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Solutions for Selected Exercises

Solutions for selected exercises in the following book are given below.

K. Morita: Reversible World of Cellular Automata,

World Scientific Publishing, Singapore (2024).

https://doi.org/10.1142/13516

Solution 1.1. Figure 10.1 shows the evolution process of a toad.

t = 0

• • •• • •

t = 1

•• •• ••

t = 2

• • •• • •

Fig. 10.1 Evolution process of a toad in GoL.

Solution 1.2. Let Q = {0, 1} be the set of states of the Fredkin’s CA. Let

αn denote the configuration at time n (hence αn is a function Z2 → Q).

Then, the state transition of the cell at (x, y) ∈ Z2 by the local function of

Fredkin’s CA is expressed by the following formula, where ⊕ denotes the

mod 2 addition.

αn+1(x, y) = αn(x, y+ 1)⊕αn(x+ 1, y)⊕αn(x, y− 1)⊕αn(x− 1, y) (i)

Applying (i) repeatedly, we have the equation (ii), since z⊕ z = 0 holds for

1
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any z ∈ {0, 1}.

αn+2(x, y)

= αn(x, y + 2)⊕ αn(x+ 1, y + 1)⊕ αn(x, y)⊕ αn(x− 1, y + 1)

⊕ αn(x+ 1, y + 1)⊕ αn(x+ 2, y)⊕ αn(x+ 1, y − 1)⊕ αn(x, y)

⊕ αn(x, y)⊕ αn(x+ 1, y − 1)⊕ αn(x, y − 2)⊕ αn(x− 1, y − 1)

⊕ αn(x− 1, y + 1)⊕ αn(x, y)⊕ αn(x− 1, y − 1)⊕ αn(x− 2, y)

= αn(x, y + 2)⊕ αn(x+ 2, y)⊕ αn(x, y − 2)⊕ αn(x− 2, y) (ii)

Applying (ii) repeatedly, and so on, we obtain the formula (iii) for each

m ∈ {1, 2, · · · }.

αn+2m(x, y) = αn(x, y+2m)⊕αn(x+2m, y)⊕αn(x, y−2m)⊕αn(x−2m, y) (iii)

By (iii), we can see that if 2m is larger than the diameter (i.e., maximum of

the height and the width) of the initial pattern, then four replicated pattern

appear at time 2m.

It is also easy to see that at time

n = 2m1 + 2m2 · · ·+ 2mk

such that m1 > m2 > · · · > mk and 2mk is larger than the diameter of the

initial pattern, 4k copies of the pattern appear.

Solution 1.3. (omitted)

Solution 1.4. (omitted)

Solution 2.1. (1) Figure 10.2 shows its evolution process. Two copies

of a space-moving pattern of period 3 appear, and they move opposite

directions. Hence, it is diameter-growing.

t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

t = 6

Fig. 10.2 Evolution process of a 2-dot configuration in ESPCA-0945df.
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(2) Figure 10.3 shows its evolution process. A space-moving pattern

of period 3, and a periodic pattern of period 22 appear. Since the former

moves rightward, it is diameter-growing as a whole.

t = 0 t = 1 t = 2 t = 3

t = 4 t = 5 t = 6 t = 7

Fig. 10.3 Evolution process of a 1-dot configuration in ESPCA-0945df.

Solution 2.2. (1) Figure 10.4 shows its evolution process. It is a periodic

configuration of period 8.

t = 0 t = 1 t = 2 t = 3

t = 4 t = 5 t = 6 t = 7 t = 8

Fig. 10.4 Evolution process of a 3-dot configuration in ETPCA-0347.

(2) The configuration rotates clockwise by 60◦ in 7 steps (Fig. 10.5).

Hence, it is a periodic configuration of period 42.

t = 0 t = 1 t = 2 t = 3

t = 4 t = 5 t = 6 t = 7

Fig. 10.5 Evolution process of a rotating configuration in ETPCA-0347.
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Solution 2.3. Proof. Assume, on the contrary, negation of the statement

holds:

∃d > 0 ∀t > 0 (diam((F−1)t(α)) ≤ d)

It means that there are infinitely many instances of t > 0 such that

diam((F−1)t(α)) ≤ d. We can see that the total number of different config-

urations whose diameter is bounded by d is finite except their translations.

Therefore, there exist 0 < t1 < t2 such that (F−1)t1(α) = (F−1)t2(α), or

(F−1)t1(α) is a translation of (F−1)t2(α). In the former case (F−1)t2(α) is

periodic, while in the latter case it is space-moving. Hence, α = (F−1)0(α)

is also periodic or space-moving, and thus not diameter-growing, a contra-

diction. Therefore, the statement holds.

Solution 2.4. Figure 2.30 (a) is a periodic configuration of period 34.

Figure 2.30 (b) is a diameter-growing one with a chaotic core that generates

an unbounded number of space-moving patterns of period 3. The above

solution is found in the following pattern file:

Cx_Exercise_2_4_ESPCA-0945df.rle

Solution 2.5. Figure 2.31 (a) is a periodic configuration of period 24.

Figure 2.31 (b) generates two space-moving patterns, which move to the

east and the south-east directions. Hence, it is a diameter-growing one.

The above solution is found in the following pattern file:

Cx_Exercise_2_5_ETPCA_0347.rle

Solution 3.1.

α :

F0347(α) :

Ĥ ◦ F0347(α) :

F0347 ◦ Ĥ ◦ F0347(α) :

Ĥ ◦ F0347 ◦ Ĥ ◦ F0347(α) :

Fig. 10.6 T-symmetry under Ĥ in reversible ETPCA-0347.
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Solution 3.2. (1) Let f̂ denote the local function of ESPCA-073a2f. Then,

f̂(0, 0, 0, 0) = (0, 0, 0, 0), f̂(0, 0, 1, 0) = (0, 1, 1, 1),

f̂(0, 0, 1, 1) = (0, 0, 1, 1), f̂(1, 0, 1, 0) = (1, 0, 1, 0),

f̂(0, 1, 1, 1) = (0, 0, 1, 0), f̂(1, 1, 1, 1) = (1, 1, 1, 1).
Therefore,

f̂−1(0, 0, 0, 0) = (0, 0, 0, 0), f̂−1(0, 1, 1, 1) = (0, 0, 1, 0),

f̂−1(0, 0, 1, 1) = (0, 0, 1, 1), f̂−1(1, 0, 1, 0) = (1, 0, 1, 0),

f̂−1(0, 0, 1, 0) = (0, 1, 1, 1), f̂−1(1, 1, 1, 1) = (1, 1, 1, 1).

Hence, f̂ = f̂−1. Thus, by Theorem 3.1, ESPCA-073a2f is T-symmetric

under Hrev.

(2) A solution is found in the following two pattern files:

Cx_Exercise_3_2_ESPCA-073a2f_T-symmetry.rle

Cx_Exercise_3_2_ESPCA-08cadf_Hrev.rle

Solution 3.3. A solution is found in the following pattern file:

Cx_Exercise_3_2_ESPCA-073a2f_T-symmetry.rle

Solution 4.1. (1) Tadd = (Qadd, {0, 1}, q0, {qf}, δadd), where

Qadd = { q0, q1, q2, q3, q4, q5, q6, q7, qf },
δadd = { [q0, 0, 0, R, q1], [q1, 0, 0, L, q7], [q1, 1, 0, R, q2], [q2, 0, 0, R, q3],

[q2, 1, 1, R, q2], [q3, 0, 1, R, q4], [q3, 1, 1, R, q3], [q4, 0, 0, L, q5],

[q5, 0, 0, L, q6], [q5, 1, 1, L, q5], [q6, 0, 1, R, q1], [q6, 1, 1, L, q6],

[q7, 0, 0, N, qf ], [q7, 1, 1, L, q7] }.

See also the solution of Exercise 4.8 given as a pattern file for Golly.

(2) Tmult = (Qmult, {0, 1}, p0, {pf}, δmult), where

Qmult = { p0, p1, p2, p3, p4, pf , q0, q1, q2, q3, q4, q5, q6, q7 },
δmult = { [p0, 0, 0, R, p1], [p1, 0, 0, L, p4], [p1, 1, 0, R, p2], [p2, 0, 0, R, q1],

[p2, 1, 1, R, p2], [p3, 0, 1, R, p1], [p3, 1, 1, L, p3], [p4, 0, 0, N, pf ],

[p4, 1, 1, L, p4], [q1, 0, 0, L, q7], [q1, 1, 0, R, q2], [q2, 0, 0, R, q3],

[q2, 1, 1, R, q2], [q3, 0, 1, R, q4], [q3, 1, 1, R, q3], [q4, 0, 0, L, q5],

[q5, 0, 0, L, q6], [q5, 1, 1, L, q5], [q6, 0, 1, R, q1], [q6, 1, 1, L, q6],

[q7, 0, 0, L, p3], [q7, 1, 1, L, q7] }.

See also the solution of Exercise 4.8 given as a pattern file for Golly.
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Solution 4.2. (1) Mhalf = (Qhalf , 2, δhalf , h0, {hf}), where

Qhalf = { h0, h1, h2, h3, h4, h5, h6, h7, h8, hf },
δhalf = { [h0, 2, Z, h1], [h1, 1, Z, hf ], [h1, 1, P, h2], [h2, 1,−, h3],

[h3, 1, Z, h4], [h3, 1, P, h6], [h4, 1,+, h5], [h5, 1, P, hf ],

[h6, 1,−, h7], [h7, 2,+, h8], [h8, 2, P, h1] }.

See also the solution of Exercise 4.9 given as a pattern file for Golly.

(2) Phalf is shown in Fig. 10.7.

h0

0
h1

1 2
h2

3 4
h3

5
h4

6 7

h5

8
h6

9 10
h7

11
h8

12
hf

13 14

B2 (• , •) M2(• , •) B1 (• , •) M1(• , •) D1 B1 (• , •) M1(• , •) I1

B1 (• , •) M1(• , •) D1 I2 B2 (• , •) M1(• , •) H

Fig. 10.7 WFP Phalf .

See also the solution of Exercise 4.9 given as a pattern file for Golly.

Solution 4.3. See the solution of Exercise 4.10 given as a pattern file for

Golly.

Solution 4.4. See the solution of Exercise 4.10 given as a pattern file for

Golly.

Solution 4.5. See the solution of Exercise 4.10 given as a pattern file for

Golly.

Solution 4.6. See the solution of Exercise 4.10 given as a pattern file for

Golly.

Solution 4.7. See the solution of Exercise 4.10 given as a pattern file for

Golly.

Solution 4.8. A solution is found in the following pattern file:

Cx_Exercise_4_08_RTMs.rle

Solution 4.9. A solution is found in the following pattern file:

Cx_Exercise_4_09_RCMs.rle
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Solution 4.10. A solution is found in the following pattern file:

Cx_Exercise_4_10_RLEMs.rle

Solution 5.1. Figure 10.8 shows the evolution process.

t = 0 t = 1 t = 2 t = 3

t = 4 t = 5 t = 6 t = 7

t = 8 t = 9 t = 10 t = 11

t = 12 t = 13 t = 14

Fig. 10.8 Evolution process of the periodic pattern of period 60 in ESPCA-0945df.

Solution 5.2. First note that ESPCA-05f050 is defined by (a1, a2, a3, a4) =

(0, 1, 0, 1) (see Table 5.1). Let f be the local function of ESPCA-05f050.

If f(t, r, b, l) = (t′, r′, b′, l′) for (t, r, b, l), (t′, r′, b′, l′) ∈ {0, 1}4, then the

following holds, where ⊕ denotes the mod 2 addition.

t′ = r ⊕ l, r′ = b⊕ t, b′ = l ⊕ r, l′ = t⊕ b

Let αn denote the configuration at time n (it is a function Z2 → {0, 1}4).
Thus, αn(x, y) is the state of the cell at (x, y) ∈ Z2. Let αnt (x, y), αnr (x, y),
αnb(x, y), and αnl (x, y) denote the states of the top, right, bottom, and left
parts of the cell at (x, y), respectively. Then the following holds.

αn+1
t (x, y) = αn

r (x− 1, y)⊕ αn
l (x+ 1, y)

αn+1
r (x, y) = αn

b(x, y + 1)⊕ αn
t (x, y − 1)

αn+1
b (x, y) = αn

l (x+ 1, y)⊕ αn
r (x− 1, y)

αn+1
l (x, y) = αn

t (x, y − 1)⊕ αn
b(x, y + 1)
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Using the above equations, we have the following.

αn+2
t (x, y) = αn+1

r (x− 1, y)⊕ αn+1
l (x+ 1, y)

= αn
b (x− 1, y + 1)⊕ αn

t (x− 1, y − 1)⊕ αn
t (x+ 1, y − 1)⊕ αn

b (x+ 1, y + 1)

αn+2
r (x, y) = αn+1

b (x, y + 1)⊕ αn+1
t (x, y − 1)

= αn
l (x+ 1, y + 1)⊕ αn

r (x− 1, y + 1)⊕ αn
r (x− 1, y − 1)⊕ αn

l (x+ 1, y − 1)

αn+2
b (x, y) = αn+1

l (x+ 1, y)⊕ αn+1
r (x− 1, y)

= αn
t (x+ 1, y − 1)⊕ αn

b (x+ 1, y + 1)⊕ αn
b (x− 1, y + 1)⊕ αn

t (x− 1, y − 1)

αn+2
l (x, y) = αn+1

t (x, y − 1)⊕ αn+1
b (x, y + 1)

= αn
r (x− 1, y − 1)⊕ αn

l (x+ 1, y − 1)⊕ αn
l (x+ 1, y + 1)⊕ αn

r (x− 1, y + 1)

Again, using the above equations, we have the following.

αn+4
t (x, y) = αn+2

b (x− 1, y + 1)⊕ αn+2
t (x− 1, y − 1)⊕

αn+2
t (x+ 1, y − 1)⊕ αn+2

b (x+ 1, y + 1)
= αn

t (x, y)⊕ αn
b (x, y + 2)⊕ αn

b (x− 2, y + 2)⊕ αn
t (x− 2, y)⊕

αn
b (x− 2, y)⊕ αn

t (x− 2, y − 2)⊕ αn
t (x, y − 2)⊕ αn

b (x, y)⊕
αn

b (x, y)⊕ αn
t (x, y − 2)⊕ αn

t (x+ 2, y − 2)⊕ αn
b (x+ 2, y)⊕

αn
t (x+ 2, y)⊕ αn

b (x+ 2, y + 2)⊕ αn
b (x, y + 2)⊕ αn

t (x, y)⊕
= αn

b (x− 2, y + 2)⊕ αn
t (x− 2, y − 2)⊕ αn

t (x+ 2, y − 2)⊕ αn
b (x+ 2, y + 2)

The above equation is derived from the following fact. From the local

function of ESPCA-05f050, we can see that the configurations at time n > 0

consist only of the states (0,0,0,0), (0,1,0,1), (1,0,1,0) and (1,1,1,1), as well

as the initial configuration. Therefore, in the above formula, for example,

αnt (x− 2, y) = αnb(x− 2, y) holds, and they are cancelled by ⊕.
We can derive the following equations in a similar way.

αn+4
r (x, y) = αn

l (x+ 2, y + 2)⊕ αn
r (x− 2, y + 2)⊕ αn

r (x− 2, y − 2)⊕ αn
l (x+ 2, y − 2)

αn+4
b (x, y) = αn

t (x+ 2, y − 2)⊕ αn
b (x+ 2, y + 2)⊕ αn

b (x− 2, y + 2)⊕ αn
t (x− 2, y − 2)

αn+4
l (x, y) = αn

r (x− 2, y − 2)⊕ αn
l (x+ 2, y − 2)⊕ αn

l (x+ 2, y + 2)⊕ αn
r (x− 2, y + 2)

Repeating this procedure, we have the following for each m ∈ {1, 2, . . .}.

αn+2m+1

t (x, y) = αn
b(x− 2m, y + 2m)⊕ αn

t (x− 2m, y − 2m)⊕
αn

t (x+ 2m, y − 2m)⊕ αn
b(x+ 2m, y + 2m)

αn+2m+1

r (x, y) = αn
l (x+ 2m, y + 2m)⊕ αn

r (x− 2m, y + 2m)⊕
αn

r (x− 2m, y − 2m)⊕ αn
l (x+ 2m, y − 2m)

αn+2m+1

b (x, y) = αn
t (x+ 2m, y − 2m)⊕ αn

b(x+ 2m, y + 2m)⊕
αn

b(x− 2m, y + 2m)⊕ αn
t (x− 2m, y − 2m)

αn+2m+1

l (x, y) = αn
r (x− 2m, y − 2m)⊕ αn

l (x+ 2m, y − 2m)⊕
αn

l (x+ 2m, y + 2m)⊕ αn
r (x− 2m, y + 2m)

By above, if 2m is larger than the size of the initial pattern, then four
copies of it appear at time 2m+1. For example, if the initial pattern lies
in the area 0 < x < 2m and 0 < y < 2m, then α0(x − 2m, y + 2m) =
α0(x− 2m, y − 2m) = α0(x+ 2m, y − 2m) = (0, 0, 0, 0) for all x and y such
that −2m < x < 0 and −2m < y < 0. Thus, the following holds for
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−2m < x < 0 and −2m < y < 0.

α2m+1

t (x, y) = α0
b(x+ 2m, y + 2m) = α0

t (x+ 2m, y + 2m)

α2m+1

r (x, y) = α0
l (x+ 2m, y + 2m) = α0

r (x+ 2m, y + 2m)

α2m+1

b (x, y) = α0
b(x+ 2m, y + 2m)

α2m+1

l (x, y) = α0
l (x+ 2m, y + 2m)

Therefore, a copy of the pattern in the region 0 < x < 2m and 0 < y < 2m

at time 0 appears in the region −2m < x < 0 and −2m < y < 0 (i.e.,

to the south-west direction from the original) at time 2m+1. By a similar

argument, copies of the initial pattern also appear to the north-west, north-

east and south-east directions.

Solution 5.3. (omitted)

Solution 5.4. A solution is found in the following pattern file:

Cx_Exercise_5_4_ETPCA-0347_12w_glider_gun.rle

Solution 6.1. The process of a left-turn is shown in Fig. 10.9.

t = 12 t = 13 t = 14 t = 15 t = 16

t = 17 t = 18 t = 19 t = 20 t = 21

t = 22 t = 23 t = 24 t = 25 t = 26

t = 27 t = 28 t = 29

Fig. 10.9 Left-turn process of a glider-12 by a rotor in ESPCA-01c5ef.
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Solution 6.2. See the solution of Exercise 6.7 given as a pattern file for

Golly.

Solution 6.3. See the solution of Exercise 6.8 given as a pattern file for

Golly.

Solution 6.4. A solution is given in Fig. 10.10. Here, every delay element

has a unit-time delay. An input should be given at t ≡ 0 (mod 2). See also

the solution of Exercise 6.9 given as a pattern file for Golly.

a

b

x

y

•
•

1

0

t ≡ 0 t ≡ 1 t ≡ 0

Fig. 10.10 RLEM 2-2 composed of I-gates, I−1-gates, and delay elements. Here, t ≡ n
means t and n are congruent modulo 2, and shows that signals can be at the position

only when t ≡ n.

Solution 6.5. A solution is shown in Fig. 10.11. Here, a number in each

delay element shows the delay time. An input should be given at t ≡ 0

(mod 6). See also the solution of Exercise 6.9 given as a pattern file for

Golly.
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1

1

1

1

1

1

1

1

1

1

1

2

1

2

2

5

1

3

5

4

1

3

4

1

a

b

x

y

•
•

0

1

t ≡ 0
t ≡ 1

t ≡ 2 t ≡ 3

t ≡ 0

t ≡ 0
t ≡ 1

t ≡ 2 t ≡ 4

t ≡ 5

Fig. 10.11 RLEM 2-3 composed of I-gates, I−1-gates, and delay elements. Here, t ≡ n
means that t and n are congruent modulo 6.

Another solution: First, note that RLEM 2-3 is realized using only one

RE as shown in Fig. 10.12. Therefore, a circuit for RLEM 2-3 is obtained

by adding two feedback loops to the circuit of Fig. 6.36.

s?
6

-

�

-

-a

b

x

y

Fig. 10.12 RLEM 2-3 composed of an RE. This figure shows the state 0 of RLEM 2-3.

Solution 6.6. A solution is found in the following pattern file:

Cx_Exercise_6_6_ESPCA-01caef_RTM_square_by_RE.mc

Solution 6.7. A solution is found in the following pattern file:

Cx_Exercise_6_7_ESPCA-01c5ef_RLEM_2-2.rle

Solution 6.8. A solution is found in the following pattern file:

Cx_Exercise_6_8_ESPCA-01caef_RLEM_2-3.rle

Solution 6.9. A solution is found in the following pattern file:

Cx_Exercise_6_9_ESPCA-02c5df_RLEM_2-2_2-3.rle
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Solution 7.1. As shown in Fig. 10.13, the fin rotates around the block by

120
◦

in 14 steps. Hence, it is a periodic pattern of period 42.

t = 0 t = 1 t = 2 t = 3 t = 4

t = 5 t = 6 t = 7 t = 8 t = 9

t = 10 t = 11 t = 12 t = 13 t = 14

Fig. 10.13 Interaction of a fin and a block in ETPCA-0347.

Solution 7.2. The evolving process is given in Fig. 10.14.

t = 30 t = 31 t = 32 t = 33

t = 34 t = 35 t = 36 t = 37

t = 38 t = 39 t = 40 t = 41

t = 42

Fig. 10.14 Pushing process of a fin by a glider in ETPCA-0347.
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Solution 7.3. A solution is shown in Fig. 10.15. See also the solution of

Exercise 7.5 given as a pattern file for Golly.

a

b

x

y

Fig. 10.15 RLEM 2-2 implemented in ETPCA-0347.

Solution 7.4. (omitted)

Solution 7.5. A solution is found in the following pattern file:

Cx_Exercise_7_5_ETPCA-0347_RLEM_2-2.rle

Solution 8.1. See the solution of Exercise 8.5 given as a pattern file for

Golly.

Solution 8.2. (1) Figure 10.16 shows that it is a space-moving pattern.

(2) c/7

(3) See the solution of Exercise 8.6 given as a pattern file for Golly.

t = 0 t = 1 t = 2 t = 3

t = 4 t = 5 t = 6 t = 7

Fig. 10.16 Evolving process of a space-moving pattern in the SPCA P3.
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Solution 8.3.

(1) 33 × 93 × 8118 = 3× 8120

= 443426488243037769948249630619149892803

(2) 3!× 6× 4× 2× 18!× 418

= 126710718026674580911816704000

Solution 8.4. See the solution of Exercise 8.7 given as a pattern file for

Golly.

Solution 8.5. A solution is found in the following pattern file:

Cx_Exercise_8_5_P3_B-turn.rle

Solution 8.6. A solution is found in the following pattern file:

Cx_Exercise_8_6_P3_Slow_space_moving.rle

Solution 8.7. A solution is found in the following pattern file:

Cx_Exercise_8_7_P3_RCM_half.rle

Solution 9.1. Construct the following RCM(3) Mloop in P3 using the

RCM(3) Mexp given in Example 8.2. If x ∈ N is given in the first counter,

Mloop first simulates Mexp, and writes 2x in the second counter. Next,

it retraces the computing process backward. By this, the second counter

is cleared, and the contents of the first counter becomes x. Then, re-

peats this procedure indefinitely. Therefore, Mloop is a periodic pattern in

P3. The pattern file Cx_Exercise_9_1_P3_RCM_loop.rle for Golly con-

tained in [7] shows Mloop in P3. From this pattern, we can see that if

Mloop keeps a triplet (x1, x2, x3) in its three counters, then the diame-

ter of the pattern is 615 + 2 · max{x1, x2, x3}. Therefore, if x ∈ N is

given to Mloop, dmin = 615 + 2x, and dmax = 615 + 2 · 2x. Therefore,

dmax/dmin = (615 + 2 · 2x)/(615 + 2x), and thus dmax/dmin > r holds for

sufficiently large x.

Solution 9.2 (omitted)


