1

κ2

V ′′
eff (ϕ)

Veff (ϕ)

∣∣∣∣
ϕend

. (206)

The power spectrum and the specrtum index, tensor-to-scalar ratio are defined and constraints
as

Ps ≡
1

24π2

Veff (ϕ)

ε

∣∣∣∣
ϕN

(207)

ns ≡ (1− 6ε+ 2η)|φN = 0.9652± 0.0042 (208)

r ≡ Pt
Ps

= 16ε|φN < 0.106. (209)

ln(1010As) = 3.043±0.014 [28]. The tensor-to-scalar ratio is obtained as If we tune the parameters
as

γ0 = (0.88 ∼ 1.2)× 109 (210)

γ1 = (1.0 ∼ 1.4)× 10−6 (211)

R0/ΛDE = 1.8, (212)

constraints (eq(208 209)) are satisfied and the value of tensor-scalar ratio is given as

r = (2.94 ∼ 4.10)× 10−3. (213)

4.5.2 The Description of Scalaron

We have confirmed that the R2 term can reproduce the slow roll inflation to match the current
observation. Now we will analyze the current accelerated expansion. We consider DE dominant
case,

F (R) � R− ΛDE

[
1− α

R

RC

ln

(
R

RC

)]
. (214)
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The first we calculate the relation between R and ϕ,

R/RC = exp

[
RC

αΛDE
(e2κϕ/

√
6 − 1)− 1

]
. (215)

The small curvature corresponds DE era and the large curvature corresponds a inflation era, so
the ϕ becomes large, the inflation effect appears and the shape of the effective potential transform
becouse of the inflation effect. If α becomes large of RC/ΛDE becomes small, the slope of R graph
becomes gentle. The regeon of ϕ that DE effect is dominant is depend of the slope of R graph,
so on α and RC/ΛDE. The potential is given as follow,

Veff (ϕ) =
e−4κϕ/

√
6

2κ2

(
RF ′(R)− F (R)− κ2

2
T μ

μ

)

=
αΛDEe

−4κϕ/
√
6

2κ2

(
exp

[
RC

αΛDE
(e2κϕ/

√
6 − 1)− 1

]
+

1

α
−

κ2T μ
μ

2αΛDE

)
. (216)

Next we check the effective potential has the stable ground state or nor. If κϕ/
√
6 � 1, the

effective potential can be approximated as,

Veff (ϕ) �
αΛDE
2κ2

(
1− 4

κϕ√
6

)(
exp

[
RC

αΛDE

2κϕ√
6
− 1

]
+

1

α
−

κ2T μ
μ

2αΛDE

)

� αΛDE
2κ2

(
1

e
+

1

α
−

κ2T μ
μ

2αΛDE
+

(
−2

e
− 2

α
+

RC

eαΛDE
+

κ2T μ
μ

αΛDE

)
2κϕ√

6

)
. (217)

If the trace of energy tensor is much large,
κ2Tμ

μ

αΛDE
� 1, a slope on garaph of the effective potential

arround small ϕ becomes negative. On the other hand, If κϕ/
√
6 � 1, the exponentialy term in

the effective potential becomes dominant, so one can approximate the effective potential as,

Veff (ϕ) �
αΛDE
2κ2

exp

[
RC

αΛDE
(e2κϕ/

√
6 − 1)

]
. (218)

Arround small ϕ, the effective potential Veff (ϕ) drop down as a linear function of ϕ if the trace
of energy-momeutum tensor T μ

μ is much large. Arround large ϕ, the effective potential Veff (ϕ)
must inclease becouse of a effect of exponential function, eq(218). Therefore we can understand
that if the tarace of energy-momentum tensor, the scalaron field has a stable ground state.The
second derrevative of potential becomes sharp if RC/ΛDE becomes large and , so we can assume
that the scalaron mass becomes heavy if RC/ΛDE becomes large and small if α becomes large.
Next we calculate the scalaron mass analyticaly. The first we obtaine the ϕ that a minimum of
the effective potential Veff (ϕ), we can obtain the minimum point of ϕ exactly as,

κϕmin/
√
6 =

1

2
ln

⎡
⎣αΛDE

RC

⎛
⎝2 +W

⎛
⎝e

−1+ Rc
αΛDE

(
2− κ2Tμ

μ

ΛDE

)
α

⎞
⎠
⎞
⎠
⎤
⎦ , (219)

where W is a lambelt W-function that obey following equation,

z = W (z)eW (z). (220)
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A lambelt W-function is complecly if we treat this model analyticaly, so we approximate eq(219)

by elementary function. When κ2Tμ

αΛDE
� 1 and RC

ΛDE
� α, one can apploximate eq.(219) as

κϕmin/
√
6 � 1

2
ln

[
1 +

αΛDE
RC

(
1 + ln

[
2ΛDE − κ2T μ

μ

RC

])]
, (221)

where we used the apploximation for W (x) as [32]

W (x) � ln[x]− ln[ln[x]] for x � 1. (222)

We substitute eq(221) into the second derivetive of the effective potential Veff (ϕ), wje obtaine a
scalaron mass as

m2
ϕ � −

κ2RCT
μ
μ

3αΛDE
. (223)

We drow the scalaron mass depends on the trace of energy-momentum tensor. The approximation
we adopted is viable. It is known that a scalaron decay two photons and two gluons through
massive fermion and gauge boson loops. If a scalaron’s life time is so short, a scalaron decay
soon and there is no scalaron in current universe. Therefore we assume a scalaron’s life time is
longer than the age of current uneverse,

τϕ > τuni ∼ 1017s. (224)

From this constraint, we find the upper bound for the scalaron mass [?],

mϕ < O(1)[GeV]. (225)

Now we consider current relic DM, so we substitute T μ
μ as solar system scale ρ� � 10−17GeV4.

Substituting this value to eq.(225), we obtain the constraint for RC and α,

RC

ΛDE
<

3O(1)2

κ2ρ�
α � 3× 1055α. (226)

4.6 Power low like model

Next we consider power low like model which is treated in [16, 40, 44] at n = m,

F (R) = R

(
1 +

(
R

R0

)n)m
. (227)

This model can be approximated when (R/R0)
n � 1. This model can be approximated as

F (R) � R +m

(
R

R0

)n
. (228)

In this approximation, the term is like the Einstein-Hilbert action plus Rn, and is expected to
reproduce slow roll inflation when n ∼ 2. On the other hand, when (R/R0)

n � 1 is satisfied, it
can be approximated as follows

F (R) � Rmn+1

R0

. (229)

In this case, action is expressed as a pure power of curvature R.
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4.6.1 Acceleration in DE era

Perform an approximate calculation for the current universe, where the value of curvature R
is sufficiently small. At this time, the approximation is divided into cases according to the
magnitude of the value of n. The density of matter at that time is calculated as follows

(H2/R0)
n � 1

Ωm = 1−m

(
(2n2 + n)q +

(
2n2 + 2n− 1

)
− n(1 + n)

q − 1

q̇

H

)
(6(−q + 1))n

(
H2

R0

)n
. (230)

(H2/R0)
n � 1

Ωm =

((
H2

R0

)−n)−m

(6(−q + 1))mn

×
(
−m2n2q + 1−mn−m2n2 +

q̇mn(1 +mn)

H(q − 1)
+

m

(
1 + (q̇/H − q2 − 1)

n(−1 +m+ n)

q − 1

)(
H2

R0

)−n
(6(−q + 1))−n

)
.

(231)

At this point, we can discuss the expansion and contraction of the universe depending on the
value of m,n.

4.6.2 Tensor scalar picture

By performing a Wyle transformation on the metric, we can rewrite it in Einstein-Hilbert and
scalaron form. The effective potential of the scalaron is then given by

Veff (ϕ) =
e−4κϕ/

√
6

2κ2
m · nr0r(ϕ)n+1(1 + r(ϕ)n)m−1 + e−4κϕ/

√
6ρ, (232)

where r(ϕ) is dimension less value, r(ϕ) = R(ϕ)/R0. In this section, we treat r(ϕ) substitute to
curvature R. ϕ is solved as

e2κϕ/
√
6 ≡ (1 + (1 +m · n)r(ϕ)n)(1 + r(ϕ)n)m−1 (233)

The potential of the scalaron can be determined analytically. The effective mass of the scalaron
can be obtained as follows

m2
ϕ(ρ) =

r0
12mn(n+ 1)

(
2κ2ρ

r0

)1−n
. (234)

Thus, when n > 1, scalarons behave in an inverse chameleonic manner, rather than being light-
ened in mass by the presence of matter fields.
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5 Symplectic numerical integral

The F (R) gravity is difficult to observe on the ground due to the chameleon mechanism. On
the other hand, if the chameleon mechanism is demonstrated, it will be a proof of the existence
of F (R) gravity. In Fig.(6), we summarize the possible influence of the chameleon mechanism
in each phase of the early universe. In the preheating phase, the background matter field may
increase exponentially due to the resonant effect of the scalaron and scalar fields, as discussed
in Chapter 3. This process may have a verifiable effect on the chameleon mechanism. In the
following, we discuss the F (R) gtavity in the preheating phase.

Figure 6: Possible influence of the chameleon mechanism for each phase in the early universe.

In this chapter, we will actually calculate the behavior of the scalaron in the preheating
phase numerically. In the equation of motion of the scalaron in the preheating phase in F (R)
gravity, the behavior of its potential is an important factor. In addition, unlike the general
field, the kinetic term of the matter field on F (R) gravity has a factor of e−4κϕ/

√
6, which means

that the kinetic term does not have a canonical form. Therefore, it is not possible to perform
an approximate calculation as we did in chapter 3. Therefore, we will use the full equation of
motion of scalarons and calculate it numerically. However, when we try to solve the equation
of motion numerically, there is a risk that the value of the Hamiltonian may deviate from the
true value by general numerical methods because the kinetic term has a non-canonical form. In
this study, we apply the method of [37] to solve the equation of motion symplectically for F (R)
gravity.

5.1 Second order

We will first look at the symplectic numerical integral method here. Canonical equation of motion
conserve the value of Hamiltonian because, the time derivative is shown as the poisson bracket
belong to Hamiltonian H, ḟ = {f,H}.

Ḣ = {H,H} = 0 (235)
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Therefore the time expantion should be canonical transformation to conserve the form of equa-
tion. (

q̇
ṗ

)
=

( ∂H
∂p

−∂H
∂q

)
=

(
0 1
−1 0

)(∂H
∂q
∂H
∂p

)
= Iij

∂H

∂ri
, (236)

where matrix Iij and ri is defined as

Iij =

(
0 1
−1 0

)
, ri =

(
q
p

)
. (237)

The time derivative of values P (p, q), Q(p, q) is written as

Ṙi =
∂Ri

∂rj
ṙj =

∂Ri

∂rj
Ijk

∂H

∂rk
=

∂Ri

∂rj
Ijk

∂Rl

∂rk

∂H

∂Rl

, (238)

The condition that p, q → P (p, q), Q(p, q) becomes canonical transformation is,

∂Ri

∂rj
Ijk

∂Rl

∂rk
= Iil. (239)

More symply above equation is written as following,(
{Q,Q}q,p {Q,P}q,p
{P,Q}q,p {P, P}q,p

)
=

(
0 1
−1 0

)
. (240)

The exact solution of EoM is represented as

f(t) = eĤ(t−t0)f(q0, p0), (241)

where we define the operator Ĥf = {f,H}p,q. So this representation should conserve symplectic
symmetry, but the representation of Eq.(241) is difficult because of commutation relation of the
kinetic term K and potential V .

eĤτ+O(τ2) → eV̂ τeK̂τ , (242)

then each exponential operator is represented as

eV̂ τ
(
q
p

)
=

(
q

p− ∂V
∂q
τ

)
, eK̂τ

(
q
p

)
=

(
q + ∂K

∂p
τ

p

)
. (243)

This operator, when applied to any function F (q, p) of p, q, performs a transformation that
transitions the variables q, p, and

eV̂ τF (q, p) = F

(
q, p− ∂V

∂q
τ

)
, eK̂τF (q, p) = F

(
q +

∂K

∂p
τ, p

)
, (244)

The transition operator defined above is used to describe the time evolution by the symplectic
integral. The time step is defined by Eq.(242). The first order symplectic integral step is shown
as, (

qi+1

pi+1

)
= eτV eτK

(
qn

pn

)
= eτV

(
qn + τ ∂K

∂p
(pn)

pn

)
=

(
qn + τ ∂K

∂p
(pn+1)

pn − τ ∂V
∂q
(qn)

)
. (245)
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The time update defined above preserves the value of the Hamiltonian. This is guaranteed by
the fact that the Eq.(245) transformation has symplectic symmetry. This transform conserve
symplectic symmetry,

{qi+1, pi+1} =

{
qi +

∂K

∂p
(pn+1)τ, pi+1

}

= {qi, pi+1} =

{
qi, pi − τ

∂V

∂q
(qi)

}
= {qi, pi}. (246)

In fact, the symplectic integral defined here does not conserve the exact amount of Hamiltonian.
Therefore, we will find the conserved conservative by this transformation. The transformation
by the transformation Eq.(245) transforms τ in quadratic order as follows

eτV eτK = exp

(
τ(K + V ) +

τ 2

2
[V,K]

)
. (247)

So the value which conserve along symplectic integral is

H ′ = K + V +
τ

2
{V,K}q,p

= K + V +
τ

2

∂V

∂q

∂K

∂p
. (248)

This quantity is the one that is preserved by the transformation by Eq.(245).

5.2 Leap flog

We will look at transformations that preserve the Hamiltonian at a higher order than the trans-
formation defined by Eq.(245). Leap flog which is second order of symplectic integral is shown
as (

pn+1

qn+1

)
= eτK/2eτV eτK/2

(
pn

qn

)
. (249)

For the transformation defined by the above, we obtain the specific sign of the time evolution
step by letting the transition operator act on pn, qn. We perform the poisson bracket operator,
we obtain (

pn+1

qn+1

)
= eτK/2eτV eτK/2

(
pn

qn

)

= eτK/2eτV
(

pn

qn + τ
2
∂K
∂p

(pn)

)

= eτK/2

(
pn − τ ∂V

∂q
(qn)

qn + τ
2
∂K
∂p

(
pn − τ ∂V

∂q
(qn)
))

=

⎛
⎝ pn − τ ∂V

∂q

(
qn + τ

2
∂K
∂p

(pn)
)

qn + τ
2
∂K
∂p

(pn) + τ
2
∂K
∂p

(
pn − τ ∂V

∂q
(qn)
)
⎞
⎠ (250)
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The right hand side of the above transformation has a complicated form. Therefore, we can
rewrite the update of the time step in a simpler form by defining half step. Above transformation
is rewritten we introduce half step,⎧⎨

⎩
qn+1/2 = qn + τ ∂H

∂p
(pn)

pn+1 = pn − τ ∂H
∂q
(qn+1/2)

qn+1 = qn+1/2 + τ 1
2
pn+1,

(251)

Naturally, we can confirm that the leap frog method also has symplectic symmetry. This trans-
formation conserve symplectic symmetry,

{qi+1, pi+1} =

{
qn+1/2 + τ

1

2
pn+1, pn+1

}
= {qn+1/2, pn+1}

=

{
qn+1/2.pn − τ

∂H

∂q

(
qn+1/2

)}
= {qn+1/2, pn}

=

{
qn + τ

∂H

∂p
(pn) , pn

}
= {qn, pn}. (252)

It was confirmed that the leap frog method also has symplectic symmetry, which means that
there is a conserved quantity that is conserved by the time update by Eq.(252). To obtain the
conserved quantity by updating Eq.(252), we use the following formula

eAeBeC = exp

(
A+B + C +

1

2
([A− C,B] + [A,C])

+
1

12
([A, [A,B + C]] + [B, [B,A+ C]] + [C, [C,A+B]] + 3[[A,B], C] + [B, [A,C]])

)
.

(253)

Using the above formula, we can rewrite the transition operator of the leap frog method in the
third order of time. The second order of symplectic integral is represented as

eτK/2eτV eτK/2 = exp

(
τ(K + V ) +

τ 3

12

[
V +

K

2
, [V,K]

])
. (254)

So the value which conserve along symplectic integral is

H ′ = K + V +
τ 2

12

{
V +

K

2
, {V,K}q,p

}
q,p

(255)

= K + V +
τ 2

12

(
∂2K

∂p2

(
∂V

dq

)2

− 1

2

(
∂K

∂p

)2
∂2V

∂q2

)
. (256)

This quantity is the conserved quantity that is truly conserved by the leap frog method. A new
quantity of the second order of time is added to the true Hamiltonian.
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5.3 Advance to our model

In the previous chapter, we reviewed the basics of the symplectic integral method, which can
only be used in theories that originally had symplectic symmetry. However, our model does not
have symplectic symmetry because the matter field has a non-canonical kinetic term. Therefore,
by applying the method of [37], we will apply the symplectic integral method to the model we
study.

We will adopt the simplest R2 model as the F (R) gravity and the case where it couples
non-minimally with the scalar field χ. The lagrangian is given as following,

L =
√−gJ

[
M2

pl

2
RJ + γR2

J + ξRχ2 − 1

2
gμνJ (∂muχ)(∂νχ)−

1

2
m2
χχ

2

]
. (257)

The Lagrangian given here can also be rewritten in the Einstein-Hilbert part and the scalaron
part by performing the Wyle transformation on the metric gμνJ , as explained in Chapter 4. The
Lagrangian rewritten in this way can be written as follows

L =
√−gE

[
M2

pl

2
RE − 1

2
(∇ϕ)2 − 1

2
e−2/(

√
6Mpl)ϕgμνE (∂μχ)(∂νχ)− V (ϕ, χ)

]
, (258)

where the effective potential of the scalaron ϕ is defined as follows

V (ϕ, χ) = e−4κϕ/
√
6

(
1

16κ4γ

(
e2κϕ/

√
6 − 1− 2κ2ξχ2

)
+

1

2
gμν(∂μχ)(∂νχ) +

1

2
m2
χχ

2

)
(259)

and the relation of scalaron and curvature R is given as following,

R(ϕ) =
1

4κ2γ

(
1− e−2κϕ/

√
6 − 2κ2ξχ2

)
. (260)

5.3.1 Einstein-Hilbert term

At first we calculate the Einstein-Hilbert part. We consider metric as following,

ds2 = dt2 + gijdx
idxj, (261)

gij = a(t)2 (δij + hij) (262)

where hij is the perturbation part of Minkowski metric. In generally the basic parameter of
gravity is the metric gμν , but we introduce the other definition. For analytic treatment, we define
the matrix β which is defined as the logarithmic of g as

βij = (ln g)ij . (263)

Next we expansion around the Minkowski metric because of |h| � 1,

(ln g)ij =
(
ln(a2(δ + h))

)
ij
= 2δij ln a+ hij +O(h2). (264)

As a parameter to describe the background space-time, we will use β instead of h. Then the
perturbation parameter h is written by β,

hij � βij − 2δij ln a. (265)
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To rewrite the metric Gμν in β, we also define the traceless part of β. We define the traceless
part of β as,

γij = βij −
β

3
δij = hij −

h

3
δij +O(h2). (266)

where β is the trace of β matrix. This implies that the matrix h and γ is same order, O(γn) ≤
O(hn). Therefore, we can regard γ as a perturbation parameter.

(ln g)ij = βij =
β

3
δij + γij (267)

gij �
(
eβ/3δ+γ

)
ij
. (268)

gμν is defined above. Now we need to make a definition for gμν . The matrix gij is defined as the
inverse of gij, so the elements of gij is given as,

gij � e−β/3
(
δ − γ +

1

2
γ2

)ij
. (269)

Using the above definition, we describe the trace, off diagonal part of gμν . The relation of gij is
given as following,

g11 � e−β11 +
e−2β11/3

2

(
β2
12e

−β22/3 + β2
13e

−β33/3) (270)

g22 � e−β22 +
e−2β22/3

2

(
β2
23e

−β33/3 + β2
21e

−β11/3) (271)

g33 � e−β33 +
e−2β33/3

2

(
β2
31e

−β11/3 + β2
32e

−β22/3) (272)

g12 � −β12e
−(β11+β22)/2 +

1

2
β31β23e

−β/3 (273)

g23 � −β23e
−(β22+β33)/2 +

1

2
β12β31e

−β/3 (274)

g31 � −β31e
−(β33+β11)/2 +

1

2
β23β12e

−β/3. (275)

The Einstein-Hilbert action RE gives rise to the kinetic term β by this rewrite. The kinetic term
of β is given as following,

Kβ =

∫
d3x

eβ/2

4κ2

(
β̇2
12 + β̇2

23 + β̇2
31 − β̇11β̇22 − β̇22β̇33 − β̇33β̇11

)
. (276)

In addition to the kinetic term, the effect of the gradient can be obtained as a potential for β.
The potential corresponding to the gradient of β can be obtained as follows

H∇β =

∫
d3x

1

4κ2
(β2

xy,z + β2
yz,x + β2

zx,y

− 2βxy,zβyz,x − 2βyz,xβzx,y − 2βzx,yβxy,z

− 2βxx,zβyy,z − 2βyy,zβzz,x − 2βzz,yβxx,y

+ 2βxy,xβzz,y − 2βyz,yβxx,z − 2βzx,zβyy,x). (277)

41



The behavior of the background space-time is described by the kinetic term and potential of β.
In order to proceed with the discussion in the Symplectic integral method, it is necessary

to rewrite the picture in Hamiltonian picture instead of Lagrangian picture. We rewrite the
Hamiltonian picture, the conjugate momentum Πβ is introduced and the Hamiltonian is given
as,

Πβii =
δKβ

δβii(x)
=

eβ/2

4κ2
(β̇ii − β̇), Πβij =

δKβ

δβij(x)
=

eβ/2

2κ2
β̇ij. (278)

In the above equation, the trace and off-diagonal parts of Piβ are defined separately, but both
can be written together. This formula can be simplified as

Πβij =
1

4κ2
eβ/2(2− δij)(β̇ij − β̇δij). (279)

By using Πβ defined here, we can rewrite the kinetic term of β in Hamiltonian picture. The
kinetic part’s Hamiltonian is defined as following,

Hβii =

∫
d3xe−β/2κ2

⎛
⎝2

∑
i=1,2,3

Π2
βii

−
( ∑
i=1,2,3

Πβii

)2
⎞
⎠ , (280)

Hβij =

∫
d3xe−β/2κ2

(
Π2
β12

+Π2
β23

+Π2
β31

)
. (281)

5.3.2 Apply to symplectic integration

In the previous section, we obtained the Hamiltonian picture of the Einstein-Hilbert part as a
function of β. Now we need to rewrite the Hamiltonian picture for the scalaron and the scalar
field χ. If we rewrite the Hamiltonian picture, the whole Hamiltonian is given as follows,

H =Kβ +H∇β +
[
e−β/2

Π2
ϕ

2

]
+

[
1

2
eβ/2gij(∇ϕ)2

]

+

[
e−β/2e2/(

√
6Mpl)ϕ

Π2
χ

2

]
+

[
1

2
eβ/2e−2/(

√
6Mpl)ϕgij(∇χ)2

]
+ eβ/2V (ϕ, χ), (282)

Note that the whole thing is multiplied by
√−g, which is eβ. Then the conjugate momentum of

ϕ, χ are defined as following

Πϕ = eβ/2ϕ̇, (283)

Πχ = eβ/2e−2/
√
6Mplϕχ̇. (284)

As can be seen from Eq.(282), the kinetic term of ϕ is subject to the function β and the kine
term of χ is subject to the function β, ϕ, so χ, ϕ is non -canonical. For this reason, applying the
symplectic integral method to this model requires ingenuity. In the general symplectic integral
method, the Hamiltonian is decomposed into two parts: the kinetic term and the potential. Here,
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the Hamiltonian is decomposed into three parts. These three parts are defined as follows,

eτK1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
χ
βii
βij
Πφ

Πχ

Πβii

Πβij

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ

χ+ e−β/2e2/
√
6φΠχτ

βii
βij + 2κ2e−β/2Πβijτ

Πφ − 2κ√
6
Kχτ

Πχ

Πβii +
K1

2
τ

Πβij

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (285)

eτK2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
χ
βii
βij
Πφ

Πχ

Πβii

Πβij

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ+ e−β/2Πφτ
χ

βii +
2e−β/2

M2
p

(Πβii − Πβjj − Πβkk)

βij
Πφ

Πχ

Πβii +
1
2
e−β/2

(
1
M2

pl

(
2
∑

Π2
βii − (

∑
Πβii)

2
)
+

Π2
φ

2

)
τ

Πβij

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (286)

eτV

⎛
⎜⎜⎜⎜⎜⎜⎝

φ
βii
βij
Πφ

Πβii

Πβij

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

φ
βii
βij

Πφ − ∂V
∂φ

τ

Πβii − V
2
τ

Πβij − ∂V
∂βij

τ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (287)

Indeed we can solve Eq(285) and Eq(287) exactly because they only transform χ, βij,Πφ,Πβii and
right side only depends βii, φ,Πχ,Πβij . Therefore, if the time evolution takes place only in K1, V ,
the update is guaranteed to have symplectic symmetry. Therefore, we will pseudo-reproduce the
symplectic integral method by replacing only the transition by K2 with an integral method such
as Runge-Kutta method. This method is the one used in [37]. Here, the operator of the time
transition will adopt the following as the sixth order of time,

e(A+B+C)dt =ec3Adt/2ec3Bdt/2ec3Cdtec3Bdt/2e(c3+c2)Adt/2

× ec2Bdt/2ec2Cdtec2Bdt/2e(c2+c1)Adt/2

× ec1Bdt/2ec1Cdtec1Bdt/2e(c1+c0)Adt/2

× ec0Bdt/2ec0Cdtec0Bdt/2e(c0+c1)Adt/2

× ec1Bdt/2ec1Cdtec1Bdt/2e(c1+c2)Adt/2

× ec2Bdt/2ec2Cdtec2Bdt/2e(c2+c3)Adt/2

× ec3Bdt/2ec3Cdtec3Bdt/2ec3Adt/2

+O(dt7), (288)

and we substitute A = K1,B = K2,C = V . With the time step thus defined, we calculate the
time evolution of the scalaron and χ in the preheating period.
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First of all, for the sake of simplicity, we will limit our discussion to the case where the space
is zero-dimensional and has no expanse. In this case, the effect of the gradient of χ does not
appear in the equation of motion. Therefore, it is assumed that the parametric resonance like
effect discussed in chapter 3 is not caused by the wavenumber vector k, but by the value of the
mass mχ of the scalar field χ. The time evolution of Φ, χ and the conjugate momenta Πφ,Πχ

are plotted below, where the result in Fig. (7) corresponds to the case where ξ = 0,mχ = 0.1.
In this case, the amplitude of the time evolution of scalaron and χ decreases with time due to
the expansion of the universe. With this combination of parameters, parametric resonance is not
observed. The calculation result in Fig.(8) corresponds to the case where ξ = 0,mχ = 0.5. The

Figure 7: Graph of the time evolution of the scalar field for ξ = 0,mχ = 0.1. The horizontal axis
is the scale factor. The left figure shows the time evolution of scalarons and scalar field χ. The
right figure shows the momentum-conjugate quantities.

results of Fig. (8) correspond to the case where ξ = 0,mχ = 0.5, where the amplitude of both
scalaron and χ increases due to parametric resonanace. Since the number density of particles in
the background scalar field increases exponentially, the mass of scalarons is expected to change
significantly through the chameleon mechanism.

Fig.(9) plots the time evolution of the effective masses of scalaron and χ for the case ξ =
0,mχ = 0.5. As can be seen from this result, the effective mass of scalaron converges to a certain
value as time evolves. If the effect of the chameleon mechanism comes into play, the effective
mass of the scalaron should increase with the increase in the number of χ particles. In the results
of this numerical calculation, the effect of the chameleon mechanism is not seen because the
scalaron mass converges to a certain value.

6 Summary

In this paper, we studied F (R) gravity, which is one of the modified gravity theories. As men-
tioned in chapter 4, F (R) gravity is a model that can explain the slow roll inflation. The F (R)
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Figure 8: Graph of the time evolution of the scalar field for ξ = 0,mχ = 0.5. The horizontal axis
is the scale factor. The left figure shows the time evolution of scalarons and scalar field χ. The
right figure shows the momentum-conjugate quantities.

Figure 9: Plot of the time evolution of the effective masses of scalarons and scalar fields χ when
the parameter values are taken to be ξ = 0,mχ = 0.1.
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gravity can be rewritten in the form of Einstein-Hilbert action and scalar particles by performing
Wyle transformation on the metric tensor gμν . The scalar particle with the new degree of free-
dom introduced here is called scalaron. In the application of F (R) gravity to inflation, slow-roll
inflation can be explained by identifying this scalaron with inflation. In particular, as we saw in
chapter 4, the R2-Starobinsky inflation can explain the slow-roll inflation in a way that fits the
current cosmological observations. In this paper, we investigate the application of F (R) gravity
to the accelerated expansion of the current universe and the dark matter problem, in addition to
inflation.

The scalaron has a chameleon mechanism in which its mass changes depending on the back-
ground matter field. In chapter 4.4, we specifically look at the possibility that scalarons are
candidates for dark matter. In chapter 4.4, we will discuss in particular whether scalarons are
candidates for dark matter. In the Starobinsky model, which includes the dark energy region, the
mass of scalarons in a matter field increases with the power of the energy of the background mat-
ter field. The condition for a dark matter candidate is that no two-photon decay from scalarons
is observed. In this case, when the background is solar scale (O(10−17)GeV4), the scalaron mass
is mϕ < O(1)GeV. In chapter 4.5, we analyze the logarithmic F (R) model that we devised. In
chapter 4.5, we analyzed a logarithmic model of F (R), which is characterized not only by the
slow-roll inflation due to the R2 term, but also by the dark matter behavior due to the lobarithmic
ΛDE term corresponding to the cosmological constant. In this chapter, we have shown that the
logarithmic F(R) model can be a candidate for dark matter by choosing the model parameters.

In chapter 5, the behavior of scalarons in the preheating phase was calculated numerically
by applying symplectic numerical integral. The verification of the F (R) gravity on the ground
is difficult due to the chameleon mechanism. Therefore, we focused on the early universe as a
possibility to verify the F (R) gravity. The early universe immediately after inflation is divided
into a preheating period in which inflaton fluctuations behave non-perturbatively, and a reheating
period in which they perturbatively decay into scalar particles. In the preheating phase, the
inflaton fluctuation resonates with the motion of the scalar particle, and the inflaton fluctuation
exponentially decays into the scalar particle. When we consider the verification of F (R) gravity,
the background matter field increases exponentially in the preheating phase, and the mass of the
scalar changes significantly due to the chameleon mechanism, which is expected to have an effect
on the final reheating temperature.

Since F (R) gravity does not have symplectic symmetry, it is not possible to apply the sym-
plectic integral method as it is. Therefore, the symplectic integral method cannot be applied as
it is. In this study, the calculation was performed assuming a zero dimension with no spatial
extent. Since the scalar field does not have a wavenumber vector, the mass of the scalar field
mχ and the non-minimal coupling ξ are the parameters that work for parametric resonance. We
have confirmed that parametric resonance is induced when ξ = 0,mχ = 0.5. However, even in
this case, no contribution of the chameleon mechanism was found. For a more realistic model,
calculations should include the effect of the gradient of the scalar field for the three-dimensional
case.
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