
Constitution of Ms.PacMan Player with
Critical-Situation Learning Mechanism

Hisashi Handa
Graduate School of Natural Science and Technology

Okayama University, Okayama, 700-8530, Japan
email: handa@sdc.it.okayama-u.ac.jp

Abstract— We previously proposed evolutionary fuzzy sys-
tems of playing Ms.PacMan for the competitions. As a con-
sequence of the evolution, reflective action rules such that
PacMan tries to eat pills effectively until ghosts come close
to PacMan are acquired. Such rules works well. However,
sometimes it is too reflective so that PacMan go toward ghosts
by herself in longer corridors. In this paper, a critical situation
learning module is combined with the evolved fuzzy systems, i.e.,
reflective action module. The critical situation learning module
is composed of Q-learning with CMAC. Location information
of surrounding ghosts and the existence of power-pills are given
to PacMan as state. This module punishes if PacMan is caught
by ghosts. Therefore, this module learning which pairs of (state,
action) cause her death. By using learnt Q-value, PacMan tries
to survive much longer. Experimental results on Ms.PacMan
elucidate the proposed method is promising since it can capture
critical situations well. However, as a consequence of the large
amount of memory required by CMAC, real time responses
tend to be lost.

I. INTRODUCTION

Recently, as benchmark problems to realize intelligent
software, several game competitions have been carried out
in the international conferences on Computational Intelli-
gences, such as CIG2007, FUZZ-IEEE2007, CEC2007, and
WCCI2008 [1]-[4]. The most distinguished points of these
game competitions in comparison with conventional AI game
studies are that 1) they are not limited to board games, 2)
they often require computer programs to promptly response
in the case of action games, and 3) available information on
them occasionally includes noise.

The Ms.PacMan competition is one of such game competi-
tions. PacMan is one of the most popular video games played
in all over the world. Ms.PacMan, a mutant of PacMan,
employs probabilistic transitions of ghosts. Thus, there is
no deterministic (surefire) routes to solve for each stage
in Ms.PacMan. That is, real time control mechanisms are
needed to realize auto-play for Ms.PacMan by computers.
In the previous study by us, evolutionary fuzzy systems for
playing Ms.PacMan was proposed. As a consequence of the
evolution, reflective action rules such that PacMan tries to
eat pills effectively until ghosts come close to PacMan are
acquired. Such rules works well. However, sometimes it is
too reflective. In other words, the scopes where PacMan make
attention are too narrow.

In this paper, a critical situation learning module is
combined with the evolved fuzzy systems, i.e., reflective
action module. The critical situation learning module is

Fig. 1. A map of the maze of Ms.PacMan (Stages 1-2)

composed of Q-learning with CMAC. Location information
of surrounding ghosts and the existence of power-pills are
given to PacMan as state. This module punishes if PacMan is
caught by ghosts. Therefore, this module learns which pairs
of (state, action) cause her death. By using learnt Q-value,
PacMan tries to survive much longer.

The rest of this paper is organized as follows: Section
II introduces rules and game states of Ms.PacMan. Section
III explains the previous study by us, i.e., reflective action
module by Evolutionary Fuzzy Systems [12]. Section IV
describes the critical situation learning module by using Q-
learning with CMAC by referring to the definition of states
and how to use Q-value in this module. Following these
sections, experimental results are shown in section V. Finally,
we conclude this paper in Section VI.

II. MS.PACMAN

A. Game rule

Fig. 1 depicts the maze for stages 1 and 2 in Ms.PacMan.
Numbers above and right of the map mean coordinate values.

48



There are four warp zones in the side of this maze, where
two horizontal warps are connected with each other, i.e.,
PacMan can go through from the upper right warp zone to the
upper left one. Black circles indicate intersections. Smaller
white and bigger red1 circles denote pills and power-pills,
respectively. Double circles denote that an intersection and a
pill exist at corresponding location.

The task subjected to PacMan is to eat up all the pills and
power-pills. The scores of eating a pill and a power-pill are
10 and 50 points, respectively. After eating a power-pill, the
state of ghosts is changed into edible one during a certain
period. The period varies from one second to 15 seconds,
based on the number of stages. PacMan can eat ghosts in
the edible state. The score of eating ghosts depends how
many ghosts have been ate for a power-pill eating period:
The score is doubled after eating other ghost, i.e., for the first
eating, score is 200 points, and then, 400 points are given
to Ms.PacMan for the second eating. 800 and 1,600 points
are awarded for the third and fourth eating. The power-pill
eating period, where ghosts are in edible state, is not so long
that Ms.PacMan should take a risk to go to eat edible-stated
ghosts. On the other hand, if she concentrates to eat pills
only, she may be able to go the next stage easily while she
get fewer points.

B. Preprocess of captured image

The image process of captured image is carried out at
every cycle. As a consequence of the image process, we
obtain the following information:

• Current location of PacMan,
• Location of and distance to each ghost,
• Location of and distance to each edible ghost,
• Position of the closest uneaten pill, and
• Distance to the nearest intersection from PacMan or

Ghost,
where the metric for calculating distance, including the
“closest” pill, does not indicate Euclid one. The distance
used here is calculated by taking account into the structure
of the maze: In order to calculate the distance on the maze,
the distances between any two points are calculated by using
Dijkstra method in advance.

Moreover, the prepossess can detect if the game play is end
and if the PacMan is caught. Hence, this detection allows us
to use learning methods since auto-replay can be done by
java.awt.robot.

III. REFLECTIVE ACTION MODULE

A. Overview

Reflective action module was previously studied by us in
[12]. In this module, fuzzy logic is used to decide the action
of Ms.PacMan at each time step. The structure of fuzzy rules
is predefined while parameters in the rules are evolved by
(1+1) ES. As a result of evolution, this module acquires
reflective action rules such that PacMan aggressively eats

1Black and White prints, light gray circles

pills until ghosts come close to PacMan. This section briefly
introduces it.

As depicted in Fig. 2, three types of rules are employed
in the reflective action module: Avoidance, Chase, and Go-
Through. These rules are examined in turn according to
the priority as depicted in Fig. 2. The avoidance rules are
examined for each ghost at first. An action is chosen if some
rules are activated. In this case, when activated values of
the avoidance rules are tie, tie-breaker is executed, where
an action is randomly chosen among tied activated rules.
Secondly, the chase rules are examined if no avoidance rule
is activated. The way to examine the chase rules is the same
as the avoidance one. Finally, eat rule is examined. The eat
rule eat is not fuzzy rule. It is designed to eat closet pill. The
following subsections explain avoidance and chase rules.

B. Avoidance

The rule description of “Avoidance” is:
IF a ghost IS close THEN PacMan go to avoiding direc-

tions.
This Fuzzy rule is examined for each ghost. Fig. 3 illus-

trates how this rule works: Suppose that PacMan is now at
an intersection, and Blinky and Pinky are approaching to
PacMan from upper side and lower side, respectively. For
Blinky, the Fuzzy rule “Avoidance” infers that Ms.PacMan
should go down or right. The Fuzzy rule “Avoidance” is also
applied for Pinky so that it recommends that Ms.PacMan
should go up or right. Therefore, as a consequence of these
inference, Fuzzy Systems chooses the action “right.”

The membership function for this rule can be illustrated as
shown in Fig. 4. The x axis denotes the distance from a ghost
to Ms.PacMan. The y axis is corresponding membership
value. The parameters xa

1 and xa
2 are designed by using

Evolutionary Computation in [12].
In the avoidance rule set, another rule set, i.e., “Go

through”, is also examined simultaneously. With only the
fuzzy rule “Avoidance,” PacMan tends not to pass through
intersections if ghost is around there. Thus, a fuzzy rule “Go-
Through” is defined as follows:

IF the distance of Ms.PacMan to the nearest intersection
on the direction of movements is smaller than the distance

Fig. 2. A depiction of the priority of fuzzy rules

49



of a ghost to the intersection THEN Ms.PacMan go through
the intersection.

Therefore, the membership function for the fuzzy rule
“Go-Through” are defined in the Fig. 6. The x axis denotes α
in Fig. 5, the difference of the distances between Ms.PacMan
and the nearest intersection, and between a Ghost and the
intersection. The y axis is corresponding membership value.

C. Chase

The rule description of “Chase” is: IF an edible ghost IS
close THEN PacMan go to the ghost.

The mechanism of this fuzzy rule is similar to the one
of “Avoidance.” However, this rule is only applied to edible
ghosts. This fuzzy rule recommends PacMan to go to the
direction where near edible ghosts exist.

D. Problems in the reflective action module

As described in [12], evolutionary fuzzy systems works
well. However, the resultant rules are reflective one so that
sometimes it causes problems at tie-breaker. Fig. 7 explains
the problem caused by the reflective action module. Suppose
that PacMan is now chased by Blinky. In addition, Pinky
is also approaching to PacMan, but it is too far to activate
the avoidance rule. In this case, the tie-breaker decide an
action either right or left. Obviously, the action right is wrong
choice since Pinky will be able to catch up PacMan. In this
paper, modified tie-breaker using Q-Learning with CMAC
which learns critical situations is proposed. The next section
explain it.

IV. CRITICAL SITUATION LEARNING MODULE

In order to settle problems described in subsection III-D,
critical situation learning module is introduced in this paper.
This module is a modified tie-breaker for avoidance rule sets,
which receives broader information about surrounding ghosts
and power-pills. The module learns critical situation causing
PacMan’s death by means of reinforcement learning. In the
next subsection, reinforcement learning algorithms employed
in this paper, i.e., Q-Learning with CMAC, is explained.
Subsections IV-B and IV-C introduce the definition of states
and how to use learn Q-value in this module, respectively.

A. Q-Learning with CMAC

CMACs have been widely known as function approxi-
mators for Reinforcement Learning Algorithms. They have
been used for control problems with continuous inputs. They
involve multiple overlapping tilings of the state space 2.
Suppose that there are two tilings for given state space. In
CMACs, such tilings are overlapped but they are assigned
different offsets as depicted in Fig. 8. Here, ci(s, a)) denotes
a cell index in tiling i for corresponding state-action pair

2Technically speaking, hash is employed to realize tilings in order to
avoid “the curse of dimensionality.” That is, all the cells are not prepared
in memory.

Bilinky

Pinky

Fig. 3. A depiction of avoidance action

Fig. 4. The membership function of fuzzy rule “Avoidance”

Fig. 5. A depiction of Go-Through action

50



Fig. 6. The membership function of fuzzy rule “Go-Through”

Fig. 7. An example of problems of the reflective action module

(s, a). For each cell, weight value w(ci(s, a)) is associated.
The state action value Q(s, a) is calculated as follows:

Q(s, a) =
l∑
i

w(ci(s, a)),

where l denotes the number of tilings.
Suppose that PacMan takes an action at in a state st at

time step t, and then at time step t + 1, as a result of the
action at, she recognize a new state st+1. The state action
value Q(st, at) is updated as follows:

Q(st, at) ← Q(st, at)+α{r+γ max
a

Q(st+1, a)−Q(st, at)},

where r indicates the amount of reward, α and γ denote the
learning rate and the discount rate, respectively.

Fig. 8. A depiction of tilings in CMAC

B. Definition of States

The tilings of CMAC are individually prepared for each
intersection. That is, states are individually defined at each
intersection, which is denoted by black circles in Fig. 1.
In other words, PacMan refers state-action values only at
the intersections. In corridors, she employs the reflective
action module to survive, which is mentioned in the previous
section. The time step t in the previous subsection does
not correspond to actual time. It is incremented whenever
PacMan reaches one of any intersections.

At each intersection, PacMan perceives the position of
ghosts, and the existence of the power pills. Such information
is mapped into one of cell in CMAC. The size of each cell
is set to be 6 × 6. The size of tiling is set to be 5 × 5
or 6 × 6, where it is varied with the offset of tiling. Three
tilings whose offsets are set to be -2, 0, and 2 are used.
In addition of this, “no show” cell such that corresponding
ghost is either of in the base, in edible state, or out of scope,
is added to each of tilings. The scope is defined for each
intersection. As delineated in Fig. fig:stateInputs, the position
is perceived to PacMan if the distance on map between a
ghost and corresponding intersection is less than 16. For
instance, two scopes for certain two intersections indicated
by black circles are depicted in this figure: dashed (green)
line and solid (red) line. In the case of intersection around
the center of the map, the area surrounded by dashed line-
segments means that PacMan perceive the position of any
ghosts if they are in the area. Otherwise, the “no show” cell is
activated. Therefore, all the cells in the tiling are not always
used: In the case of dashed lines, a fifth cells are not be used.
On the other hand, in the case of solid lines, more than two
third cells are not used.

The key of hash is calculated as follows: cb
l , cp

l , ci
l , and

cs
l denote cell ID for each ghost in the case of tiling l. Note

that the “no show” cell is also assigned an ID. pp takes 0 or
1, which indicates if power pill is in the scope. The key of
hash kl for the tiling l is defined as

kl = (((cb
l nID + cp

l )nID + ci
l)nID + cs

l ) · 2 + pp,

where nID denotes the number of IDs in the tilings, includ-
ing the “no show” cell. The hash is prepared for each tiling,
and returns a vector whose element corresponds the state-
action value for each action.

C. Utilization of Q-value

All the Q-value is initialized to 0. Only negative reward,
i.e., punishment, is given to PacMan if she died. Thus,
as a consequence of learning, negative Q-values mean that
corresponding action may cause to her death.

Therefore, at tie-breaking for the same activation values in
avoidance rule sets, the action which has higher Q-Value is
chosen. If there are actions with the same activation values
and the same Q-values, then an action is randomly chosen
among such actions.

51



Fig. 9. Input areas for CMAC

V. EXPERIMENTAL RESULTS

The proposed method, i.e., critical situation learning mech-
anism by using Q-learning with CMAC, is examined on
Ms.PacMan game. The reward (punishment) is set to be -10.
This is given to PacMan if she died. The learning parameters
for Q-learning α and γ are set to 0.3 and 0.9, respectively.
10 runs are examined in experiments. Each run is composed
of 200 games.

Figs. 10 and 11 show the experimental results on the
changes of the moving average of scores and the number
of loops, respectively. The number of loops means how
long PacMan was able to survive. The plotted line is mov-
ing average over last 20 games. Moreover, these lines are
averaged over 10 runs. These graphs denotes experiments
during learning period of Q-Learning with CMAC. In this
paper, the reflective action module is not evolved. We employ
the result in the previous work in [12]. The horizontal line
in each graph denotes the corresponding performance of
the reflective action module only. Score is improved during
learning period by using the critical situation learning mod-
ule. Sometime, it is worse than the reflective action module
only. The number of loops has a greater tendency to be worse
than original one than score. One reason of this is that the
score and the number of loops in the case of Ms.PacMan
are significantly affected by the movements of ghosts. The
proposed method tries to memorize past critical situations so
that there is no way to infer for unseen situations.

Fig. 12 shows the number of opportunities that critical
situation learning mechanism affects their actions. That is,
this affection means that 1) there are a few actions suggested

 5100

 5200

 5300

 5400

 5500

 5600

 5700

 5800

2001501005020

S
co

re

No. Games

Proposed Method
without CMAC

Fig. 10. The changes of the moving average of scores. The plotted line is
averaged value over 10 runs

 1650

 1700

 1750

 1800

 1850

2001501005020

N
o.

 L
oo

ps

No. Games

Proposed Method
without CMAC

Fig. 11. The changes of the moving average of the number of loops. The
plotted line is averaged value over 10 runs

by the avoidance rules in the reflective action module, and
2) by referring to Q-values , critical actions are not chosen.
The leftest point in the graph indicate the average of the first
20 games. Remarkable point here is that even if the first 20
runs, critical situation is detected by the proposed method
less than once but close to once (around 0.9). Another point
is that, around 90 games, the line in the graph is raised. At
the same time, the scores and the number of opportunities in
Figs. 10 and 11 also shows in rising trend.

Table I shows the performances by initial PacMan, i.e.,
the reflective action module only, and by the proposed
method at 50, 100, 150, and 200 games. These results are
acquired by additional runs of these separate from the runs
during learning period. These results are averaged one over
50 games. Unfortunately, these data shows no statistical
significant difference due to variances of these data are quite
big. Such performance strongly depend on the movements of
ghosts. However, these data shows similar tendency to graphs
in Figs. 10, 11, and 12, except for that the number of games is
150. Another reason why the proposed methods at 200 games

52



 0

 2

 4

 6

 8

 10

2001501005020

N
o.

 O
pp

or
tu

ni
tie

s

No. Games

Proposed Method

Fig. 12. The changes of the moving average of the number of opportunities
that critical situation learning mechanism affects actions. The plotted line
is averaged value over 10 runs

TABLE I
THE PERFORMANCE BY INITIAL PACMAN AND BY THE PROPOSED

METHOD AT 50, 100, 150, AND 200 GAMES

No. Games initial 50 100 150 200
Scores 5270 5739 5533 5515 5037
Loops 1715 1780 1731 1838 1648

Opportunities n/a 1.8 7.6 7.7 8.8

and at 150 games during learning period are not so good is
due to the search time of the hash in CMAC. That is, the
search time is too much so that it causes the delay to control
PacMan. Although we cannot show well such phenomena as
data, we were able to recognize such delay by our eyes. Table
II summarizes the total file size of weight data for CMAC. As
you can see, as increasing the number of games, the total file
size is also growing. In the case of Table I, Q-Learning with
CMAC is not carried out. Thus, CMAC is only used for the
reference of Q-values. On the other hand, during learning
period, CMAC is used not only for the reference but also
the update of Q-values. Hence, the number of accesses to
the hash in CMAC during learning period is at least double
in the case of Table tab:offlinePerformance.

VI. CONCLUSIONS

In this paper, a critical situation learning mechanism by
using Q-learning with CMAC was proposed. This mecha-
nism learns which situation and action pairs cause to be
caught by ghosts by using reinforcement learning scheme.
This approach is promising in the sense that the proposed
method can capture critical situations well. However, as a
consequence of the large amount of memory required by
CMAC, real time responses tend to be lost. This problem

TABLE II
THE TOTAL FILE SIZE OF WEIGHTS IN CMAC

No. Games 50 100 150 200
Total File Size (KB) 216.5 360.0 494.3 635.6

must be settled.
One of solution for this could be a combination use of

the proposed method with other function approximator, such
as neural networks, support vector machines, Fuzzy Logic
and so on. The reason why we do not want to discard Q-
learning with CMAC is that the approach is quite effective
way for reinforcement learning (Sutton does not recommend
reinforcement learning with neural networks in FAQ of
his book). Moreover, reinforcement learning is needed to
estimate which situations are critical one. Hence, possible
combination method could be a two-phase method: In the
first phase, learning data is collected, and then, Q-learning
with CMAC is used to estimate off-line which situation is
critical. In the second phase, knowledge transfer from CMAC
to other function approximators is carried out. Weight values
in hash can be used as training instances for such function
approximators. Go back to the first phase with learnt function
approximator. Such phases are iterated until PacMan learns
critical situations well.

REFERENCES

[1] CIG2007 Competitions home page,
http://csapps.essex.ac.uk/cig/2007/index.jsp?page=competitions
.html

[2] FUZZ-IEEE2007 Competitions home page,
http://cswww.essex.ac.uk/staff/lucas/fuzzieee/FuzzyRace.html

[3] CEC2007 Competitions home page,
http://cswww.essex.ac.uk/staff/sml/cec2007/competitions.html

[4] WCCI2008 Competitions home page,
http://www.wcci2008.org/competitions.htm

[5] Simon M. Lucas, Evolving a Neural Network Location Evaluator to
Play Ms. Pac-Man, Proceedings of IEEE Symposium on Computa-
tional Intelligence and Games (2005) pp. 203–210

[6] Simon M. Lucas and Graham Kendall, Evolutionary Computation and
Games, IEEE Computational Intelligence Magazine (2006) Vol. 1,
pp. 10–18

[7] Julian Togelius, Simon M. Lucas, and Renzo de Nardi, Computational
Intelligence in Racing Games, Advanced Intelligent Paradigms in
Computer Games, Norio Baba, Lakhmi C. Jain, Hisashi Handa ed-
itors, Springer Series on Studies in Computational Intelligence (2007)
Vol. 71, pp. 39–69

[8] The Handbook of Fuzzy Systems and Soft Computing, Kyoritsu (1999,
in Japanese)

[9] Evolutionary Computation 1: Basic Algorithms and Operators, Thomas
Baeck, D.B Fogel, Z Michalewicz Editors, IOP press (2000)

[10] Marcus Gallagher and Amanda Ryan, Learning to Play Pac-Man: An
Evolutionary, Rule-based Approach, Proceedings of the 20003 IEEE
Congress on Evolutionary Computation (CEC), (2003) pp 2462–2469

[11] Marcus Gallagher and Mark Ledwich, Evolving Pac-Man Players: Can
We Learn from Raw Input?, Proceedings of the 2007 IEEE Symposium
on Computational Intelligence and Games (2007) pp. 282–287

[12] Hisashi Handa and Maiko Isozaki, Evolutionary Fuzzy Systems for
Generating Better Ms.PacMan Players, Proceedings of the 2008 Inter-
national Conference on Fuzzy Systems (FUZZ-IEEE08 in WCCI08,
2008) pp. 2182-2185

[13] I. Szita and A. Lorincz, ‘Learning to Play Using Low-Complexity
Rule-Based Policies: Illustrations through Ms. Pac-Man, Vol. 30
(2007) pp. 659-684

[14] Y. Hirashima, Selective Generalization of CMAC for Q-Learning and
its Application to Layout Planning of Chemical Plants, Proceedings of
2007 International Conference on Machine Learning and Cybernetics,
Vol. 4 (2007) pp. 2071-2076

[15] R.S. Sutton, Generalization in reinforcement learning: Successful
examples using sparse coarse coding, Advances in Neural Information
Processing Systems 8 (1996) pp. 1038–1044

[16] Reinforcement Learning FAQ,
http://www.cs.ualberta.ca/ sutton/RL-FAQ.html

53




