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1 How to use the file “Reversible World of CAs.zip”
The file “Reversible World of CAs.zip” contains rule files and pattern files that are executable on
the general purpose cellular automaton simulator Golly [10]. These files are for simulating various
reversible cellular automata (RCAs), and other reversible computing systems given in the following
book Reversible World of Cellular Automata. The files will greatly help readers to understand the
contents of the book. The zip file also contains the file “ Solutions for selected exercises.pdf” that
describes solutions for exercise problems given in the book.

K. Morita: Reversible World of Cellular Automata
— Fantastic Phenomena and Computing in Artificial Reversible Universe,
World Scientific Publishing, Singapore (2024).
https://doi.org/10.1142/13516

Golly [10] is an excellent cellular automaton simulator developed by A. Trevorrow, T. Rokicki,
T. Hutton et al. It can deal with very large patterns of cellular automata, and its simulation speed
is quite fast. One can easily see fantastic evolution processes of RCAs and related systems by the
following procedure.

1. Download the Golly system from https://golly.sourceforge.io/
2. Install the system on your computer.
3. Put the file “Reversible World of CAs.zip” in the “Patters” folder of Golly.
4. Start the Golly simulator.
5. Select the zip file in the “Patterns” folder from Golly, and access any pattern file (a file with .rle

or .mc) in the zip file.

Note that readers can know the usage of Golly by accessing its help menu.

Files contained in “Reversible World of CAs.zip”
Many files are contained in the zip file “Reversible World of CAs.zip”. Files having .rle or .mc are
pattern files for simulating CAs and other computing systems. They describe initial configurations
of CAs and other systems. Files having .rule are rule files. They describe local functions of CAs or
rules for simulating other systems. The rule files are automatically installed by Golly when users have
selected the zip file.

∗Currently Professor Emeritus of Hiroshima University, morita.rcomp@gmail.com
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There are 96 pattern files in total. In them, 78 files have the file names that begin with “Ch ”,
while 18 files have the names that begin with “Cx Exercise ”. The former ones are for simulating
CAs and other systems explained in the text of the book Reversible World of Cellular Automata. The
latter ones are given as solutions of the exercise problems in the book. A file name of a pattern file
contains chapter and section numbers, as well as a short title of the pattern, after the prefix “Ch ” or
“Cx Exercise ”. A more detailed descriptions of the 96 pattern files are given in Section 2 below.

2 List of pattern files
Short explanations for the 96 pattern files contained in the zip file are given below. These files are
for simulating reversible square partitioned cellular automata (SPCAs), reversible triangular parti-
tioned cellular automata (TPCAs), reversible Turing machines (RTMs), reversible counter machines
(RCMs), and circuits composed of reversible logic elements with memory (RLEMs). Although Golly
is a CA simulator, it is also used for simulating computing models other than CAs. In particular, it is
very useful to simulate very large RLEM-circuits, as well as very large configurations of CAs, for a
huge number of steps.

The above computing models are explained in Section 3. However, readers are recommended to
run the pattern files on Golly first, and observe their evolution processes. By this, one can roughly
understand how the computing models work even if he/she does not read Section 3.

Note that some of these patterns require millions (or even billions) of steps to obtain results. Thus
the simulation speed of Golly must be accelerated by pressing the “+” key (slow-down is by the “−”
key). Recommended speed (e.g., step = 8m – 8n, where 8m and 8n are the first and the last speed) can
be indicated by pressing the button “ i ” (Show pattern information) of Golly.

Cover Page
• Ch 0 Cover picture generated by ESPCA-0925bf.rle

Generates fascinating patterns like the cover picture of the book by the reversible ESPCA-0925bf.

Chapter 1. Cellular Automaton as an Artificial Digital World
• Ch 1 1 (1) Fredkin CA CheshireCat.rle

Shows the Fredkin’s CA in which any initial pattern self-replicates.
• Ch 1 1 (2) Game of Life CheshireCat.rle

Shows the evolution process of the Cheshire Cat pattern in the Game of Life (GoL).

Chapter 2. Elementary Partitioned Cellular Automata
• Ch 2 1 (1) ESPCA-09458f three kinds of confs.rle

Gives pre-periodic, pre-space-moving, and diameter-growing patterns in the irreversible ESPCA-
09458f.

• Ch 2 1 (2) ESPCA-0945df three kinds of confs.rle
Gives periodic, space-moving, and diameter-growing patterns in the reversible ESPCA-0945df.

• Ch 2 2 (1) ETPCA-0347 three kinds of confs.rle
Gives periodic, space-moving, and diameter-growing patterns in the reversible ETPCA-0347.

• Ch 2 2 (2) ETPCA-0340 three kinds of confs.rle
Gives pre-periodic, pre-space-moving, and diameter-growing patterns in the irreversible ETPCA-
0340.

• Cx Exercise 2 4 ESPCA-0945df.rle
Shows evolution processes of two patterns, which are periodic and diameter-growing.

• Cx Exercise 2 5 ETPCA 0347.rle
Shows evolution processes of two patterns, which are periodic and diameter-growing.
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Chapter 3. Time-Reversal Symmetry in Reversible PCA
• Ch 3 2 (1) ESPCA-01caef T-symmetry.rle

Gives a diagram that shows T-symmetry of ESPCA-01caef under the involution Hrev◦Hrefl.
• Ch 3 3 (1) ETPCA-0527 T-symmetry.rle

Shows a T-symmetric evolution in ETPCA-0527.
• Ch 3 3 (2) ETPCA-0347 T-symmetry.rle

Gives a diagram that shows T-symmetry of ETPCA-0347 under Hrev◦Hrefl.
• Ch 3 3 (3) ETPCA-0347 Implosion and explosion.rle

Shows a T-symmetric evolution in ETPCA-0347. We can see that explosions occur in both positive
and negative time directions.

• Cx Exercise 3 2 ESPCA-073a2f T-symmetry.rle
Shows a T-symmetric evolution in ESPCA-073a2f.

• Cx Exercise 3 2 ESPCA-08cadf Hrev.rle
Shows that ESPCA-08cadf is used to perform the involution Hrev.

• Cx Exercise 3 3 ESPCA-07ca2f T-symmetry.rle
Shows a T-symmetric evolution in ESPCA-07ca2f.

Chapter 4. Universal Systems of Reversible Computing
• Ch 4 1 (1) RTM examples.rle

Gives three examples of RTMs: Tparity, Tpower and Tsquare.
• Ch 4 1 (2) RTM prime.rle

Gives an example of an RTM: Tprime.
• Ch 4 2 (1) RCM examples.rle

Gives examples of RCMs in the quadruple form: Mtwice and Mexp, and examples of RCMs in the
program form: Mmove, Mtwice and Mexp.

• Ch 4 3 (1) RSM by RE and RLEM 4-31.rle
Shows how to compose a reversible sequential machine (RSM) out of rotary elements (REs) and
RLEM 4-31.

• Ch 4 3 (2) RE by RLEMs 2-3 and 2-4.rle
Shows how to compose an RE by RLEMs 2-3 and 2-4.

• Ch 4 3 (3) RTM parity by RE.rle
Shows how to compose an RTM Tparity out of REs, and how it is simulated.

• Ch 4 3 (4) RTM power by RE.rle
Shows how to compose an RTM Tpower out of REs, and how it is simulated.

• Ch 4 3 (5) RTM square by RE.rle
Shows how to compose an RTM Tsquare out of REs, and how it is simulated.

• Ch 4 3 (6) RTM prime by RE.rle
Shows how to compose an RTM Tprime out of REs, and how it is simulated.

• Ch 4 3 (7) RTM parity by RLEM 4-31.rle
Shows how to compose an RTM Tparity out of RLEM 4-31, and how it is simulated.

• Ch 4 3 (8) RTM power by RLEM 4-31.rle
Shows how to compose an RTM Tpower out of RLEM 4-31, and how it is simulated.

• Cx Exercise 4 08 RTMs.rle
Gives a design of two RTMs Tadd and Tmult.

• Cx Exercise 4 09 RCMs.rle
Gives a design of RCM Mhalf in the quadruple form.

• Cx Exercise 4 10 RLEMs.rle
Gives composing methods of several RLEMs by other RLEMs, and composing methods of RTMs
Tadd and Tmult out of REs.
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Chapter 5. Fantastic Phenomena in Reversible PCAs
• Ch 5 2 1 1 (1) ESPCA-01c5ef periodic.rle

Gives examples of periodic patterns in ESPCA-01c5ef.
• Ch 5 2 1 2 (1) ESPCA-01753f periodic.rle

Gives examples of periodic patterns in ESPCA-01753f.
• Ch 5 2 1 2 (2) ESPCA-0945df periodic.rle

Gives examples of periodic patterns in ESPCA-0945df.
• Ch 5 2 2 1 (1) ETPCA-0157 periodic.rle

Gives examples of periodic patterns in ETPCA-0157.
• Ch 5 2 2 1 (2) ETPCA-0137 periodic.rle

Gives examples of periodic patterns in ETPCA-0137.
• Ch 5 2 2 2 (1) ETPCA-0347 periodicr.rle

Gives examples of periodic patterns in ETPCA-0347.
• Ch 5 3 1 1 (1) ESPCA-01caef space-moving.rle

Gives examples of space-moving patterns in ESPCA-01caef.
• Ch 5 3 1 1 (2) ESPCA-016a7f space-moving.rle

Gives examples of space-moving patterns in ESPCA-016a7f.
• Ch 5 5 1 (1) ESPCA-09457f glider gun.rle

Gives a 4-way glider absorber and gun in ESPCA-09457f.
• Ch 5 5 1 (2) ESPCA-098aef glider gun.rle

Gives a 4-way glider absorber and gun in ESPCA-098aef.
• Ch 5 5 2 (1) ETPCA-0347 3w glider gun.rle

Gives a 3-way glider absorber and gun in ETPCA-0347.
• Ch 5 5 2 (2) ETPCA-0347 6w glider gun.rle

Gives a 6-way glider gun that appears from a disordered pattern in ETPCA-0347.
• Ch 5 6 1 (1) ESPCA-0f00f0 Linear Irrev Self-repl.rle

Shows self-replication of a pattern in the irreversible linear ESPCA-0f00f0.
• Ch 5 6 1 (2) ESPCA-05f050 Linear Irrev Self-repl.rle

Shows self-replication of a pattern in the irreversible linear ESPCA-05f050.
• Ch 5 6 1 (3) ESPCA-095f60 Linear Irrev Self-repl.rle

Shows self-replication of a pattern in the irreversible linear ESPCA-095f60.
• Ch 5 6 1 (4) ESPCA-0af0a0 Linear Irrev Self-repl.rle

Shows self-replication of a pattern in the irreversible linear ESPCA-0af0a0.
• Ch 5 6 1 (5) ESPCA-03afc0 Linear Irrev Carpet.rle

Generates carpet-like patterns in the irreversible linear ESPCA-03afc0.
• Ch 5 6 1 (6) ESPCA-0d3a8f Linear Rev Fractal.rle

Generates fractal-like patterns in the reversible linear ESPCA-0d3a8f.
• Ch 5 6 1 (7) ESPCA-07ca2f Linear Rev Fractal.rle

Generates fractal-like patterns in the reversible linear ESPCA-07ca2f.
• Ch 5 6 2 (1) ESPCA-0dca8f Fractal.rle

Generates fractal-like patterns in the reversible ESPCA-0dca8f.
• Ch 5 6 2 (2) ESPCA-0925bf Disk.rle

Generates disk-like patterns in the reversible ESPCA-0925bf.
• Ch 5 6 2 (3) ESPCA-01eacf Disk.rle

Generates disk-like patterns in the reversible ESPCA-01eacf.
• Ch 5 6 3 (1) ETPCA-0707 Linear Irrev Self-repl.rle

Shows self-replication of a pattern in the irreversible linear ETPCA-0707.
• Ch 5 6 3 (2) ETPCA-0330 Linear Irrev Snowflake.rle

Generates snowflake-like patterns in the irreversible linear ETPCA-0330.
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• Ch 5 6 3 (3) ETPCA-0330 Linear Irrev Self-repl.rle
Shows self-replication of a pattern in the irreversible linear ETPCA-0330.

• Ch 5 6 3 (4) ETPCA-0550 Linear Irrev Fractal.rle
Generates fractal-like patterns in the irreversible linear ETPCA-0550.

• Cx Exercise 5 4 ETPCA-0347 12w glider gun.rle
Gives a 12-way glider gun in ETPCA-0347.

Chapter 6. Making Reversible Turing Machines in Reversible ESPCAs
• Ch 6 1 (1) ESPCA-01c5ef marker shifting.rle

Shows that a position marker is shifted by a glider-12 in ESPCA-01c5ef.
• Ch 6 1 (2) ESPCA-01c5ef RLEMs 2-3 2-4 3-10.rle

Shows implementation methods of RLEMs 2-3, 2-4 and 3-10 in ESPCA-01c5ef.
• Ch 6 1 (3) ESPCA-01c5ef RE.rle

Shows an implementation method of an RE in ESPCA-01c5ef.
• Ch 6 1 (4) ESPCA-01c5ef RTM parity by RE.mc

Shows a composing method of the RTM Tparity out of REs in ESPCA-01c5ef.
• Ch 6 2 (1) ESPCA-01caef RLEM 2-2.rle

Shows an implementation method of RLEM 2-2 in ESPCA-01caef.
• Ch 6 2 (2) ESPCA-01caef RE.rle

Shows an implementation method of an RE in ESPCA-01caef.
• Ch 6 2 (3) ESPCA-01caef RTM square by RE.mc

Shows a composing method of the RTM Tsquare out of REs in ESPCA-01caef.
• Ch 6 3 (1) ESPCA-02c5df I-gate and inv I-gate.rle

Shows implementation methods of an interaction gate (I-gate) and its inverse (I−1-gate) in ESPCA-
02c5df.

• Ch 6 3 (2) ESPCA-02c5df RE.rle
Shows an implementation method of an RE using I-gates and I−1-gates in ESPCA-02c5df.

• Ch 6 3 (3) ESPCA-02c5df RTM prime by RE.mc
Shows a composing method of the RTM Tprime out of REs in ESPCA-02c5df.

• Ch 6 4 (1) ESPCA-02c5bf RE.rle
Shows an implementation method of an RE using I-gates and I−1-gates in ESPCA-02c5bf.

• Ch 6 4 (2) ESPCA-02c5bf RTM power by RE.mc
Shows a composing method of the RTM Tpower out of REs in ESPCA-02c5bf.

• Ch 6 4 (3) ESPCA-02c5bf Metacell of 01caef.mc
Shows a composing method of metacells that simulate ESPCA-01caef out of REs in ESPCA-
02c5bf.

• Cx Exercise 6 6 ESPCA-01caef RTM square by RE.mc
Shows a pattern of Tsquare that has a different input value from that of
Ch 6 2 (3) ESPCA-01caef RTM square by RE.mc.

• Cx Exercise 6 7 ESPCA-01c5ef RLEM 2-2.rle
Shows an implementation method of RLEM 2-2 in ESPCA-01c5ef.

• Cx Exercise 6 8 ESPCA-01caef RLEM 2-3.rle
Shows an implementation method of RLEM 2-3 in ESPCA-01caef.

• Cx Exercise 6 9 ESPCA-02c5df RLEM 2-2 2-3.rle
Shows implementation methods of RLEMs 2-2 and 2-3 in ESPCA-02c5df.
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Chapter 7. Making Reversible Turing Machines in Reversible ETPCAs
• Ch 7 1 (1) ETPCA-0347 marker shifting.rle

Shows that a position marker is shifted by a glider-6 in ETPCA-0347.
• Ch 7 1 (2) ETPCA-0347 RLEM 4-31.rle

Shows an implementation method of RLEM 4-31 in ETPCA-0347.
• Ch 7 1 (3) ETPCA-0347 RLEM 2-17.rle

Shows an implementation method of RLEM 2-17 in ETPCA-0347.
• Ch 7 1 (4) ETPCA-0347 RTM parity by 4-31.mc

Shows a composing method of the RTM Tparity out of RLEM 4-31 in ETPCA-0347.
• Ch 7 1 (5) ETPCA-0347 RTM power by 4-31.mc

Shows a composing method of the RTM Tpower out of RLEM 4-31 in ETPCA-0347.
• Ch 7 1 (6) ETPCA-0347 RTM parity by 2-17.mc

Shows a composing method of the RTM Tparity out of RLEM 2-17 in ETPCA-0347.
• Ch 7 1 (7) ETPCA-0347 glider gun and absorber.rle

Shows a composing method of glider gun and absorber in ETPCA-0347.
• Ch 7 2 (1) ETPCA-034z RLEM 2-2.rle

Shows an implementation method of RLEM 2-2 in the partial ETPCA-034z.
• Ch 7 3 (1) ETPCA-0157 flip flop.rle

Shows an implementation method of a flip-flop module in ETPCA-0157.
• Ch 7 3 (2) ETPCA-0157 RLEM 4-31.rle

Shows an implementation method of RLEM 4-31 in ETPCA-0157.
• Ch 7 3 (3) ETPCA-0157 RTM parity by 4-31.mc

Shows a composing method of the RTM Tparity out of RLEM 4-31 i in ETPCA-0157.
• Ch 7 4 (1) ETPCA-013z flip flop.rle

Shows an implementation method of a flip-flop module in the partial ETPCA-013z.
• Ch 7 4 (2) ETPCA-013z RLEM 4 31.rle

Shows an implementation method of LREM 4-31 in the partial ETPCA-013z.
• Ch 7 4 (3) ETPCA-013z RTM parity by 4-31.mc

Shows a composing method of the RTM Tparity out of RLEM 4-31 in the partial ETPCA-013z.
• Cx Exercise 7 5 ETPCA-0347 RLEM 2-2.rle

Shows an implementation method of RLEM 2-2 in ETPCA-0347.

Chapter 8. Making Reversible Counter Machines in a Reversible SPCA
• Ch 8 (1) SPCA-81 P3 basic elements.rle

Shows five kinds of basic elements for composing RCMs in the 81-state reversible SPCA P3.
• Ch 8 (2) SPCA-81 P3 RCM twice.rle

Shows a composing method of the RCM Mtwice in the SPCA P3.
• Ch 8 (3) SPCA-81 P3 RCM exp.rle

Shows a composing method of the RCM Mexp and its inverse in the SPCA P3.
• Cx Exercise 8 5 P3 B-turn.rle

Shows an implementation method of a backward-turn module by other modules in the SPCA P3.
• Cx Exercise 8 6 P3 Slow space moving.rle

Shows an implementation method of slowly space-moving patterns in the SPCA P3.
• Cx Exercise 8 7 P3 RCM half.rle

Shows a composing method of the RCM Mhalf in the SPCA P3.

Chapter 9. Open Problems and Future Research Problems
• Cx Exercise 9 1 P3 RCM loop.rle

Shows a composing method of a periodic pattern in the 81-state reversible SPCA P3 such that the
ratio (maximum diameter)/(minimum diameter) is very large.
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3 Frameworks of reversible CAs and other reversible systems
In this section, we briefly explain the frameworks of the CAs and other reversible computing models
that are dealt with in the zip file. For more detailed explanations on these models, see the book
Reversible World of Cellular Automata or [6].

3.1 Partitioned cellular automata (PCAs)
A partitioned cellular automaton (PCA) was first proposed in [7] to design reversible CAs. Here, we
use 4-neighbor square partitioned cellular automata (SPCAs), and 3-neighbor triangular partitioned
cellular automata (TPCAs).

3.1.1 4-neighbor square partitioned cellular automata (SPCAs)

In a PCA, each cell is divided into several parts, whose number is equal to the number of neighbor
cells. A 2-dimensional 4-neighbor SPCA consists of an infinite number of square cells having four
parts. Thus, its cellular space is as shown in Fig. 1 (a). Each part of a cell has its own state set.
Hence, the set of states of one cell is the Cartesian product of the sets of states of the four parts.
In an SPCA, a cell changes its state depending on the top part of the south-neighbor cell, the right
part of the west cell, the bottom part of the north cell, and the left part of the east cell as shown in
Fig. 1 (b). A local function f of a 4-neighbor SPCA is given by a set of local transition rules of the
form f (t,r,b, l) = (t ′,r′,b′, l′) (Fig. 1 (b)).

t

r

b

l
t′
r′

b′
l′

(a) (b)

Figure 1: (a) Cellular space of a 4-neighbour SPCA, and (b) a local transition rule that represents
f (t,r,b, l) = (t ′,r′,b′, l′).

Applying the local function f to all the cells simultaneously, a global function F is obtained. By
the global function, configurations (i.e., a state of the whole cellular space) evolve. If the global
function is injective, then the PCA is called a reversible PCA. It is known that, in PCAs, the global
function is injective, if and only if the local function is injective [6, 7]. Therefore, reversible CAs can
be easily obtained by using the framework of PCAs.

An elementary SPCA (ESPCA) is the simplest subclass of SPCAs such that each part has the state
set {0,1} and the local function is rotation symmetric. Hence, a cell has 16 states. Since it is rotation
symmetric, its local function is described by only six local transition rules. Figure 2 shows an example
of a local function of a particular ESPCA defined by six local transition rules. The ESPCA given by
Fig. 2 has the 6-digit hexadecimal identification number 01caef, which is obtained by reading the
right-hand sides of the local transition rules as binary numbers.
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0 1 c

a e f

Figure 2: Six local transition rules that define the local function of ESPCA-01caef. Here, the state 0
and 1 of each part of a cell is represented by a blank and a particle (•).

We can see that there are 65,536 ESPCAs in total as shown in Fig. 3. An ESPCA with the
identification number uvwxyz is denoted by ESPCA-uvwxyz. Its local and global functions are also
denoted by fuvwxyz and Fuvwxyz, respectively.

u :
0 f

v :
0 1 2 3 4 5 6 7 8 9 a b c d e f

w :
0 1 2 3 4 5 6 7 8 9 a b c d e f

x :
0 5 a f

y :

0 1 2 3 4 5 6 7 8 9 a b c d e f

z :
0 f

Figure 3: Expressing an ESPCA by a 6-digit hexadecimal identification number uvwxyz. Vertical
bars indicate alternatives of the right-hand side of each local transition rule.

Remarks. When simulating an ESPCA in Golly, the states 0, . . . , f of a cell are represented by the
states 0, . . . ,15 in the Golly system. However, we use several additional states in Golly, which have
the numbers starting from 16. These additional states are used to write “comments” in the cellular
space. If complex objects, such as large logic elements or computing systems, are simulated in an
ESPCA, it often becomes very difficult to recognize the states of the objects. In such a case, the
additional states are used for indicating the macroscopic states of the objects. Of course, additional
states must be placed so that they do not affect the operations of the original 16 states.

Also note that we use some different colors for the cell’s states 0, . . . , f to obtain a visual effect. By
this, particles also have different colors. However, of course, particles (state 1’s) are the same state.

3.1.2 3-neighbor triangular partitioned cellular automata (TPCAs)

A 3-neighbor triangular partitioned cellular automaton (TPCA) is a PCA whose cell is triangular and
is divided into three parts. The cellular space of a TPCA is shown in Fig 4 (a). Its local transition
rule f (l,b,r) = (l′,b′,r′) is depicted by Fig. 4 (b). Though all the cells are identical in their logical
operations, there are two kinds of directions, i.e., upward and downward. Therefore, neighbor cells
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of an up-triangle cell are different from those of a down-triangle cell. To up-triangle cells, the local
transition rule shown in Fig. 4 (b) is applied. To down-triangle cells, the rule obtained by rotating
both sides of Fig. 4 (b) by 180◦ is applied.

l

b

r l′

b′
r′

(a) (b)

Figure 4: (a) Cellular space of a 3-neighbour TPCA, and (b) a local transition rule that represents
f (l,b,r) = (l′,b′,r′).

As in the case of an ESPCA, an elementary TPCA (ETPCA) is the simplest subclass of TPCAs
such that each part has the state set {0,1} and the local function is rotation symmetric. Hence, a cell
has 8 states. Since it is rotation symmetric, its local function is described by only four local transition
rules. Figure 5 shows an example of a local function of a particular ETPCA defined by four local
transition rules. The ETPCA given by Fig. 5 has the 4-digit octal identification number 0347, which
is obtained by reading the right-hand sides of the local transition rules as binary numbers.

0 3 4 7

Figure 5: Four local transition rules that define the local function of ETPCA-0347.

There are 256 ETPCAs in total as shown in Fig. 6. An ETPCA with the identification number
wxyz is denoted by ETPCA-wxyz. Its local and global functions are also denoted by fwxyz and Fwxyz,
respectively.

w :

0 7

x :

0 1 2 3 4 5 6 7

y :

0 1 2 3 4 5 6 7

z :

0 7

Figure 6: Expressing an ETPCA by a 4-digit octal identification number wxyz.

Remarks. In Golly, TPCAs are simulated on a square lattice. Figure 7 shows the x-y coordinates of
each cell. Here, we assume the following: If x+ y is even (odd, respectively), then the cell at (x,y) is
an up-triangle (down-triangle) cell.

A cell of an ETPCA has 8 states. However, we use 15 states for simulating it in Golly. The
state 0 (i.e., the blank state) of both up-triangle and down-triangle cells of an ETPCA is represented
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by 0 in Golly. The states 1, . . . ,7 of an up-triangle cell of an ETPCA are represented by 1, . . . ,7 in
Golly, respectively. On the other hand, the states 1, . . . ,7 of a down-triangle cell of an ETPCA are
represented by 8, . . . ,14 in Golly, respectively. Therefore, if x+y is even (odd, respectively), then the
cell at (x,y) must have a state in {0,1, . . . ,7} ({0,8, . . . ,14}) in Golly. Otherwise, it is not correctly
simulated.

As in the case of SPCAs, we use some additional states starting from 15. They are for writing
comments or indicating macroscopic states of large objects in the cellular space of Golly.

x−3 x−2 x−1 x x+1 x+2 x+3

y+1

y

y−1

(x−2,
y+1)

(x,
y+1)

(x+2,
y+1)

(x−3,
y+1)

(x−1,
y+1)

(x+1,
y+1)

(x+3,
y+1)

(x−3,
y)

(x−1,
y)

(x+1,
y)

(x+3,
y)

(x−2,
y)

(x, y) (x+2,
y)

(x−2,
y−1)

(x,
y−1)

(x+2,
y−1)

(x−3,
y−1)

(x−1,
y−1)

(x+1,
y−1)

(x+3,
y−1)

Figure 7: The x-y coordinates in the cellular space of TPCA. If x+ y is even, the cell at (x,y) is an
up-triangle cell.

3.2 Reversible Turing machines (RTMs)
A one-tape Turing machine (TM) consists of a finite control, a read-write head, and a two-way infinite
tape divided into squares in which symbols are written as shown in Fig. 8.

Tape

Head

Finite controlState
q

s0 s0 s1 s2 · · · sn s0 s0

Figure 8: One-tape Turing machine (TM).

Movement of a TM is specified by a set of quintuples as in the following definition.

Definition 1 A one-tape Turing machine (TM) is defined by

T = (Q,S,q0,F,s0,δ ),

where Q is a non-empty finite set of states, S is a non-empty finite set of tape symbols, q0 is an initial
state (q0 ∈ Q), F is a set of final states (F ⊆ Q), and s0 is a special blank symbol (s0 ∈ S). Here, δ

is a move relation, which is a subset of (Q×S×S×{L,N,R}×Q). The symbols “L”, “N”, and “R”
are shift directions of the head, which stand for “left-shift”, “no-shift”, and “right-shift”, respectively.
Each element of δ is a quintuple of the form [p,s,s′,d,q], which is called a rule of T . It means if T
reads the symbol s in the state p, then write s′, shift the head to the direction d, and go to the state q.
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Determinism and reversibility of a TM is defined as below.

Definition 2 Let T = (Q,S,q0,F,s0,δ ) be a TM. We call T a deterministic TM, if the following holds
for any pair of distinct quintuples [p1,s1, t1,d1,q1] and [p2,s2, t2,d2,q2] in δ .

(p1 = p2) ⇒ (s1 6= s2)

It means that for any pair of distinct rules, if the present states are the same, then the read symbols are
different.

Here, we consider only deterministic TMs. Therefore, the term “deterministic” is omitted.

Definition 3 Let T = (Q,S,q0,F,s0,δ ) be a TM. We call T a reversible TM (RTM), if the following
holds for any pair of distinct quintuples [p1,s1, t1,d1,q1] and [p2,s2, t2,d2,q2] in δ .

(q1 = q2) ⇒ (d1 = d2 ∧ t1 6= t2)

It means that for any pair of distinct rules, if the next states are the same, then the shift directions are
the same, and the written symbols are different.

It is known that any irreversible TM is simulated by a reversible TM that produce no garbage
information when it halts [1]. Therefore, the class of RTMs is computationally universal.

Example 1 An RTM Tparity defined below is a very simple example.

Tparity = (Qparity,{0,1},q0,{qa},0,δparity)

Here, Qparity = {q0,q1,q2,qa,qr}, and δparity are given below.

δparity = { [q0,0,1,R,q1], [q1,0,1,L,qa], [q1,1,0,R,q2], [q2,0,1,L,qr], [q2,1,0,R,q1] }

It is easy to see that Tparity is reversible. Consider the pair of rules [q0,0,1,R,q1] and [q2,1,0,R,q1].
The next states in these rules are the same (i.e., q1). We can see the shift directions in them are the
same (i.e., R), and the written symbols are different (i.e., 1 and 0). Thus the pair satisfies the reversibil-
ity condition in Definition 3. No other pair of distinct rules have the same next state. Therefore Tparity
is reversible. Complete computing processes starting from q0011 and q00111 are as follows.

q0011 |−−Tparity
1q111 |−−Tparity

10q21 |−−Tparity
100q1 |−−Tparity

10qa01
q00111 |−−Tparity

1q1111 |−−Tparity
10q211 |−−Tparity

100q11 |−−Tparity
1000q2 |−−Tparity

100qr01

For a given string 01n, the RTM Tparity tests whether n is even or not. If it is even, Tparity halts in the
final (accepting) state qa. Otherwise it halts in qr. All the read symbols are complemented.

Remarks. The file “Reversible World of CAs.zip” contains a rule file and pattern files by which
one-tape 2-symbol Turing machines can be simulated. Note that they can simulate any TM even if
it is irreversible. Therefore, if one has designed a reversible 2-symbol TM, he/she must check its
reversibility by referring Definition 3.
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3.3 Reversible counter machines (RCMs)
A counter machine (CM) is defined as a kind of multi-tape TM as shown in Fig. 9. The tapes are
read-only ones, and one-way infinite. The leftmost square of a tape contains the symbol Z, while all
the other squares contain P. Therefore, if the machine reads the symbol Z (P, respectively), then it
knows the contents of the counter is zero (positive). The increment and decrement operations on a
counter are performed by shifting the corresponding head. There are two kinds of formulations of
CMs. They are the quadruple form, and the program form.

Finite control
State
q

Counter 1

Counter 2

Counter k

·
·
·

Z P P P P P P P · · ·

Z P P P P P P P · · ·

Z P P P P P P P · · ·

Figure 9: k-counter machine (CM(k)).

3.3.1 CM in the quadruple form

Definition 4 A k-counter machine in the quadruple form (CM(k)) is defined by

M = (Q,k,δ ,q0,F).

Here, Q is a non-empty finite set of states. The integer k (∈ {1,2, . . .}) is the number of counters (i.e.,
tapes). Thus M is also called a k-counter machine (CM(k)). The state q0 is an initial state (q0 ∈ Q),
and F is a set of final states (F ⊆ Q). The CM M uses {Z,P} as a tape alphabet. The symbol Z is
written only on the leftmost square of each tape, while the symbol P is written in all other squares.
The item δ is a move relation, which is a subset of (Q×{1, . . . ,k}×{Z,P}×Q)∪ (Q×{1, . . . ,k}×
{−1,0,+1}×Q). The symbols −1, 0 and +1 are decrement, no-change and increment operations
on a counter, respectively. They are performed by left-shift, no-shift and right-shift operations of a
tape head. In the following, −1 and +1 are also indicated by − and + for simplicity. Each element
of δ is a quadruple or a rule of the form [p, i, t,q] ∈ (Q×{1, . . . ,k}×{Z,P}×Q), or [p, i,d,q] ∈
(Q×{1, . . . ,k}×{−,0,+}×Q). The quadruple [p, i, t,q] is called a counter-test rule, and means that
if M is in the state p, and the head of the i-th counter reads the symbol t, then go to the state q. The
quadruple [p, i,d,q] is called a count-up/down rule, and means that if M is in the state p, then shift
the i-th head to the direction d by one square, and go to the state q. We assume each state q f ∈ F is a
halting state, i.e., there is no quadruple of the form [q f , i,x,q] in δ .

Definition 5 Let M = (Q,k,δ ,q0,F) be a CM. M is called a deterministic CM, if the following
condition holds for any pair of distinct quadruples [p1, i1,x1,q1] and [p2, i2,x2,q2] in δ , where D =
{−,0,+}.

(p1 = p2) ⇒ (i1 = i2 ∧ x1 6∈ D ∧ x2 6∈ D ∧ x1 6= x2)

It means that for any pair of distinct rules, if the present states are the same, then they are both
counter-test rules on the same counter, and the read symbols are different.
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In the following, we deals with only deterministic CMs. Therefore the term “deterministic” is
omitted. Reversibility of a CM is defined as follows.

Definition 6 Let M = (Q,k,δ ,q0,F) be a CM. We call M a reversible CM (RCM), if the following
holds for any pair of distinct quadruples [p1, i1,x1,q1] and [p2, i2,x2,q2] in δ .

(q1 = q2) ⇒ (i1 = i2 ∧ x1 6∈ D ∧ x2 6∈ D ∧ x1 6= x2)

It means that for any pair of distinct rules, if the next states are the same, they are both counter-test
rules on the same counter, and the read symbols are different.

It is known that any TM can be simulated by a reversible CM with only two counters [3]. There-
fore, the class of RCMs with two counters is computationally universal.

Example 2 We give a simple example: RCM(2) Mtwice.

Mtwice = ({q0,q1,q2,q3,q4,q5,q6},2,δtwice,q0,{q6})
δtwice = { [q0,2,Z,q1], [q1,1,Z,q6], [q1,1,P,q2], [q2,1,−,q3],

[q3,2,+,q4], [q4,2,+,q5], [q5,2,P,q1] }

It is easy to verify that Mtwice is deterministic and reversible. It computes the function g(x) = 2x. More
precisely, (q0,(x,0)) |−−Mtwice

∗ (q6,(0,2x)) holds for all x ∈ N. For example, the complete computing
process of Mtwice for x = 2 is as follows.

(q0,(2,0)) |−−Mtwice
(q1,(2,0)) |−−Mtwice

(q2,(2,0)) |−−Mtwice
(q3,(1,0)) |−−Mtwice

(q4,(1,1))
|−−Mtwice

(q5,(1,2)) |−−Mtwice
(q1,(1,2)) |−−Mtwice

(q2,(1,2)) |−−Mtwice
(q3,(0,2)) |−−Mtwice

(q4,(0,3))
|−−Mtwice

(q5,(0,4)) |−−Mtwice
(q1,(0,4)) |−−Mtwice

(q6,(0,4))

3.3.2 CM in the program form

A CM in the program form was given in Reversible World of Cellular Automata. It was shown that it
exactly characterizes the class of reversible CMs in the quadruple form.

Instructions for a CM(k) are the following: Ii,Di,Bi(b0,b1),Mi(m0,m1), and H, where i∈{1, . . . ,k},
and b0,b1,m0 and m1 are addresses of instructions. Meanings of the instructions are as follows.

Ii Increment the i-th counter
Di Decrement the i-th counter
Bi(b0,b1) Branch on the contents of the i-th counter, i.e.,

if the i-th counter is 0, then go to b0, else go to b1
Mi(m0,m1) Merge on the contents of the i-th counter, i.e.,

if the i-th counter is 0, then merge from m0, else from m1
H Halt

We give the sets AL,BL
k and ML

k as follows, where L (> 0) is the length of a program.

AL = {0,1, . . . ,L−1}
BL

k = {Bi(b0,b1) | b0,b1 ∈ AL∪{−}, i ∈ {1, . . . ,k}}
ML

k = {Mi(m0,m1) | m0,m1 ∈ AL∪{−}, i ∈ {1, . . . ,k}}

Here, AL is the set of addresses of instructions, where the 0-th instruction has the address 0, and the
last has L−1. The set BL

k (ML
k , respectively) contains all possible Bi(b0,b1) instructions (Mi(m0,m1)

instructions), where − means no address is specified. If bp ∈ AL (mp ∈ AL, respectively) for p ∈
{0,1}, it is called a destination address (source address) of port p of the instruction. The set SL

k of
instructions, which is for a program of length L of CM(k), is as follows.

SL
k = {Ii,Di | i ∈ {1, . . . ,k}}∪BL

k ∪ML
k ∪{H}
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Definition 7 A well-formed program (WFP) P of length L for CM(k) is a mapping P : AL→ SL
k that

satisfies the following syntactic constraints.
(C1) The last instruction must be H or Bi instruction:

P(L−1) ∈ {H}∪BL
k

(C2) The 0-th instruction must not be an Mi instruction, and the instruction just before Mi must be an
H or Bi instruction:

P(0) 6∈ML
k ∧ ∀a ∈ AL−{0}(P(a) ∈ML

k ⇒ P(a−1) ∈ {H}∪BL
k )

(C3) If the instruction of the address a is Bi, and its port p has a destination address a′, then the
instruction at the address a′ must be Mi, and its port p has the source address a:

∀a,a′ ∈ AL, ∀p ∈ {0,1}, ∀i ∈ {1, . . . ,k},
∀b0,b1 ∈ AL∪{−}, ∃m0,m1 ∈ AL∪{−}
((P(a) = Bi(b0,b1) ∧ bp = a′)⇒ (P(a′) = Mi(m0,m1) ∧ mp = a))

(C4) If the instruction of the address a is Mi, and its port p has a source address a′, then the instruction
at the address a′ must be Bi, and its port p has the destination address a:

∀a,a′ ∈ AL, ∀p ∈ {0,1}, ∀i ∈ {1, . . . ,k},
∀m0,m1 ∈ AL∪{−}, ∃b0,b1 ∈ AL∪{−}
((P(a) = Mi(m0,m1) ∧ mp = a′)⇒ (P(a′) = Bi(b0,b1) ∧ bp = a))

The constraint (C1) prevents the case of going to the address L. The constraint (C2) guarantees
that each Mi instruction is activated only by Bi instructions. The constraints (C3) and (C4) say that the
destination addresses of port p of Bi instructions, and the source addresses of port p of Mi instructions
have one-to-one correspondence for each p ∈ {0,1}.

Example 3 Let Pmove be the following sequence of instructions.

0 1 2 3 4 5 6 7 8
B2(1,−) M2(0,6) D1 I2 B1(7,5) M1(−,4) B2(−,1) M1(4,−) H

We can verify that Pmove satisfies the constraints (C1) – (C4) in Definition 7. Therefore, it is a well-
formed program (WFP) of a CM(2). Since it is cumbersome to follow addresses in Bi and Mi instruc-
tions, we often draw a WFP in a graphical form as in Fig 10.

0 1 2 3 4 5 6 7 8

B2 (• , •) M2(• , •) D1 I2 B1 (• , •) M1(• , •) B2 (• , •) M1(• , •) H

Figure 10: Graphical representation of of the WFP Pmove.

We now define a CM M in the program form, which has a WFP.

Definition 8 A CM in the program form is defined by

M = (P,k,AF),

where P is a WFP of length L, k is the number of counters, and AF is a set of final addresses that
satisfy the following: AF ⊆ {a | a ∈ AL∧P(a) = H}, where AL = {0, . . . ,L−1}.

Remarks. The file “Reversible World of CAs.zip” contains a rule file and pattern files by which CMs
can be simulated. Note that they can simulate a CM in the quadruple form even if it is irreversible.
Therefore, if one has designed a reversible CM, he/she must check its reversibility by Definition 6.
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3.4 Reversible logic element with memory (RLEM)
A reversible logic element with memory (RLEM), which was first introduced in [4], is an important
logic element for implementing universal reversible computing systems in a reversible CA. This is
because RTMs and RCMs can be constructed out of RLEMs more easily than to use reversible logic
gates. An RLEM is a kind of a reversible finite automaton having output symbols as well as input
symbols, which is called a reversible sequential machine of Mealy type.

Definition 9 A sequential machine (SM) is defined by M = (Q,Σ, Γ,δ ), where Q is a finite set of
states, Σ and Γ are finite sets of input and output symbols, and δ : Q×Σ→ Q×Γ is a move function
(Fig. 11 (a)). If δ is injective, it is called a reversible sequential machine (RSM).

Definition 10 A reversible logic element with memory (RLEM) is an RSM M = (Q,Σ,Γ,δ ) that
satisfies |Σ|= |Γ|. M is called a |Q|-state |Σ|-symbol RLEM.

To use an SM as a logic element, we interpret it as the one with decoded input ports and output
ports (Fig. 11 (b)). Namely, for each input symbol, there is a unique input port to which a signal (or a
particle) is given. It is also the case for the output symbols. Therefore, signals should not be given to
two or more input ports at the same time.

(a)

(b)
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p q
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Figure 11: (a) A sequential machine (SM) with δ (p,ai) = (q,s j), and (b) an interpretation of it as a
module having decoded input ports and output ports

3.4.1 2-state RLEMs

RLEMs having two states are particularly important. Despite its simplicity they are very powerful in
composing reversible computers.

We first give an identification number to each of 2-state k-symbol RLEMs. Let M = (Q,Σ,Γ,δ )
be an RLEM such that |Q| = 2 and |Σ| = |Γ| = k. Since δ is a bijection, there are (2k)! kinds of
δ ’s. Here, we fix the sets Q, Σ and Γ as follows: Q = {0,1}, Σ = {a1, . . . ,ak} and Γ = {s1, . . . ,sk}.
Thus, a bijection δ can be specified by a permutation on the set {0,1}×{s1, . . . ,sk}. All the move
functions δ ’s of 2-state k-symbol RLEMs are numbered by 0, . . . ,(2k)!−1 in the lexicographic order
of permutations. An identification number is obtained by attaching the prefix “k-” to the serial number,
e.g. 4-289. The RLEM with an identification number k-n is denoted by RLEM k-n.

Next, we show a method of representing a move function of a 2-state RLEM graphically. It makes
it easy to describe a move function. Here, the method is explained using the following example (its
detailed definition is given in [6]).
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Example 4 Consider RLEM 4-289: M4-289 =({0,1},{a1,a2,a3,a4}, {s1,s2,s3,s4},δ4-289). Its move
function δ4-289 is described in Table 1. Figure 12 shows a graphical representation of δ4-289. In this
figure, each of the two states are represented by a rectangle having input ports and output ports. The
relation between the inputs and the outputs is indicated by solid and dotted lines. We assume a signal
(or a particle) is given to at most one input port at a time. If a particle is given to an input port, it
moves along the line connected to the input port, and goes out from the output port connected to it. If
a particle goes through a dotted line, the state does not change (Fig. 13 (a)). On the other hand, if it
goes through a solid line, the state changes to the other (Fig. 13 (b)).

Table 1: Move function δ4-289.
Input

Present state a1 a2 a3 a4
0 0 s1 0 s2 1 s1 1 s2
1 0 s3 0 s4 1 s4 1 s3
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�

�
�
�

a1
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s1
s2
s3
s4
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s3
s4

Figure 12: Graphical representation of RLEM 4-289.
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Figure 13: (a) If a particle passes a dotted line, the state remains to be the same. (b) If a particle
passes a solid line, the state changes to the other.

There are (2k)! kinds of 2-state k-symbol RLEMs. However, among them there are many equiv-
alent RLEMs, which are obtained by renaming the states and/or the input/output symbols. They are
called equivalent RLEMs. Hence, the total number of essentially different 2-state k-symbol RLEMs
decreases significantly.

The total numbers of different 2-state 2-, 3- and 4-symbol RLEMs are 24, 720 and 40320, respec-
tively. On the other hand, the numbers of equivalence classes of 2-, 3- and 4-symbol RLEMs are 8,
24 and 82, respectively [8, 6]. Figure 14 shows all representative RLEMs in the equivalence classes
of 2- and 3-symbol RLEMs. Each representatives are chosen so that it has the smallest identification
number in the class.

Among RLEMs, there are some degenerate ones that are further equivalent to connecting wires,
or to a simpler RLEM with fewer symbols. A more precise definition of degeneracy is found in [6].
In Fig. 14, degenerate ones are indicated at the upper-right corner of a box. For example, RLEMs 3-
1, 3-6 and 3-21 are degenerate ones. RLEM 3-1 is equivalent to three connecting wires, since no
state-change can occur. RLEM 3-6 is equivalent to RLEM 2-2 and one connecting wire. RLEM 3-21
is equivalent to three connecting wires, since two states have exactly the same input-output relation.
Table 2 shows the classification result. Among all RLEMs, non-degenerate ones are the main concern
of the study.
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Figure 14: Representatives of equivalence classes of 2- and 3-symbol RLEMs [8, 6].

Table 2: Numbers of equivalence classes of degenerate and non-degenerate k-symbol RLEMs [6].

k All equivalence classes Degenerate ones Non-degenerate ones
2 8 4 4
3 24 10 14
4 82 27 55

There are several useful RLEMs. The first one is a rotary element (RE), which was first proposed
in [4]. It is equivalent to RLEM 4-289 (Fig. 12). However, we express it as in Fig 15. Intuitively, an
RE has a rotatable bar inside, and an incoming signal is controlled by the bar. It takes either of the
two states V or H, depending on the direction of the bar. If the direction of a coming signal is parallel
to the bar, the signal goes straight ahead, and the state does not change (Fig. 16 (a)). If the direction
of a coming signal is orthogonal to the bar, the signal turns right, and the state changes (Fig. 16 (b)).
Hence, its operations are easily understood.
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Figure 15: Two states V and H of a rotary element (RE).
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It has been shown that any RTM can be constructed rather simply using only REs [4]. Figure 17
is an implementation of the RTM Tparity (Example 1) by REs.

The second one is RLEM 4-31 (Fig. 18). It is also possible to construct any RTM by it (Fig. 19).
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Figure 16: Operations of an RE. (a) Parallel case, and (b) orthogonal case.
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Figure 17: RTM Tparity composed of REs [6].
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Figure 18: RLEM 4-31.

Start

-

-

q0









�����

-

XXX
XX

-









�����

-

XX
XXX

-

-

-

-

q1









�����

-

XXX
XX

-









�����

-

XX
XXX

-

-

-

-

-









�����

-

XXX
XX

-

-

-









�����

-

XXX
XX

-









�����

-

XX
XXX

-

-

-

-

q2









�����

-

XXX
XX

-









�����

-

XX
XXX

-

-

-

-

-









�����

-

XXX
XX

-

-

-









�����

-

XXX
XX

-









�����

-

XX
XXX

-

-

-

-

qa









�����

-

XXX
XX

-









�����

-

XX
XXX

-

-

-

-

-









�����

-

XX
XXX

-

-

-

qr









�����

-

XXX
XX

-









�����

-

XX
XXX

-

-

-

-

-









�����

-

XX
XXX

-

-

-

�Accept

�Reject

[q0, 0, 1, R, q1]

6

[q1, 0, 1, L, qa]

6

[q1, 1, 0, R, q2]

6

[q2, 0, 1, L, qr]

6

[q2, 1, 0, R, q1]

6







-

-

-

-

@
@@

����� XXX
XX

-
-

-

-
@
@@

����� XX
XXX

-

-

-

-
@
@@

����� XXX
XX

-

-

-

-
@
@@

����� XXX
XX

-
-

-
@
@@

����� XXX
XX

-
-

-
@
@@

����� XX
XXX

-
-

-
@
@@

����� XXX
XX

-

-

-

-
@
@@

����� XXX
XX

-

-

-

@
@@

-
-

-

-









����� XXX
XX

-
-

-

-









����� XX
XXX

-

-

-

-









����� XXX
XX

-

-

-

-









����� XXX
XX

-
-

-









����� XXX
XX

-
-

-









����� XX
XXX

-
-

-









����� XXX
XX

-

-

-

-









����� XXX
XX

-

-

-







-

-

-

-









����� XXX
XX

-
-

-

-









����� XX
XXX

-

-

-

-









����� XXX
XX

-

-

-

-









����� XXX
XX

-
-

-









����� XXX
XX

-
-

-









����� XX
XXX

-
-

-









����� XXX
XX

-

-

-

-









����� XXX
XX

-

-

-

W0

W1

R0′

R1′

SL

SLI′

SLc′

SR

SRI

SRc′

•

Head

0 1 0

•••

Figure 19: RTM Tparity composed of RLEM 4-31 [6].
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Definition 11 An RLEM R is called intrinsically universal if any RSM M can be realized by a circuit
composed only of R.

We can see that all non-degenerate 2-state RLEMs except only three are intrinsically universal.
The result has been shown in the following way.

Proposition 1 [5] An RE is intrinsically universal.

Lemma 1 [2, 8] RE is realizable by RLEM 3-10.

Lemma 2 [2] RLEM 3-10 is realizable by RLEMs 2-3 and 2-4.

Lemma 3 [8] RLEMs 2-3 and 2-4 are realizable by any one of 14 non-degenerate 2-state 3-symbol
RLEMs.

Lemma 4 [8] Let M be an arbitrary non-degenerate 2-state k-symbol RLEM (k ≥ 3). Then, there
exists a non-degenerate 2-state (k−1)-symbol RLEM M′ that is realizable by M.

From Proposition 1 and Lemmas 1–4, we have the following proposition.

Proposition 2 [8] All non-degenerate 2-state k-symbol RLEMs are intrinsically universal if k ≥ 3.

Furthermore, Matthew Cook and Ethan Palmiere proved the following.

Proposition 3 [Cook and Palmiere]1 RLEM 2-17 is intrinsically universal.

Figure 20 summarizes the above results. Thus, RTMs can be constructed out of any one of intrin-
sically universal RLEMs.

Every non-degenerate 2-state
k-symbol RLEM k-n (k ≥ 3)
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Figure 20: Intrinsic universality/non-universality of non-degenerate 2-state RLEMs. Here, A→ B
(A 6→ B, respectively) indicates that A is (is not) realizable by B. Note that the relations among the
four 2-symbol RLEMs have been shown in [9].

1Personal communication.
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